
Signal Degradation due to Charge Buildup in

Noble Liquid Ionization Calorimeters

John P. Rutherfoord
�

Department of Physics, University of Arizona, Tucson, AZ, 85721 USA

Abstract

We calculate the degradation in the signal from sampling, noble liquid, ionization
calorimeters due to charge build-up from the slowly drifting positive ions. Such
e�ects can be signi�cant in calorimeters planned for operation at high luminosity
hadron colliders such as the Large Hadron Collider (LHC) at CERN.
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1 Introduction

In the high rate environments anticipated for the next round of hadron collid-
ers, such as the Large Hadron Collider (LHC) at CERN, electromagnetic and
hadronic calorimeters for measuring particle energies will play a prominent role
and face diÆcult challenges. One major concern is radiation damage. Sampling
calorimeters using conventional scintillators will su�er gain variations and light
attenuation from darkening of the scintillator by massive radiation doses. On
the other hand, noble liquid calorimeters can readily be made \rad hard" if
the readout preamps are located remotely. The noble liquid, absorber plates,
charge collection pads, and cables can all be selected to withstand the highest
predicted doses. While the full response from an ionization calorimeter is not
as fast as some other technologies, the signal can be shaped to times of order
the bunch crossing interval. For this reason it is thought that a noble liquid
calorimeter is an attractive option at luminosities of 1034 cm�2 sec�1 including
calorimetry in the particularly diÆcult forward regions.
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Fig. 1. Schematic diagram of a parallel plate, liquid argon forward calorimeter. Also
shown are the cryostat walls and the region of EM shower maximum.

While the electrons liberated from argon, krypton, or xenon atoms by pas-
sage of high energy charged particles through the liquid gap drift quickly in
the electric �eld, the positive ions move much more slowly. In the high rate
environment of the LHC, low energy particles are constantly showering in
the calorimeter. In a given volume of liquid, particularly near electromagnetic
shower maximum, the rate of ionization is large enough that positive ions ac-
cumulate in the gap and distort the electric �eld. When a high energy particle
hits the calorimeter the large shower liberates excess electrons (and ions) on
top of the background production. The distorted electric �eld degrades the
signal from these drifting electrons. In this paper we calculate the e�ect of the
build-up of positive ions on the electric �eld and on the signal in a single gap
of a sampling, noble liquid ionization calorimeter.

Fig. 1 is a schematic of a forward calorimeter with jet coverage over the range
3 < j�j < 4:5. The calorimeter extends to values of j�j above 4.5 in order to
contain the EM portion of hadronic jets at j�j = 4:5.

For speci�c rate calculations we will consider a liquid argon sampling gap
located near electromagnetic shower maximum as indicated in the circle in
Fig. 1. We will �nd that without proper design, liquid ionizing calorimeters
will fail to operate adequately not only at j�j = 4:5 but at signi�cantly lower
values of j�j as well.
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2 Principle of an Ionization Calorimeter

At atmospheric pressure argon lique�es at 87.3 K and solidi�es at 83.9 K.
Argon is a nonpolar, dielectric liquid, i.e. it is an excellent insulator with a
large breakdown potential. However when free electrons are introduced they
readily drift opposite the direction of an applied electric �eld with little loss,
i.e. the electrons do not attach to argon atoms. High energy charged particles,
such as cosmic ray muons, ionize the argon atoms producing free electrons.
The minimum energy loss for light particles (minimum ionization) is about
dE=dx = 1:51 MeV/g/cm2. Using a density of � = 1:40 g/cm3 gives dE=dx =
2:11 MeV/cm. For every �25 eV of energy lost in the argon by such a high
energy charged particle, one ion pair is created so a minimum ionizing particle
traversing the gap produces about 8500 ion pairs/mm = 1.4 fC/mm of each
charge along its track. These ion pairs recombine unless an electric �eld is
present. For electric �elds of order 1 kV/mm the electrons drift quickly (� 5
mm/�sec at T � 85 K) leading to a measurable current whose initial value
is 6.8 nA for a minimum ionizing particle at normal incidence. The positive
charges drift far more slowly and the consequences are the focus of this paper.

In 1974Willis and Radeka [1] introduced the liquid argon sampling calorimeter
for use in high energy physics. A high energy particle incident on such a
calorimeter creates more particles of lower energy, primarily in interactions in
the heavy metal plates between the sampling gaps. These particles, in turn,
produce more particles of even lower energy. Repeated interactions produce a
shower of particles which is quenched when the energies of the particles fall
below various thresholds, e.g. for particle production. The number of particles
produced in the shower is nearly proportional to the energy of the incident
particle. And because the number of ionization electrons is proportional to the
number of charged shower particles, the electron current is a measure of the
incident particle energy.

Liquid argon is an ideal choice for the sensitive medium in a sampling calorime-
ter because it is relatively inexpensive (the cost of the gas from the producer
at the requisite purity, per liquid volume, is roughly the cost of milk), the
number of ion pairs produced per track length of high energy charged parti-
cles is large, and the ionization electrons drift freely and quickly in the liquid
argon. While not inexpensive, krypton and xenon otherwise have quite similar
properties. However when numerical values are required we will choose argon
as example.
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3 Plan of Attack

The mathematics required for a complete description of the behavior of drift-
ing electrons and ions in a liquid argon gap is complicated and can obscure
many of the dominant aspects of the problem. For this reason we employ a
number of simplifying assumptions and approaches, motivating them when
they are introduced. This allows us to develop analytic expressions which are
approximately correct over a range of parameter values. We can then explore
a parameter space in order to optimize a design and minimize the ion loading
problem. But care must be exercised in using the expressions outside their
range of validity.

In the next section we review the measurements of the positive ion mobility
in argon and place these measurements in context. Section 5 introduces the
issue of recombination which is taken up later in this paper. We use section 6
to establish the approach and to develop some intuition for more diÆcult
situations to be encountered later. In section 7 the steady-state con�gurations
of charge, current, and electric �eld in the gap are calculated at �rst order
for various values of the ionization rate and section 8 provides some necessary
higher order corrections. The way in which the steady-state ionization a�ects
a transient signal event is calculated in section 9 and simulation results are
presented in section 10. In section 11 we estimate the uctuations in what
we have assumed is a steady-state ionization rate. Finally in section 12 we
translate the calculations to a practical situation and estimate the limits of
operation of liquid argon calorimeters.

4 Electron and Ion Drift Velocities

The drift velocity of free electrons in liquid argon is well measured [2{8] and
there is some understanding of the results [9,10]. At very low electric �elds
the electron drift velocity is proportional to the applied electric �eld and so
is described by an electron mobility �� � v�=E. At modest electric �elds
the drift velocity saturates, that is, it appears to approach a constant value
independent of electric �eld. For purposes of analytic calculation in this paper
we will assume that the electron drift velocity, v� = v�(E), depends on electric
�eld, E, as shown in Fig. 2. (Note that throughout this paper the symbol v
refers to the drift velocity as a function of electric �eld while the symbol v
refers to the drift velocity at the speci�c value of electric �eld E = Vo=a where
Vo is the nominal potential applied across the gap, considered a constant, and
a is the gap width (see Fig. 3), i.e.

v� = v�(Vo=a): (4.1)
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Fig. 2. Electron (�) and positive ion (+) drift velocities (not to scale) as a function
of electric �eld as used in the analytic calculations. The electron velocity at low
�elds is described by a mobility which, when extrapolated to the nominal electric
�eld of the gap, gives a velocity of u�.

Furthermore we always take v�, v�, and �� as positive and insert explicit
negative signs in the equations to indicate direction opposite the electric �eld
direction.) We assume that below some value of electric �eld Eo (which we
will take to be very small relative to Vo=a) the drift velocity v� = ��E while
for E > Eo we assume v� = v�, i.e. v� is independent of electric �eld (v� � 5
mm/�sec). Of course ��Eo = v� in order for v� to be a continuous function
of E.

Less well understood is how positive charge leaves the gap. We will assume
in liquid argon (as in argon gas) that positive argon ions drift in the electric
�eld and that v+ = �+E where �+ is independent of E. This is also shown in
Fig. 2. Using our convention for v and v, we note that v+ = �+Vo=a.

