
J
H
E
P
0
5
(
2
0
0
1
)
0
5
2

Received: March 5, 2001, Accepted: May 25, 2001

Revised: April 12, 2001HYPER VERSION

Frequentist analyses of solar neutrino data

Paolo Creminelli and Giovanni Signorelli

Scuola Normale Superiore and

INFN Sezione di Pisa, Italy

E-mail: creminelli@cibs.sns.it, Giovanni.Signorelli@sns.it

Alessandro Strumia

CERN, Geneva, Switzerland and

Dipartimento di Fisica dell’Università di Pisa and INFN
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1. Introduction

The solar neutrino anomaly is an old but still controversial problem, in which many

experimental data [1]–[4] and theoretical ingredients [5]–[9] have to be merged to

give predictions for the oscillation parameters and to rule out other non-standard

explanation of the anomaly. A correct statistical treatment is a necessary step of

the analysis. The starting point for interpreting the results of an experiment is the

fact that one knows the probability distribution p(data|theory) for obtaining a set
of data under the assumption that a given theory is true. In the case of the solar

neutrino anomaly (at least in its simplest version), we know p(Ri|∆m2, θ), where
Ri are the three neutrino rates measured in Chlorine, Gallium and SK experiments,

which should be used to infer the values of the theoretical parameters ∆m2 and θ.

This can be done according to two conceptually very different approaches [10],

each one with unsatisfactory aspects.

• The bayesian approach employs a probability distribution p(∆m2, θ) to sum-
marize our knowledge of the parameters of the theory. According to elementary

properties of probability, this probability gets updated by the inclusion of the

results of a new experiment as p(∆m2, θ|R) ∝ p(R|∆m2, θ)p(∆m2, θ). The
drawback is that one needs to choose some “prior” p(∆m2, θ) to start with,

and the final result depends on this choice until experiments are sufficiently
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precise. At the moment, solar neutrino fits give multiple distinct solutions so

that p(∆m2, θ|R) still contains arbitrary order 1 factors. The advantage is its
extreme simplicity: the laws of probability dictate what to do in any situation.

• The frequentist approach refuses the concept of probability of theoretical
parameters. The Neyman construction [11] allows us to build range of param-

eters for any possible outcome of an experiment with the property that 90%

(or whatever) of such ranges contain the true value. However this procedure

is not univocal and the resulting regions can be quite different. For example

the Crow-Gardner [12] procedure gives smaller regions in presence of unlikely

statistical fluctuations in the measured outcome of the experiment, while the

Feldman-Cousins [13] procedure gives ranges of roughly the same size for all

possible outcomes.

In simple cases when p(data|theory) is a gaussian function of all its arguments (data
and parameters, with no physical constraints on them), the bayesian approach (using

a flat prior p) and the frequentist approach (using the Feldman-Cousins method) are

numerically equivalent to the commonly employed ∆χ2-cut approximation.

When fitting solar neutrino data one has to be careful because:

(1) p(Ri|∆m2, θ) is a highly non-gaussian function of ∆m2, θ: in fact one finds a
few separate best-fit solutions (usually named “LMA”, “SMA”, “LOW”, “VO”)

while a gaussian would have only one peak. This is the problem that we will

address in this paper.

(2) p(Ri|∆m2, θ) is not perfectly gaussian as a function of Ri. Assuming a gaussian
uncertainty on the detection cross sections σ and on the solar fluxes Φ, one does

not obtain a gaussian uncertainty on the rates R ∼ σ · Φ. In principle this is
true; in practice the errors on σ and Φ are sufficiently small that their product

is also almost gaussian, up to very good accuracy.

Such issues have been studied in [14], finding that (1) apparently has a dramatic

effect (see [14, figure 3]: LMA and LOW merge in a single region), while (2) has

a negligible effect (see [14, table II]). We will ignore (2) and we therefore write the

probability density function (pdf) for all the n solar neutrino data xi as

p(x|∆m2, θ) = exp[−χ2/2]
(2π)n/2

√
det σ2

, χ2 ≡
n∑
i,j=1

(xexpi − xthi )
1

σ2ij
(xexpj − xthj ) . (1.1)

The predicted values xth and the covariance matrix σ2 depend on ∆m2 and θ. The

covariance matrix contains both theoretical and experimental errors, statistical and

systematic, added in quadrature. This is the standard procedure, which can be justi-

fied by applying the Neyman construction in a bayesian framework (i.e. by describing
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theoretical and systematic uncertainties using a probability distribution). A strict

frequentist framework employs a definition of probability that makes it unclear how

to deal with systematic and theoretical uncertainties.