Assuming drifting positive argon ions are the dominant positive charge carriers
in liquid argon, it is not known whether the ions are monatomic or not. The
Ar+ ions could form ionized molecules such as Ar+2 or Ar+3 . So the mass of the
positive charge carrier is unknown. In solid argon it is not clear whether there
is a transport of positive charge [11,12]. If there is, then it is likely due to hole
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Fig. 3. A schematic diagram of a liquid argon gap. The plate at z = 0 is at a positive
high voltage Vo while the plate at z = a is at ground. Electrons drift to the left and
positive ions to the right. The current is measured by device A. It is assumed that
the circuit connecting the plates has zero impedance.

transport rather than the motion of positive ions. So it is possible that hole
transport dominates in liquid argon also. Or it is possible that no mechanism
dominates. Positive charge may move through liquid argon due to drifting
Ar+, Ar+2 , . . . and hole transport. This possibility may help explain why the
experimental measurements, which we review below, are so disparate.

Table I summarizes the measured positive ion mobilities in liquid argon [13{
19]. The lowest value is �+ = 0:02 mm2/Vs while the highest is about �+ = 1
mm2/Vs, a factor of 50 variation from lowest to highest. It should be pointed
out that the lowest value of �+ was not actually measured but was extrapolated
from larger values [13]. The experimenters believed they saw evidence that
drifting positive ions set up a bulk uid ow which carried the positive ions
along faster. Lower densities of positive ions gave lower drift velocities at
the same �eld. If this is true then the measurement should also be geometry
dependent.

The highest values of �+ in Table I were determined indirectly via phenomeno-
logical models of the experimental data [18,19]. In these cells ions were pro-
duced by electric �eld ionization at the tip of a sharp electrode. It is possible
that liquid argon in the vicinity of the tip was vaporized making the result
somewhat uncertain. Since the positive ion mobility measurement was not the
primary focus of these experiments the results can be considered a by-product
and perhaps given less weight.
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Table I
Positive Ion Mobilities in Liquid Argon

Reference Source Cell Field �+

(kV/mm) (mm2/Vs)

Dey, Lewis '63 Am241 Plates /w grid Up to 1 0:02

Davis, Rice, Meyer '62 Po210 Plates /w grid � 0:025 0:06

Henson '64 Field Ion Shutter/Drift/TOF 0-0.43 0:06 � 0:0975

Gee et al. '85 X-rays Plates 0.06-2.7 0:2

Williams '57 Po210 Plates 2.4-18.7 0:28

Halpern, Gomer '69 Field Ion Tip/Plate � 0:1 0:7� 1:0

Arii, Schmidt '84 Field Ion Tip/Plate 0:74 � 1:16

The range of electric �elds employed for each measurement is tabulated when
given by the authors. No particular electric �eld dependence is apparent. Some
experiments varied the temperature and pressure as well and saw no striking
dependence over the narrow range near the argon boiling temperature at one
atmosphere.

We conclude that little is known about the positive charge transport mech-
anism in liquid argon and that the summary parameter of relevance to us,
the positive ion mobility, is highly uncertain. We will continue to assume that
some constant value for the positive ion mobility exists, just that it is not
presently well known, but we keep in mind the possibility that a description
of the motion of positive charge in liquid argon is not adequately represented
by a single constant value of �+.

Table II puts the positive ion drift velocity into perspective by presenting a
number of other relevant velocities. Note that the thermal velocities are much
larger than the drift velocities for the electric �elds of relevance here. Also
note that thermal is in quotes for electrons because the free electrons in an
electric �eld become \super heated" due to the lack of an eÆcient energy
loss mechanism below about 1 eV [9,10]. The table also justi�es our neglect
of di�usion velocity in subsequent calculations [20]. In estimating a di�usion
velocity we've made the extreme assumption that the number density, n, of
positive ions varies by 100% over a distance of 0:001 � a where a is the gap
width of 2 mm. For the di�usion constant D we took a value corresponding
to the largest measured value of �+.
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Table II
Velocities in Liquid Argon

Electron drift velocity at E = 1 kV/mm v� = 5� 100 mm/�s

Low frequency sound c = 0:85 � 100 mm/�s

RMS \thermal" velocity of electron at 1 kV/mm
p
< v2

�
> = 8� 102 mm/�s

Positive ion drift velocity at E = 1 kV/mm

assuming �+ = 0:02 mm2/Vs v+ = 2� 10�5 mm/�s

assuming �+ = 1 mm2/Vs v+ = 1� 10�3 mm/�s

RMS thermal velocity of Ar+ ion at T=90K
p
< v2

+
> � 2:4� 10�1 mm/�s

Di�usion velocity < vz >= �D
1
n
dn
dz

for dn
n = 1 and dz � a=1000 < vz > � 4� 10�6 mm/�s

5 Recombination

At high ionization rates recombination �gures prominently. In the literature
three types of recombination are identi�ed. Here we discuss each in turn.

5.1 Bulk Recombination

Bulk recombination occurs when there is a continuum of charges of both types
present at the same time. A random electron combines with a random positive
ion at a rate per unit volume proportional to the product of the electron and
ion densities, i.e.

Dr = Rrn+n� (5.1)

where Dr is the recombination rate per unit volume, Rr is the rate constant,
and n+ and n� are the number densities of electron and ion charges. Bulk
recombination will be important in this paper.

5.2 Columnar Recombination

Columnar recombination occurs when a high energy charged particle, parallel
to the applied electric �eld, produces a column of ion pairs which, as the
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electrons drift in one direction and the positive ions in the other, pass each
other and occasionally recombine. This is important when the ionizing particle
tracks are parallel to the electric �eld. However this form of recombination will
not be relevant to us because 1) the ionizing particle tracks are divergent near
EM shower max due to multiple scatter and 2) the electrode structures (e.g.
accordion and tube) in modern liquid argon calorimeters have electric �elds
at odd angles to particles from the interaction point.

5.3 Initial, Germinate, or Geminate Recombination

Initial recombination (sometimes also called geminate or germinate recombi-
nation) refers to the process where an electron, freed from an argon atom and
thus producing a positive argon ion, returns to that same ion and recombines
to produce an argon atom again. With no external electric �eld it is presumed
that this mechanism leads to the recombination of all pairs. At suÆciently
high external �elds and at low ionization density, all pairs are permanently
separated. Between these extremes pairs are more likely to remain free as
the electric �eld increases. We will parameterize the probability for a pair to
remain free as [20]

P (E) = (E=E2) ln (1 + E2=E) (5.2)

where E is the electric �eld. For analytic calculations we choose E2 � Vo=a so
initial recombination is neglected. For simulations E2 is chosen to approximate
data, E2 � 84 V/mm.

The value of E2 is sensitive to certain contaminants in the liquid argon. SuÆ-
ciently well designed experiments are able to separately measure the e�ects of
contaminants which induce attachment, such as oxygen, even if the contam-
inant cannot be eliminated. Other contaminants are conjectured to catalyze
initial recombination so their e�ects cannot be separately determined unless
the contaminant can be completely removed or the impurity concentration
accurately controlled allowing extrapolation to zero concentration.

6 Linear Model and Some Examples

When the gap width a is small compared to the transverse dimensions, assum-
ing that the plates are in�nitely large is a good approximation. We will develop
a one-dimensional model where the parameters of interest depend only on z,
the distance across the gap, and vary so slowly with x and y as to be nearly
constant. The one dimensional model assumes that charges are deposited in
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the gap in planes parallel to the plates of uniform surface charge density �.
Here uniform means independent of x and y. This is equivalent, in some sense,
to an electrostatics problem de�ned along a line, e.g. along the z axis in our
case.

For a single ionizing particle traversing a gap at a small angle to the z axis
this is a poor approximation. But for multiple electromagnetic showers near
shower maximum with Moliere radius of several centimeters the ionization
density doesn't change in x and y so rapidly on the scale of the gap width a
of 2 mm. So a linearized model, while not an excellent description, will be a
reasonable model for our purposes.

Fig. 3 shows the geometry of the gap we will consider throughout this paper.
The electric �eld is aligned along the positive z direction. So the electrode
at z = 0 is at potential Vo and the electrode at z = a is at ground. A
very schematic readout is indicated by an ammeter. We will assume a zero
impedance readout so that the potential across the gap is always at Vo regard-
less of the current drawn.

The surface charge density on the plate at z = 0 is �(0) = �E(0) and on the
plate at z = a, �(a) = ��E(a). With no charges in the gap, E(0) = E(a) =
Vo=a and �(a) = ��(0) so the plate at z = 0 is positively charged and the
plate at z = a is negatively charged.

The following examples help establish our method and provide some intu-
ition for the case of interest considered in section 9. In each we assume that
ionization is deposited in the gap at the instant t = 0.