Using the analytical properties of gaussians enormously simplifies the computa-

tion: we will not need lengthy and obscure computer calculations. The probability p

is computed as described in appendix A. We will study oscillations among the three

active neutrinos in a two flavour setup. We could study much more general cases, but

experiments indicate that this seems to be the relevant case.1 ∆m2 ≡ m22 −m21 > 0
is the squared mass difference relevant to solar neutrinos, and 0 ≤ θ ≤ π/2 is the
corresponding mixing angle.

In section 2 we fit the data about the total rates using the Crow-Gardner and

Feldman-Cousins constructions, which are compared with the commonly used ∆χ2-

cut approximation. We do not find dramatic differences (see figure 1). A fit based

on the ∆χ2 approximation does not miss any relevant physical issue. In section 3

we include in the fit the SK spectral and day/night data. We now find more marked

differences between the various methods for building Neyman’s confidence regions

(see figure 4). In section 4 we show that the well-known statement that LMA, LOW

and SMA presently give a good fit is based on an inappropriate statistical test, and we

recompute the goodness-of-fit of the various solutions (see table 1). Our conclusions

are drawn in section 5.

2. Different frequentist analyses: rates only

We want to compare exact and approximate methods to compute confidence re-

gions. To begin with, we consider only the total rates measured at Homestake, Su-

perKamiokande and the weighted sum of the two Gallium experiments: GALLEX-

GNO and SAGE. All fits done so far (except [14]) use the approximated method

based on the ∆χ2-cut; this approximation will be compared with two frequentist

constructions: the Crow-Gardner [12] and Feldman-Cousins [13] methods.

The use of the ∆χ2-cut is based on the well-known likelihood ratio theorem [20],

which states: given a conditional pdf p(x|m) (x is the data vector and m are the
parameters we want to estimate) with a range for x independent from the value of

m, the quantity

λ(x;m) = 2 log

(
maxm p(x|m)
p(x|m)

)
(2.1)

is distributed as a χ2 with dim(m) degrees of freedom (dof), independently from the
1In a 3 ν framework, the νe can also oscillate at the atmospheric ∆m

2. The CHOOZ bound [15]

implies that the relative mixing angle is so small that it can only have a minor effect on solar

neutrinos. The LSND anomaly [16] motivates models with a fourth sterile neutrino. However LSND

is significantly constrained directly by Bugey [17] and Karmen [18], and indirectly by SK [2, 19]

that disfavours a significant sterile contribution to both the atmospheric and solar anomalies. These

indirect bounds can be evaded in models with many sterile neutrinos.
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value of m, in the limit dim(x)→∞. With the pdf of eq. (1.1) this leads to
λ(x; ∆m2, θ) = χ2 − χ2best + log det σ2 − log det σ2best , (2.2)

where χ2 is the usual sum in the exponent of eq. (1.1), σ2 is the covariance matrix

and the subscript “best” indicates that the corresponding quantity must be evaluated

at the value of ∆m2, θ that maximizes the probability for the given measured x. In

the limit of infinite data, λ is distributed as a χ2 with two degrees of freedom (the

two parameters we are studying: ∆m2 and θ. If 10−3 eV2 . ∆m2 . 10−4 eV2 one
can obtain poor fits with energy independent survival probability. In this case the

experimental results only depend on the single parameter θ).

The simplest way to construct confidence regions using this asymptotic property

is to include all values of (∆m2, θ) for which λ is less than a critical value, which can

be obtained from the χ2 distribution tables. Neglecting the ln det σ2 term — which

is not a constant — gives the well-known approximate rule

∆χ2 < β , (2.3)

where β depends on the confidence level (CL) we want to quote. This is the method

most analyses use to obtain the confidence regions. It is twofold approximate: it

neglects the log det σ2 dependence and, since the number of solar data is finite, does

not ensure the correct CL.

The correct frequentist construction of the confidence regions is a well-known

procedure: for any point m in the parameter space (∆m2 and θ, in our case) one

has to arbitrarily choose a region A(m) in the space {x} of the data (the three
rates, in our case) which contains the CL% of the probability. The knowledge of the

pdf (1.1) allows to do this. The confidence region B(x) is given by all the points in
the parameter space that contains the measured value of the experimental data in

their acceptance region:

B(x) = {m|x ∈ A(m)} . (2.4)

It is easy to realize that, taken any true value for the parameters, the quoted region

contains this true value in the CL% of the cases.

The arbitrariness in the choice of the acceptance region A(m) can be fixed by
choosing a particular ordering in the data space: the construction of A(m) is made
adding x-cells in that order until the requested probability (coverage) is reached.

Crow and Gardner (CG) proposed [12] an ordering based on p(x|m), while Feldman
and Cousins (FC) proposed [13]2 an ordering based on the likelihood ratio

p(x|m)
p(x|mbest(x)) . (2.5)

2The Feldman-Cousins method supplements Neyman’s prescription in a way that solves some of

the problems that characterize other methods. Some unwanted and strange properties are however

still present, and the proposed way out [21] goes beyond Neyman’s construction, leading, always in a

completely frequentist approach, to the definition of a new quantity called Strong Confidence Level.
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Figure 1: Confidence regions at 90% (left) and 99% (right) CL obtained from the mea-

sured solar rates using three different methods. The smallest regions (continuous line) are

obtained with the ∆χ2 approximation; they are surrounded by the Feldman-Cousins re-

gions (dashed line). The largest regions (dotted line) are obtained with the Crow-Gardner

procedure.

This means that the “priority” of a point x for fixed m is given by its probability

relative to the probability obtained with the parameters set at the best-fit value

mbest(x) corresponding to x.

2.1 Feldman-Cousins fit

The FC ordering requires cumbersome numerical computations, but guarantees that

the FC acceptance regions share the nice properties of the approximate ∆χ2-cut

method. The FC ordering disregards the statistical fluctuations with no information

on the parameters. If the measured rates are unlikely for any value of the parameters,

the FC procedure “renormalizes” the probability when determining the confidence

regions. It is easy to see that the FC acceptance regions are never empty for any

choice of the confidence level: every point in the data space belongs at least to the

FC acceptance region of the parameter mbest that maximizes its probability.
3

The FC procedure has many points in common with the approximate ∆χ2-cut

method: looking at eqs. (2.1)–(2.3) at fixed m we see that the inequality λ < β

chooses A(m) with the same ordering as the FC method. The only difference is that
3The Feldman-Cousins procedure gives no empty confidence regions if all the points with the

same likelihood ratio are included in the acceptance region for given parameters, even after the

given probability is reached: this can give a certain overcovering, but is essential to get this good

property. Some pathological situations are still possible if the best-fit point does not exist [21].
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the limit β is chosen, using the asymptotic distribution of λ, independent ofm, while

the exact method gives a limit β(m) that depends on the oscillation parameters m.

It is easy to check that the ∆χ2-cut is exactly equivalent to the FC construction

if the pdf is gaussian with constant covariance matrix and with theoretical rates that

depend linearly on the parameters (by “theoretical rates” we indicate the most likely

value of the rates, for given values of ∆m2 and θ). In the linear approximation the

theoretical rates, obtained varying the two parameters ∆m2 and θ, form a plane in the

three-dimensional space of the rates.4 The comparison with this linear approximation

helps us to understand whether the ∆χ2-cut is a good approximation. Two different

behaviors are possible for a given m:

• The value of β(m) given by the FC procedure is smaller than the approximated
one derived by the ∆χ2-cut. This happens, for example, if we measure values of

the parameters near the edges of the parameter space. The ∆χ2 approximation

assumes an infinite hyperplane of theoretical rates: the points of the data space

that have maximal probability for “non-physical” values of the parameters will

be included in the acceptance regions of the points near the edge, reducing

their limit β to have a correct coverage.