6.1 Example 1

Suppose we introduce in the gap a sheet of surface charge density �+ (� �Vo=a)
at z = z+. Gauss' Law for this geometry gives

�
@E

@z
= �(z) (6.1)

and setting �(z) = �+Æ(z � z+) we get

E = Eg + �(z � z+)�+=� (6.2)
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where � is the unit step function and where Eg is chosen so that
R a
0 E dz = Vo.

We �nd aEg + (a� z+)�+=� = Vo or

E =
�
Vo=a� (1� z+=a)�+=� 0 < z < z+
Vo=a + (z+=a)�+=� z+ < z < a.

(6.3)

Now suppose the charge sheet �+ moves to the right with velocity v+, then
the charge density on the plates changes as

d�(0)

dt
= �d�(a)

dt
= �

dE(0)

dt
= �

dE(0)

dz+

dz+
dt

= �
dE(0)

dz+
v+ =

v+�+

a
: (6.4)

The changing surface charge density on the plates requires that a current ow
through the external circuit. Per unit area of the plates, this current is given
by

J = v+�+=a (6.5)

which is equivalent to the average current density of the moving charge sheet
within the gap. That is, a current is induced in the external circuit by the
moving charges within the gap. If 1 pC/mm2 moves through the gap from the
plate at z = 0 to the plate at z = a, then 1 pC/mm2 of electrical charge will
ow from one plate to the other through the external circuit as well.

Fig. 4a shows the electric �eld within the gap as a function of z. Fig. 4b shows
E(a) and E(0), the electric �eld at the surface of the two plates, as a function
of z+, the location of the charge sheet. Fig. 4c shows E(a) and E(0) as a
function of time assuming the charge sheet is initially placed at z+ = 0 and
then drifts at uniform velocity v+ towards the plate at z = a. Fig. 4d shows
the induced current due to this drifting charge. Note that when the charge
sheet hits the plate at z = a, i.e. when z+ = a, then E(a) changes abruptly so
that the induced current exhibits a negative delta function of area �+. This is
exactly balanced by the charge current due to the charge sheet reaching the
plate at z = a so that the total current, induced plus charge, has no negative
delta function.

6.2 Example 2

Suppose next that between the same two plates we introduce in the gap a
sheet of positive surface charge density of positive ions �+ = �o at z = z+ and

a sheet of negative charge density of electrons �� = ��+ = ��o also at z = z+.
In this example the electric �elds at the plates are Vo=a as they were with no
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Fig. 4. Electric �eld and change of electric �eld with time for examples 1 to 3 in the
text.

charges in the gap. This is a somewhat more realistic example corresponding,
in the 3-D case, to an ion pair created within the gap by, say, photo-ionization.

For simplicity, and as a realistic approximation, suppose that the drift velocity
of the electrons is v� and that the positive ions are immobile. Then at some

12



later time the electron charge sheet will have drifted to the left to position
z = z� and the positive ion charge sheet will remain at z = z+. It is easy to
show that the electric �eld in the gap (always requiring

R a
0 dz E = Vo) will be

E =

8><
>:
Vo=a+ (z+=a� z�=a)�o=� 0 < z < z�
Vo=a+ (z+=a� z�=a� 1)�o=� z� < z < z+
Vo=a+ (z+=a� z�=a)�o=� z+ < z < a

(6.6)

and that the change in the surface charge density at each of the plates is

d�(0)

dt
= �d�(a)

dt
= �

dE(0)

dt
= �ov�=a (6.7)

and so the induced current per unit area of plate in the external circuit is
again J = �ov�=a.

Fig. 4e shows the electric �eld within the gap as a function of z. Fig. 4f shows
E(a) and E(0), the electric �eld at the surface of the two plates, as a function
of z+ � z�, the distance between the separating charge sheets. Fig. 4g shows
E(a) and E(0) as a function of time assuming that z+ = a, i.e. that the two
charge sheets started at z = a (or just a small amount less than z = a). Fig. 4h
shows the induced current due to the separating charge sheets.

Generalizing this example to the case where the positive and negative surface
charge densities aren't necessarily equal and both charge carriers can drift we
will �nd

J = �+v+=a+ j��jv�=a (6.8)

When �+ = ��� and v+ = v�, twice the current will be observed in the
external circuit compared to the case above with immobile positive ions. But
usually v+ � v�.

6.3 Example 3

Now assume the whole gap is uniformly �lled with immobile positive ions of
charge density �+ = �o (�o � Vo�=a

2) and mobile electrons of charge density
�� = ��o such that the net charge density within the gap is zero and the
electric �eld is Vo=a everywhere as it was with no charge in the gap at all.
This case is the linearized analog of the ionization deposited by a high energy
charged particle traversing the gap in the z direction leaving uniform ioniza-
tion. And, as we argued earlier, it is an approximation to an electromagnetic
shower near shower maximum.
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After some time the electrons will drift to the left (and some will collect on
the plate at z = 0) leaving a region of the gap from zo to a free of electrons.
(We're neglecting di�usion.) Using Gauss' Law we �nd the electric �elds in
the gap at this time are

E =

8><
>:
Vo=a� (1� zo=a)

2�oa=2� 0 < z < zo

Vo=a� (1� zo=a)
2�oa=2�+ (z � zo)�o=� zo < z < a

(6.9)

In this case we �nd at the plates

�
dE(0)

dt
=

d�(0)

dt
= ��ov�(1� zo=a) = ��ov2�t=a

�
dE(a)

dt
=
�d�(a)

dt
= +�ov�(zo=a) = (�ov�=a)(a� v�t) (6.10)

where zo = a�v�t. The induced currents aren't equal. But electrons are being
deposited on the plate at a = 0 at a rate of �ov� per unit area so the induced
current plus the charge current at the plate at z = 0 equals the induced current
at the plate at z = a. The current in the external circuit per unit area of the
plates is

J = (�ov�=a)(a� v�t) 0 < t < a=v� (6.11)

Fig. 4i shows the electric �eld within the gap as a function of z at time
t = (a�zo)=v�. Fig. 4j shows E(a) and E(0) as a function of zo. Fig. 4k shows
E(a) and E(0) as a function of time and Fig. 4l shows the induced current at
z = 0 and z = a.

The total charge (per unit cross section of collection gap) owing through the
ammeter of Fig. 3 is obtained by integrating Eq. (6.11). We get

Q =
a�o
2
: (6.12)

Note that only half the electrons produced in the gap via ionization traverse
the external circuit. For an electron created via ionization at z, only z=a of
an electron traverses the external circuit as this drifting electron moves from
z to 0.

For the case where the positive ions are also mobile and, in general, v+ 6= v�,

J = J+ + J� (6.13)
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J� =

8><
>:
(�ov�=a)(a� v�t) 0 < t < a=v�

0 otherwise
(6.14)

J+ =

8><
>:
(�ov+=a)(a� v+t) 0 < t < a=v+

0 otherwise
(6.15)

Note that at t = 0, the current density is independent of the gap width a. If
v+ � v� then the current due to the positive ions is small compared to that
for electrons during the time that electrons ow. After the electrons drift out
of the gap, the only current is due to positive ions. After the positive ions drift
out of the gap, the total charge collected is twice that collected from electrons
alone, i.e. Q = a�o.

6.4 Example 4

We will now consider an arti�cial example which will be instructive later.
We assume the whole gap is uniformly �lled with immobile positive ions of
charge density �+ = �o (�o � Vo�=a

2) and mobile electrons of charge density
�� = ��o such that the net charge density within the gap is zero. This is the
same as in example 3. But here we assume that the electrons to the right of
zr (where 0 < zr < a) drift to the left with drift velocity v� but the electrons
to the left of zr remain stationary. So with time, a charge sheet builds up at
z = zr. The situation at time t = (a� zo)=v� (where zo > zr) is shown in the
�rst four plots of Fig. 5. The charge sheet at zr has charge per unit area

�r = ��o(a� zo): (6.16)

The electric �eld in the gap is found from Gauss' Law and by requiring the
potential across the gap to remain �xed at Vo. When evaluated at z = a we
�nd

E(a) =
Vo
a
+
�r
�

zr
a
� �o

2�a
(a� zo)

2 +
�o
�
(a� zo): (6.17)

The current in the external circuit per unit area of the plates is

J = (�ov�=a)(a� zr � v�t) 0 < t < (a� zr)=v�: (6.18)
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Fig. 5. Charge density and electric �eld for example 4 in the text.

When t = (a� zr)=v�, i.e. when zo = zr, then

E(a) =
Vo
a
+

�o
2�a

(a� zr)
2: (6.19)

The electric �eld at the electrode on the right as a function of time is shown
in the last plot of Fig. 5. The total charge (per unit cross section of collection
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gap) which ows through the ammeter of Fig. 3 is

Q =
a�o
2

�
1� zr

a

�2

: (6.20)

which is less than in example 3. (See Eq. (6.12).)

6.5 Example 5

One last arti�cial example will also be useful later. This case is the same as
in the previous example but now the drifting charge does not collect at zr.
Imagine that a grid is placed at zr which collects all the charge as it drifts
from the right and which is held at Vo so that the electric �eld in the region
0 < z < zr is zero. This case is quite easy to solve and corresponds to a
gap of width a� zr rather than the gap of width a which we have considered
throughout. The current in the external circuit per unit area of the plates is

J = [�ov�=(a� zr)](a� zr � v�t) 0 < t < (a� zr)=v� (6.21)

The charge collected will be

Q =
a�o
2

�
1� zr

a

�
: (6.22)

This is smaller than example 3, Eq. (6.12), but larger than example 4, Eq.
(6.20).

7 Charge Build-up in a Liquid Ionization Gap[21]

For high rates of ionization the slowly drifting positive argon ions accumulate
in the gap to such a degree that they signi�cantly distort the electric �eld.
This distortion degrades the performance of the ionization gap.

7.1 The Scale of the Problem

Let us consider, for the moment, a worst case condition which might actually
be realized some years after turn-on at the LHC. At a luminosity of 1034

cm�2 sec�1 there are of order 20 minimum bias interactions per 25 nsec beam
crossing. A forward calorimeter might be located 5 m from the interaction
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point and have �ducial coverage out to j�j = 4:5. At this value of j�j there will
be 0.2 photons from �o decay per cm2 per crossing with average energy 12 GeV
incident on the surface of the calorimeter. At a depth within the calorimeter
near electromagnetic shower maximum the transverse electromagnetic shower
size is of order 2 cm in radius so that it covers an area of order 12 cm2. (We
take this area to be the size of a readout tower in the EM section of the
calorimeter.) So at a given point within a gap near electromagnetic shower
maximum and near j�j = 4:5 there will be � 2 electromagnetic showers per 25
ns beam crossing. For the typical 2 mm gap width of liquid argon the time to
drift out the electrons is of order 400 nsec (16 beam crossings) so we can view
the deposition of ionization as approximately constant in time. In section 11
we will discuss uctuations. The positive ions drift far more slowly and can
build up to appreciable levels within the gap.

The net creation rate of ion pairs per unit volume within the gap will be given
by D(z). We will consider only two contributions, ionization and recombina-
tion. As an approximation we assume that all charged particles traversing the
gap lose only a small fraction of their energy so that the ionization is indepen-
dent of z. We also assume the ionization is uniform in x and y as argued above.
Also as an approximation we consider only one form of recombination, bulk
recombination. As a result we take the recombination rate per unit volume
to be proportional to the product of electron density and positive ion density.
Thus

D(z) = Di �Dr = Di � Rrn+n�: (7.1)

Di is the rate per unit volume of production of ion pairs via ionization while
Dr is the rate per unit volume of recombination of ion pairs. Rr is the bulk
recombination rate per unit volume for unit density. So we are neglecting
columnar recombination as discussed in section 5.2. We also neglect for now the
fact that initial (germinate) recombination is signi�cant when the electric �eld
is small enough. There will be instances where this neglect is not warranted
and we will address this in Sections 8 and 10.

At what rate of deposition of ionization does the positive charge accumulation
signi�cantly distort the electric �elds and modify the signal? To set the scale,
let us start with a very qualitative argument before we begin a more precise
analysis. Consider the gap in Fig. 3 with the plate at the left at electrical
potential Vo and the plate at the right at ground. Then the electric �eld
within the gap of width a is E = Vo=a and is directed to the right. The
surface charge density on each plate is j�j = �jEj = �Vo=a. We will say that
the electric �eld within the gap is signi�cantly altered when the number of
positive ions distributed across the gap equals the number of charges on the
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two plates. We will call this a critical condition. Thus

�c = enc = 2j�j=a = 2Vo�=a
2 (7.2)

where �c is the critical charge density and nc is the corresponding critical
number density where we assume that the positive ions are singly charged. If
the positive ions drift at the speed v+ = �+Vo=a and, to be removed from the
gap, a positive ion must drift a distance a=2 on average, then the characteristic
time to clear the gap is � = a=2v+ = a2=2Vo�+. We will de�ne the critical
ionization rate, Dc, as that rate of ion pair creation per unit volume equal to
the rate at which the critical density of positive ions is removed from the gap,
i.e.

Dc � nc
�

=
4V 2

o ��+

ea4
: (7.3)

This corresponds to a critical current density of positive ions at the plate on
the right of

Jc = eaDc =
4V 2

o ��+

a3
=

2Vo�+

a
�c = 2v+�c: (7.4)

We can also de�ne a critical recombination rate per unit volume for unit
density as

(Rr)c = Dc=n
2
c =

e

�
�+ (7.5)

and a relative recombination rate per unit volume for unit density as

R =
Rr

(Rr)c
(7.6)

so that

D(z) = Di �R(Dc=n
2
c)n+n�: (7.7)

Finally we de�ne the relative rate per unit volume of ionization as

r � Di

Dc
(7.8)

so that

D(z) = Dc

�
r �R

�
n+

nc

��
n�
nc

��
: (7.9)
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In the foregoing discussion the critical values of the dynamical variables were
determined in a somewhat qualitative manner but we will see in the following
that these values are quantitatively just what we want.

7.2 The De�ning Equations and Constraints

Referring again to Fig. 3 with the electric �eld directed to the right, the
electrons drift to the left and the positive ions, much more slowly, to the
right. Current conservation gives

@�j
�
+
= �@�j�� = eD(z)

where ji
�
= v��� and jo

�
= ��. In our case jx

�
= jy

�
= 0 and we use jz

�
� J�(z).

For D(z) constant in time a steady state condition will eventually be reached
so that

@��
@t

= 0 and
@J�
@z

= �eD(z): (7.10)

Since electrons do not emanate from the plate at the right (secondary emis-
sion is negligible) nor do positive ions from the plate at the left we have the
boundary conditions

J+(0) = 0 and J�(a) = 0 (7.11)

which gives

J+(z) = e

zZ
0

dz0D(z0) = v+�+ = (�+E)�+ (7.12)

J�(z) = e

aZ
z

dz0D(z0) = v��� =
�
v�j��j; E > Eo

(��E)j��j; E < Eo
(7.13)

and

J = J+(z) + J�(z) = e

aZ
0

dz0D(z0) (7.14)

which is constant, independent of z, as required by charge conservation.
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Gauss' Law for our geometry gives

�
dE

dz
= � = �+ + �� (7.15)

so that

E =
1

�

zZ
0

dz0 �(z0) + c (7.16)

and the constant of integration must be adjusted to give

aZ
0

dz E = Vo: (7.17)

(Remember that Vo is the potential on the electrode at z = 0 relative to the
electrode at z = a.) The surface charge density on the plate on the left is given
by

�(0) = �E(0) (7.18)

while the surface charge density on the plate at the right is

�(a) = ��E(a): (7.19)

The electric �eld is zero to the left of the plane at z = 0 and to the right of
the plane at z = a so the net charge contained between these two planes must
be zero. This condition is already ensured by the above set of equations, i.e.
it is easy to show that

�(0) + �(a) +

aZ
0

dz �(z) = 0 (7.20)

for all times.

7.3 Solutions to the Steady State Equations

In this section we will �nd steady state solutions which satisfy Eq. (7.7) (or
Eq. (7.9)), Eq. (7.12), Eq. (7.13), Eq. (7.16), and Eq. (7.17) for various ranges
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of r where r is given by Eq. (7.8). These form a set of non-linear, coupled
di�erential equations whose solutions must be found by trial and error.

When r is small we expect �+ and �� to be proportional to r. This suggests
that Dr, i.e. the second term in Eq. (7.9), can be neglected compared to Di.
If we take D(z) = Di, then

J+(z) = ezDi and J�(z) = e(a� z)Di: (7.21)

Using the de�nitions in Eq. (7.3), Eq. (7.4), and Eq. (7.8) we can rewrite the
above as

J+
Jc

=
�
z

a

�
r and

J�
Jc

=
�
1� z

a

�
r: (7.22)

From Eq. (7.12) and Eq. (7.13) we see that j��j � �+ because v� � �+E so
we will neglect ��. Eq. (7.12) can be written

J+
Jc

=
�
z

a

�
r =

1

2

�
Ea

Vo

�
�+
�c

(7.23)

and Eq. (7.15) becomes

�
dE

dz
= �+: (7.24)

Eq. (7.23) and Eq. (7.24) yield a single di�erential equation

4r
z

a

dz

a
=

aE

Vo

adE

Vo
(7.25)

which, with the constraint Eq. (7.17), can easily be solved. Note that z=a
is a dimensionless measure of the distance across the gap and aE=Vo is a
dimensionless measure of electric �eld in the gap.

The Case r = 0

When r = 0 there is no production of ionization in the gap, i.e. D(z) = 0.
Thus J+(z) = J�(z) = 0. Also �+(z) = ��(z) = 0 and E(z) = Vo=a.

The Case 0 < r� 1
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Fig. 6. Scaled potential, electric �eld, charge density, current density, and ionization
rate in the gap for di�erent values of the relative ionization rate r.

A solution of Eq. (7.25) is

�
aE

Vo

�2

= k + 4r
�
z

a

�2

(7.26)
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For the case r = 0 we saw that the arbitrary constant k must be k = 1. So for
the case r � 1 we will try a solution k = 1 + cr where c is another arbitrary
constant. Taking the square root of Eq. (7.26), expanding the right hand side
to lowest order in r, and using the constraint Eq. (7.17) gives k = 1 � 4r=3
and

E =
Vo
a
f1 + 2r[(z=a)2 � 1=3]g: (7.27)

Solutions for the other quantities of interest follow immediately. The series of
plots in Fig. 6a depicts this case. Note that the approximation we made, i.e.
Dr � Di, is valid if

R � 1

4r(z=a) (1� z=a)

 
v�
v+

!
: (7.28)

The right hand side is smallest when z = a=2. At this worst case value of z
the expression becomes

R � 1

r

 
v�
v+

!
: (7.29)

The Case 0 < r < 1

While the positive ions do build up to signi�cant levels for r close to one,
the electrons do not. Then it is still safe to neglect the recombination rate
compared to the ionization rate so we continue to assume D(z) = Di. An
exact solution of Eq. (7.25) with constraint Eq. (7.17) is

E =
Vo
a

q
k + 4r(z=a)2 (7.30)

�+
�c

=
2r(z=a)q

k + 4r(z=a)2
(7.31)

where

k =
4

[
p
1 + y +

q
1
y
ln(
p
y +

p
1 + y)]2

; y � 4r

k
; (7.32)

a transcendental equation whose solution is plotted in Fig. 7. Note that
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Fig. 7. The function k(r) versus the rel-
ative ionization rate r.

Fig. 8. The analytic expressions in the
text are valid when R � F (r). This is
a plot of F (r)=(v�=v+).

when r = 0 then k = 1 and
when r = 1 then k = 0 and
limr!0 k(r) = 1� 4r=3

An example of this case can be seen in the plots of Fig. 6b. Now we can check
the validity of our approximations. Using Eq. (7.13), Eq. (7.22), and Eq. (7.4)
we have

j��(z)j = J�(z)

v�
= 2

v+
v�

(1� z=a)r�c (7.33)

if E > Eo which is true as long as r is not too close to unity. Since v+=v� � 1,
the neglect of �� relative to �+ is valid except for very small z where �+ goes
to zero. As r approaches unity, the electric �eld at small z falls below Eo so
that the region of small z, where �� cannot be neglected relative to �+, grows
a bit.

The recombination rate is negligible if

r� R
 
�+
�c

! ���
�c

!
= R4r2(z=a)(1� z=a)q

k + 4r(z=a)2

 
v+
v�

!
(7.34)

or

R �
q
k + 4r(z=a)2

4r(z=a)(1� z=a)

 
v�
v+

!
: (7.35)

The right hand side is the smallest when z = zw where

zw =
a

2

�k
r

� 1

3

"(
1 +

s
1 +

8

27

k

r

) 1

3

+

(
1�

s
1 +

8

27

k

r

) 1

3
#

(7.36)
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zw =
�
a=2 when r ! 0
0 when r ! 1.

At this worst case value of z, the expression becomes

R � F (r) (7.37)

where F (r)=(v�=v+) is plotted in Fig. 8.

The Case r = 1

Continuing the solutions of the previous subsection, Eq. (7.30) and Eq. (7.31),
to r = 1 gives

E =
Vo
a

2z

a
(7.38)

�+
�c

= 1 (7.39)

��
�c

= 2
v+
v�

(1� z=a) (7.40)

Again this is the approximate solution, shown in Fig. 6c, which is valid for
j��j � �+. Further we must assume

R � 1

2(1� z=a)

 
v�
v+

!
(7.41)

This solution is clearly not correct very near z = 0 where the electric �eld falls
below Eo.

The Case r > 1

Here the approximations leading to Eq. (7.25) are no longer valid and we must
use the full set of non-linear, coupled di�erential equations with constraints.
The �rst order solution for this case is shown in Fig. 6d where

zr = a
�
1� 1

r
1

4

�
(7.42)

The most striking feature is that for z < zr the electric �eld in the gap is
(nearly) zero. We will say that this part of the gap has \closed down". In this
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region the positive and negative number densities are equal, i.e. n+ = n�, so
the net charge density, �, is zero. Rather than drifting out of the gap, the ions
in this region are recombining at the same rate they are produced. The net
ion creation rate, D(z), is zero in this region. Nevertheless there are free ions
in this region. In fact there is a large reservoir of highly mobile electrons.

The rest of the gap behaves very much like the case r = 1 but scaled by the
smaller e�ective gap size. Note also that the maximum value of the electric
�eld occurs at z = a and has a value

E(a) = 2r
1

4

Vo
a

(7.43)

As a practical matter it is important to note that for r > 1, the electric �eld at
z = a is at least twice the nominal �eld of Vo=a. For many electrode structures
it is not possible to raise the electric �eld to such high values without inducing
breakdown. Lowering Vo would increase r, exacerbating the signal degradation
problem to be discussed shortly but at least lowering the maximum electric
�eld as

p
Vo.

8 Higher Order Corrections

The solutions obtained so far are approximate. We explained in section 4 how
we would treat the drift velocities in order to obtain analytic solutions. For
the cases r < 1 and r = 1 we have, in addition, assumed that we could neglect
the charge density due to electrons, ��, in comparison to �+, i.e. we assumed
� ' �+. Further for the case r > 1 we have neglected �� relative to �+ for
z > zr. As a next order approximation we have estimated the e�ect of the
small value of j��j on the solutions for the case r > 1. This is indicated in
Fig. 9. The quantitative values of these higher order corrections are needed
for the calculations of Section 9.

As can be seen from Fig. 9 the electric �eld in the region z < zr is quite small.
We expect initial recombination to be signi�cant here and it modi�es some of
the values in Fig. 9. Using the parameterization for initial recombination from
Section 5.3 for the region z < zr we �nd

�+
�c

= ���
�c

=

s
rP (E)

R =

s
r

R
E

E2

q
ln (1 + E2=E) (8.1)
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Fig. 9. Higher order corrections to the scaled electric �eld, current density, ionization
density, and charge densities.

and using J�=Jc = r3=4 we derive the transcendental equation

Ea

Vo
=

1

ln1=3 (1 + E2=E)

 
2
�+

��

! 2

3
�
RprE2a

Vo

� 1

3

(8.2)

An iterative solution converges quickly because for E � E2 the logarithm to
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a small power varies slowly with E. We then can show that

���
�c

=
�+
�c

= ln1=3 (1 + E2=E)

 
2

R
�+

��

.E2a

Vo

! 1

3

r
7

12 (8.3)

Note that the product of Ea=Vo and ��=�c is independent of R and E2 and is
the same as for the case with no initial recombination in Fig. 9. For r near unity
and using parameter values to be discussed later we �nd ln1=3 (1 + E2=E) �
1:7. So with initial recombination and r near unity, Ea=Vo is larger (and ��=�c
is smaller) than the case with no initial recombination by a factor between
approximately 3 and 10.

9 Degradation of the Signal in the Charge Build-up Environment

The source of ionization in sections 7 and 8 is from the approximately steady
showering of �o decay photons from minimum bias events. These photons
have hpT i � 0:3 GeV/c which is very small on the scale of the high pT physics
goals of the high luminosity hadron colliders. We now want to investigate
what happens when a high energy event comes in on top of this steady state
background. Imagine, for instance, that a jet of pT = 100 GeV strikes the
calorimeter. Ionization in excess of the steady state value will be produced
in the gap. The electric �eld will cause this excess charge to drift out of the
gap. So later the ionization will return to the steady state value. The current
through the external circuit will increase above its steady state value while
the excess ionization drifts out of the gap. It is this current in excess of the
steady state value which constitutes the signal we wish to measure.

It is useful to get a feeling for the magnitudes of the quantities we are dealing
with. For a conventional EM calorimeter with 2 mm lead absorber plates, 2 mm
liquid argon gaps, and 2 kV across the gap, (we arbitrarily assume �+ = 0:06
mm2/Vs) we calculate �c = 13:5 pC/mm3, nc = 8:5 � 107 ions/mm3, and
Jc = 1:62 nA/mm2.

The roughly constant background current in a 2 mm gap at EM shower max-
imum due to minimum bias events at j�j = 4:5 and luminosity of 1034 cm�2

sec�1 is about J = 27 nA/mm2 or 37 �A in the area of 1 RM . (The rms uc-
tuation in the background current in the same area in the gap at EM shower
maximum is about 5 �A. See Section 11.)

For a photon of energy 100 GeV there are about 20 � 106 ions produced in
the gap at shower maximum. These ions produce an initial current of about 8
�A. The area covered by this EM shower is contained within a radius of order
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the Moliere radius which is RM = 21 mm.

In section 6 we discussed several examples where di�erent patterns of ioniza-
tion produced current waveforms in an external circuit when the ions drifted
in the gap. Only example 3 was apparently relevant. The others were for ped-
agogic purposes. The last two examples will be seen to be of interest to us
now. In the examples of section 6 there were no charges in the gap before the
event that caused the ionization. We now wish to consider a small transient
signal on top of a large steady-state current.

We assume that the electron drift velocity is independent of electric �eld for
all but the smallest values of electric �eld. That is, referring to Fig. 2, we
assume that Eo � Vo=a. Now consider the cases 0 < r < 1 of section 7.3. The
electrons from the instantaneous ionization deposited by a high energy shower
on top of the steady state ionization from minimum bias events will drift out
of the gap in exactly the same way as in example 3 of section 6.3. While the
electric �eld in the gap is quite di�erent from the case considered in section
6.3 (and displayed in Fig. 4i) the change in the electric �eld (from that shown
in Fig. 6a or 6b) due to the instantaneous deposition of ionization is the same
as the change in Fig. 4i from Vo=a. So the time-varying current density on top
of the steady-state background is the same as in section 6.3, i.e.

J(t) = (�ov�=a)(a� v�t) 0 < t < a=v� (9.1)

At time t = 0 this current density is J(0) = �ov�. We will now de�ne the

signal S(t) for all values of r as

S(t) � J(t)=�ov� (9.2)

Then the signal for r < 1 is

S(t) =
�
1� t=td 0 < t < td
0 otherwise

(9.3)

where

td � a=v� (9.4)

is the drift time for electrons across the gap. This will be the standard signal
to which we will refer all others. For r > 1 the signal is less than this standard
signal. We now develop an approximate expression for the signal when r > 1.

As outlined above, we assume that at t = 0 there is some instantaneous
ionization deposited on top of the steady-state charge density � (see Fig. 6d)
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leaving excess charge density Æ�+ = �Æ�� = �o such that Æ� (= Æ�++Æ��) = 0
at time t = 0. We will assume that the positive ions remain �xed on the time
scales of interest to us here. In the region z > zr, the electrons drift to the
left at velocity v� independent of any changes in the electric �eld because
E(z) > Eo. In the region z < zr the electrons drift so slowly that, on the
time scale of interest, no charges drift a signi�cant distance from z = zr. So
a charge sheet will build up at z = zr of magnitude �r. At some time t after
the deposition of the instantaneous ionization, the charge density in the gap,
in excess of the steady-state values, is as shown in the third plot of Fig. 5
except that the size of the delta function charge build-up at z = zr will not,
in general, be the same. As in section 6, we have zo = a � v�t. Due to this
excess charge density the electric �elds in the gap are modi�ed as follows:

ÆE =

8><
>:
Eg 0 < z < zr
Eg + �r=� zr < z < zo
Eg + �r=�+ (z � zo)�o=� zo < z < a

(9.5)

where Eg and �r are to be determined. We require, as always, that the potential
across the gap be Vo. In this case where the steady-state charge distribution
already establishes the electrical potential we have

R a
0 ÆE dz = 0. Solving for

Eg we get

Eg = ��r
�a
(a� zr)� �o

2�a
(a� zo)

2 (9.6)

where, from the �rst line of Eq. (9.5), we have

ÆE(z < zr) = Eg: (9.7)

The charge build-up �r at z = zr comes from two contributions, 1) the elec-
trons in the region z < zr drifting slowly to the left at velocity ��E leaving
behind positive charge at zr and 2) electrons drifting from the region z > zr
at velocity v� piling up at zr. We now solve for this charge build-up �r(t).

d�r = [�� (E(zr) + ÆE(z�r )) j��(z�r )j � v�j��(z+r )j]dt
=
h
��
q

r
R
�c (E(zr) + ÆE(z�r ))� v�

�
2r3=4

�
v+
v�

�
�c + �o

�i
dt

=
h
��
q

r
R
�cEg � v��o

i
dt

(9.8)

In the second step above we assumed that �o � �c and in the last step the
steady state parts have cancelled as they must when �o = 0. We must solve
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the di�erential equation

d�r
dt

= �
�
��

r
r

R�c
a� zr
�a

�
�r �

"
��

r
r

R�c�o
v2
�

2�a

#
t2 � v��o (9.9)

with boundary condition �r(0) = 0. It is easy to show that the signal, sub-
tracting o� the steady-state part, is

S(t) = 1� r
1

4 t=td � zr
a
e�(r

1
4 =w)(t=td) + w

zr
a

�
1� e�(r

1
4 =w)(t=td)

�

when 0 � t

td
� 1

r
1

4

(9.10)

and

S(t) =
zr
a

�
we

1

w � (w + 1)
�
e�(r

1
4 =w)(t=td) when

t

td
>

1

r
1

4

(9.11)

where

w �
pR
2R�

(9.12)

R� � ��(Vo=a)

v�
� u�

v�
: (9.13)

(See Fig. 2 for an interpretation of u�.) S(t) is plotted in Fig. 10 for the case
r = 16 and for several values of w. The standard signal for r � 1 is shown for
reference.

We now want to be more speci�c about the measured signal. Two extremes
should serve. The �rst extreme is close to a situation which could arise at
a high luminosity hadron collider. One might trigger on an event and gate
or shape the calorimeter signal just at the beginning of the signal charge
collection time. Then the signal would be proportional to the current through
the ammeter of Fig. 3 at time t = 0. We call this the \initial current signal"
Si. The second extreme is one we're used to at lower luminosities. It's the case
where the charge collection time is long enough to collect all of the induced
charge due to electrons. We will completely ignore the small contribution from
the much slower-moving positive ions. That is, we will accumulate charge for
the time that it takes the signal electrons to drift out of the active part of the
gap (zr < z < a), i.e. we will evaluate the integrated charge at time

to =
a� zr
v�

=
a

r1=4v�
(9.14)

32



Fig. 10. Signal S(t) for r = 16 and several values of w. The usual case of r � 1 is
shown for comparison.

i.e. when zo = zr. We call this the \integrated charge signal" Sq.

We see that the initial current signal, using Eq. (9.10) for r > 1, is

Si =

(
1 for r � 1
1

r1=4
for r > 1

(9.15)

By integrating Eq. (9.10) we �nd

Sq =
1

r1=4

�
1� zr

a
f(w)

�
: (9.16)

where

f(w) = 2w
n
w � (w + 1)e�1=w

o
(9.17)

The limiting values of f(w) are

lim
w!0

f(w) = 2w2 (9.18)

and

lim
w!1

f(w) = 1: (9.19)
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which gives

lim
w!0

Sq =
1

r1=4
(9.20)

and

lim
w!1

Sq =
1

r1=2
: (9.21)

The limit w ! 0 occurs when the relative recombination rate R is small so
the reservoir of ions and electrons in the region 0 < z < zr is large. In this
case the charge sheet, �r, accumulated at zr is just the right amount to keep
Eg, the incremental �eld in the region 0 < z < zr near zero. Nevertheless it
is large enough to speed up the reservoir of electrons a small amount leaving
behind at zr a small positive charge. This small positive charge at zr is more
than cancelled by the electrons that drift from the region z > zr and collect
there. The net charge �r(to) is half the electron charge originally deposited by
the instantaneous ionization of density ��o in the region zr < z < a. This
limit is similar to the arti�cial example in section 6.5.

The limit w ! 1 occurs when the relative recombination rate R is large so
the reservoir of ions and electrons in the region 0 < z < zr is small. While Eg

is now positive there are an insigni�cant number of electrons in this region to
move away and expose the remaining positive ions. So all the electrons drifting
from the region zr < z < a build up at zr. This limit is similar to the arti�cial
example in section 6.4.

Fig. 11 shows the signals, Si and Sq, as a function of r. In the simple approx-
imation we have made, the signals are constant for r < 1. But for r > 1 the
signals drop o� steeply. For the initial current signal Si in the upper plot, the
highest curve at r near 1 applies, independent of R. The degree to which the
integrated charge signal Sq drops o� depends on the value of R as can be seen
in the lower �gure. The full range of possibilities falls within the range of the
curves shown.

Although the initial current signal Si falls o� steeply for r > 1 (independent of
w), this is an idealization for values of w� 1. Note in Fig. 10 that S(t) rises
steeply right after t = 0 from its initial value Si for w = 0:05. For w = 0:001
the initial rise is so steep that it cannot be seen on the plot. For very small
values of w a practical measurement device would record a value of Si closer
to 1.0, even for the exceptionally large value r = 16 shown in the plot. So
no steep fall in Si above r = 1 would be measured for small w. However the
likely value of w is large enough that there is no rise in S(t) near t = 0. Thus
mismeasurement is not an issue.
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Fig. 11. Signals Si and Sq as a function of the relative ionization rate r from the
analytic calculations (lines) and from simulations (data points). A few data points
are displaced horizontally by a small amount so that they do not overlap. Four
simulation cases are shown. 1) The ideal conditions closely corresponding to the
analytic calculations (circles). 2) Realistic electron velocity and initial recombination
vs. electric �eld (squares). 3) Same as case 2 but the relative recombination rate R
is increased to the modestly high value of 5,000 (diamonds). 4) Recent measured
value of relative recombination rate R (triangles). In the upper plot the three curves
are Eq. (9.15), Eq. (9.22), and Eq. (9.23) (from highest to lowest near r = 1) while
in the lower plot the four curves are Eq. (9.16) for values of w = 0.08, 0.67, 2.95,
and 7.21 from highest to lowest in the region r > 1.
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Had we been con�dent that the steady state charge densities would not a�ect
the initial current signal Si then we could have predicted Eq. (9.15) without
solving the full problem. But having done so, we now have con�dence that the
large reservoir of highly mobile electrons at 0 < z < zr does not a�ect Si except
when w approaches zero. Armed with this observation it is straightforward to
improve the estimate of the initial current signal Si to account for a more
realistic dependence of the electron velocity on electric �eld. Assuming we
know v�(E), adopting our zeroth order assumption that the excess charge
density �o associated with the signal is uniform across the gap, ignoring the
steady state background, generalizing Eq. (6.5), and using the de�nition in
Eq. (9.2) we �nd

Si =
< v� >

v�
=

1

av�

aZ
0

dz v�(E) =
1

av�

aZ
0

dE
dz

dE
v�(E) (9.22)

For r > 1 there are regions of the gap where v�(E) is zero (since E = 0) so
that part of the gap does not contribute to the integral. For the parts of the
gap that do contribute, the weighting is now improved.

A further improvement is to include initial recombination, say as given by Eq.
(5.2). Now the initial current signal is approximated by

Si =
1

av�

aZ
0

dz v�(E) P (E) (9.23)

10 Simulations

The analytic calculations presented so far require approximations. We have
performed extensive computer simulations of the charge build-up in order to
check the calculations, to estimate the e�ect of some of the approximations,
and to extend the results beyond the range of validity of the analytic calcu-
lations. For these simulations, the nature of the approximations is di�erent
from the analytic case, giving a feeling for the accuracy of the results.

The computer model assumes the same linear geometry, i.e. that the only
spatial variable is z. (See the beginning of Section 6.) The liquid argon gap
was divided into n equal segments each of width a=n where a = 2 mm. The
positive and negative charges in each segment changed in each time step due
to 1) ionization, 2) recombination, 3) charges drifting in from an adjacent
segment on one side, and 4) charges drifting out to an adjacent segment on
the other side. The time step was chosen small enough that the faster negative
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charges, the electrons, would drift a quarter of one segment in one time step
at the nominal velocity v�. Di�usion was neglected as before.

Convergence was monitored by comparing the net ionization rate (including
recombination) with the current density at z = 0 and at z = a, i.e. J�(0) and
J+(a). These typically agreed to at least three signi�cant digits and sometimes
far better. In addition the distributions �+(z), ��(z), J+(z), J�(z), and E(z)
were monitored periodically

Several methods to speed convergence of the simulations were tried. The �rst
was to start the simulations with the analytic results. The second relied on yet
another scaling relation. In the region z > zr where �+�� is small enough that
the bulk recombination rate is negligible, we have �� � 1=v� so J� = ��v� is
invariant to changes in v�. In the region z < zr where the bulk recombination
rate is large, n+ � 1=

pR and n� � 1=
pR so Dr = R(n+=nc)(n�=nc) is

invariant to changes in R. Also E(z < zr) �
pR=�� so v� = ��E � pR

and J� = ��v� is invariant to simultaneous changes in v� and R. J+ is almost
zero anyway. So scaling v�, i.e v� and ��, and R by the same factor leaves
the currents J+ and J� unchanged. If R and v� are scaled down by some large
factor, such as 1000, then the iterations converge 1000 times faster. Neither
of these techniques was used in the simulations described here.

The third technique, which we did use, was to divide the gap into n = 64
segments. The starting conditions were as though the ionization source was
turned on abruptly (i.e. no free charges initially) and the iterations proceeded
as in a real experiment. After convergence the gap was then divided into
n = 128 segments and iterations continued with starting conditions from the
converged results at n = 64. The number of segments was increased by a factor
of 2 several more times until n = 1024 converged.

After the steady state condition converged a small excess charge was intro-
duced uniformly across the gap to simulate a signal and further iterations
measured the induced current due to this signal on top of the constant back-
ground current. The resultant induced current was measured by recording the
electric �eld at the electrode at z = a at each iteration after the signal. A
pedestal value was subtracted from these recorded electric �eld values. The
pedestal was determined from an average over the last 2000 iterations before
the signal of the electric �eld at the electrode at z = a. Because convergence
was reached before the signal was deposited, this pedestal electric �eld did
not change with each iteration. Nevertheless any small, linear change in the
pedestal was also determined and extrapolated to the iterations following the
signal deposition. This would make a small correction to the pedestal value
and it was this corrected pedestal which was subtracted, iteration by iteration.

The �rst simulations of this sort mimicked the analytic calculations as closely
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Fig. 12. Scaled electric �eld and current density for r = 0:8 on the left and r = 2:5
on the right. Simulation cases 1, 2, 3, and 4 are the same as in the previous �gure
caption.

as possible as a check of the calculations. Agreement was excellent. Fig. 12
shows the resultant steady state current density and electric �eld scaled as in
previous �gures. This is called case 1 in the �gure. The simulation converged
slowly for r = 2:5 in the region of very small electric �eld as we might expect.

But in the computer simulation the electric �eld dependence of the drift ve-
locity for electrons can be more accurately modelled to match the data. We
employed a power law parameterization inspired by Ref. [6] as follows:

v� =

8><
>:
A(E=E0) 0 < E < E0

B(E=E1)
a E0 < E < E1

B(E=E1)
b E1 < E

(10.1)

The parameter values are given in Table III. Initial recombination was mod-
elled via Eq. (5.2) with the only parameter E2 also given in Table III.

The more realistic electron velocity and initial recombination is case 2 in
Fig. 12. Here convergence in the region of low electric �eld is much better.
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Table III
Simulation Parameters

Case R a b A B E0 E1 E2 w

(mm/�s) (Volts/mm)

1 256 0.0 0.0 5.0 5.0 10 10,000 0.001 0.08

2 256 0.365 0.1 1.2 6.4 20 2,000 84 0.67

3 5,000 0.365 0.1 1.2 6.4 20 2,000 84 2.95

4 30,000 0.365 0.1 1.2 6.4 20 2,000 84 7.21

Fig. 13. Signal current vs. time for r = 0:8 and r = 2:5 for the same four simulation
cases as in Fig. 11.

Case 3 di�ers from case 2 only in that R is increased to 5,000.

Finally in case 4 we increased the relative (bulk) recombination rate R to
the large value, � 3 � 104, reported recently [22]. This value is outside the
region of validity of the analytic approximations, Eq. (7.37). (See Fig. 8 and
use v�=v+ = 25; 000.) Table III sumarizes the simulation parameters. In all
cases we used �+ = 0:2 mm2/Vs.

Fig. 13 shows the signal current, S(t), for r = 0:8 and for r = 2:5 for the four
simulation cases. And Si and Sq are shown as data points for eight values of
r, including r = 0:8 and r = 2:5, on top of the analytic results of Fig. 11.
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Simulation case 1 agrees well with the analytic calculations not only for the
steady state backgrounds but also for the signal. The more realistic parame-
terization in simulation case 2 gives results not too di�erent from the idealized
case 1. Deviations near r = 1 were expected. The di�erence between case 2
simulations and the analytic calculations for Si at large r are sensitive to our
parameterization of v�(E) at E � Vo=a and cannot be trusted. Our case 2,
3, and 4 parameterization gives a slow increase in v� with increasing E while
older data suggests that v� saturates at large E (see Ref. [3,4]) and may ac-
tually decrease (see Ref. [9]) while newer data (Ref. [7,8]) does not cover this
large E range.

The initial current signal Si in simulation case 2 is better estimated by Eq.
(9.22) shown as the middle curve near r = 1 in the upper plot of Fig. 11. But
Eq. (9.23) does an even better job of matching the simulated initial current
signal Si as can be seen from the lowest curve near r = 1. Both of these
calculations use the electric �eld determined from the simple model of section
7.

The integrated charge signal Sq for cases 2, 3, and 4 at large r is smaller than
case 1 because the initial recombination in the region z > zr acts in the same
way as large bulk recombination. See Eq. (9.21) and Eq. (8.1) and Eq. (8.3).
Use of the exceptionally large value ofR [22] on top of the parameterization in
Eq. (10.1) and Eq. (5.2) (simulation case 4) depletes both some of the signal
and some of the background charge. For r < 1 depletion of the integrated
charge signal, Sq, is signi�cant but the initial current signal Si is actually
enhanced due to the depletion of the background. For r > 1 the integrated
charge signal, Sq, agrees reasonably with the analytic approximation because
the improved e�ects in the simulations largely cancel. But for the initial cur-
rent signal, Si, the depletion of the background gives a larger value for all
r > 1.

11 Fluctuations in the Ionization Rate

At a high intensity hadron collider such as the LHC the ionization deposited
in the gaps of a liquid argon calorimeter is not uniform. There is an extensive
literature, mostly in the form of collaboration notes, on these uctuations. For
a = 2 mm the drift time for electrons is about 400 ns and the drift time for the
positive ions is of order 0.01 s. At the LHC there will be of order 20 minimum
bias interactions every 25 ns. In the ATLAS detector the calorimeters are no
farther than 5 m from the interaction point and the Moliere radius of EM
showers in the parallel plate calorimeter of Fig. 1 would be about 21 mm.

We identify four sources of uctuations. 1) Particles do not strike the calorime-
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ter continuously but at every beam crossing. Because the particles of interest
are relativistic there is no spread due to variations in transit time from the
interaction point to the calorimeter. At the LHC beam crossings come every
25 ns. 2) At each beam crossing the number of minimum bias events varies
about its average value of about 20. If the luminosity at each beam crossing is
constant then the variation is Poisson distributed with mean and variance of
20. 3) For each minimum bias event the number of particles and each particle's
energy and direction are random. Sophisticated Monte Carlo programs have
been produced to simulate this random behavior. 4) Electromagnetic shower
uctuations at shower maximum are also simulated by Monte Carlo programs.

For r < 1 the electron current from ionization produced in a single crossing is
triangle shaped with an instantaneous rise to some initial current and a fall
to zero in about 400 ns. The positive ion current is similar but the fall to zero
is much longer. Averaged over many crossings the electron current equals the
positive ion current.

We will calculate uctuations at j�j = 4:5 in the area covered by a Moliere
radius RM of 21 mm at a distance of 5 m from the interaction point. Such a
size might be appropriate for a readout segment in the calorimeter.

If the initial current in each beam crossing were the same for all crossings
(source number one above) then the uctuation in the total current would be
less than 0.5%. So discrete beam crossings contribute a negligible amount to
the total uctuations.

We lump uctuation sources two and three together and draw a result from
Davis and Savard [23] that

Erms
T = (0:367GeV=0:1)

p
A + (0:10GeV=0:1� 0:1)A

where A is the area in units of d��d�. (The 0.1 factors are for consistency with
the units chosen in Ref. [23].) The parameterization is inspired by analogy to
electronics noise where a portion is incoherent from channel to channel and
a portion is coherent. In this case the coherent part (the part proportional
to A) is due to low pT jets. So the parameterization is valid only up to area
A comparable to the size of a QCD jet. We use a small area A = 0:112 so
the uctuations are dominated by the incoherent term. The parameterization
applies to both electromagnetic and hadronic energy and is averaged over the
response of the shaper circuit in the electronics which averages over several
crossings. In this case the shaper time constant is such that the uctuations
are 1.5 times larger than for a single crossing. Because we want uctuations in
the EM calorimeter only we divide by

p
2 and to correct for the time constant

of the shaper circuit we divide by 1.5. This gives the uctuations in the energy
(not ET ) deposited in the area A as Erms(EM only, 1 crossing) = 26.1 GeV.
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Fig. 14. For a forward calorimeter at a distance of 5 m from the interaction point
(and assuming a positive ion mobility of �+ = 0:06 mm2/Vs) the relative ionization
rate r at EM shower maximum changes with � (� = ln tan �=2 where � is the angle
to the beam line) as shown for three cases: 1) canonical 2 mm gap with 2000 V
potential at a luminosity of 1034 cm�2 sec�1, 2) canonical 2 mm gap with 2000
V potential at a luminosity of 1033 cm�2 sec�1, and 3) narrow gap of a = 0:250
mm with 250 V potential (same average electric �eld) at a luminosity of 1034 cm�2

sec�1.

The average EM energy per crossing deposited into this area is < E >= 27:5
GeV. Shower uctuations (source four) would normally be added in quadrature
at this point but they are small by comparison and will be neglected.

The uctuations averaged over many crossings are then found to be 14%.

12 Limits in the Operation of Liquid Argon Calorimeters

To translate all of this to a speci�c situation we take the ATLAS detector
at the LHC and we will make the assumption that the calorimeter will not
yield acceptable operation above r = 1. We will further assume that the
calorimeter has gap width a = 2 mm, potential across the gap of V0 = 2000 V,
that the face of the forward calorimeter is 5 m from the interaction point, and
that �+ = 0:06 mm2/Vs. This last assumption is very uncertain and makes
the following conclusions rather tentative. (See section 4.) Fig. 14 shows the
limits of operation of such a calorimeter at the LHC nominal luminosity of
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1034 cm�2 sec�1 and at the lower luminosity of 1033 cm�2 sec�1.

At luminosities of 1033 cm�2 sec�1 the calorimeter beyond j�j = 4:2 will be
in the region r > 1 and so, by our de�nition, will not work. At luminosities
of 1034 cm�2 sec�1 the calorimeter will cease to work above j�j = 3:45. If the
chosen value of �+ is low by a factor 2, then the two limit lines in the �gure
will shift down by �� = 0:2. Raising Vo to 4000 V (doubling the average
electric �eld) will lower the lines in Fig. 14 by a factor 4. This extends the
operating range by �� = 0:4. But near r = 1 the maximum electric �eld
in the gap will be 4 KV/mm (see Fig. 6c) which may be diÆcult to achieve
in this harsh environment. One could also decrease the gap width to 0.250
mm and the potential to 250 V. This would lower the lines in Fig. 14 by a
factor 64 increasing the range of operation of the calorimeter by �� = 1:4. At
the more likely value of �+ = 0:2 mm2/Vs a gap of 0.250 mm is suÆciently
conservative to guarantee operation of a forward calorimeter at the highest
LHC luminosities.
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