• The value of β(m) is larger than the approximated one. This happens when
different regions of the parameter space give similar predictions for the data.

A data point that is included in the acceptance region of a given m in the

linear approximation may have a bigger p(x|mbest) because of the folding of
the hypersurface, which lowers its likelihood ratio. To reach the requested

probability a bigger value for β is needed.

Within the LMA, LOW and SMA regions the linear approximation is pretty good,

as the curvature of the “theoretical surface” is small with respect to the typical

errors on the rates. The effects due to the edges of the theoretical surface can also

be neglected. The main deviation from the ∆χ2 approximation is due to the fact

that SMA, LMA, LOW points give similar predictions : the surface of theoretical

rates is folded. Constructing the acceptance region for an oscillation parameter m

in the SMA region, we find points with best-fit parameters in the LMA region,

so that the ∆χ2 approximation is expected to give some undercoverage. The FC

acceptance regions at 90% and 99% CL are plotted in figure 1: we see that the regions

obtained from the ∆χ2-cut are smaller than the exact FC regions. For example, the

approximated ∆χ2 cut at 90% CL is ∆χ2 < 4.6. The value of β(m) at 90% CL

obtained with the FC construction is ≈ (4.6 ÷ 5.5) for m in the SMA region and
≈ (4.8 ÷ 5.5) for m in the LMA region. Furthermore, owing to the variation of
4It is interesting to note that even if a fundamental property of frequentist inference is its

independence from the metric and topology of the parameter space, the validity of the ∆χ2-cut

approximation strongly depends on them.
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log det σ2 (neglected by the ∆χ2 approximation), in the SMA and LOW regions the

FC boundary intersects the ∆χ2 boundary, instead of surrounding it. The difference

between the approximate and rigorous methods is however small enough to justify

the ∆χ2 approximation.

2.2 Crow-Gardner fit

A second way to construct confidence regions is based on the CG ordering: the

acceptance regions are built beginning from the points of highest probability. Such

ordering is not invariant under a reparametrization of the experimental data (e.g. a

CG fit of the rates is different from a CG fit of the squared rates). Such acceptance

regions are the smallest with the given coverage. The difference between the FC

and the CG procedures is essential for those points that are unlikely for any value

of the parameters, i.e. all the points far from the surface of theoretical rates. We

have seen that, with the FC ordering, every data point is included in the acceptance

region of at least one point in the parameter space, but this is obviously not true

for the CG method. Consider for example the linear approximation in which the

theoretical rates describe a plane in the rate space. For a given m, in view of (1.1),

the CG acceptance region will be an ellipsoid centered in the most likely value for the

rates, which becomes larger and larger with growing CL. The FC acceptance regions

will be very different and stretched to infinity in a cylindrical shape perpendicularly

to the plane (see figure 2). This is clear if we consider that in this approximation

the maximum likelihood point mbest is obtained by projecting a data point on the

“theoretical plane” (in the base where the covariance matrix is proportional to the

identity): all the points lying on a line perpendicular to this plane and intersecting

Figure 2: Approximate shapes of the acceptance regions for two near parameter points

in the FC case (left) and in the CG case (right). In the first case the regions are stretched

perpendicularly to the theoretical surface, while in the second they are ellipsoidal. A

parameter point is accepted if the measured experimental point (black dot in the figures)

lies inside its acceptance region.
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Figure 3: Comparison between the CG acceptance region (black) and the FC one (red)

at 90% CL for a parameter point in the SMA region. Chlorine and Gallium rates are in

SNU, while the SK rate is in 106 cm−2s−1. The presence of LMA points with comparable
predictions makes the FC region asymmetric and disconnected.

it in the point described by m have likelihood ratio equal to 1 and are included in

the acceptance region.

In figure 3 we compare the FC and CG acceptance regions for one given SMA

oscillation. We see that the CG region is ellipsoidal as expected, while the FC one

is stretched, but in one direction only. This is due to the strong non linearity of the

“theoretical surface”: LMA and SMA have similar rate predictions even if they have

very different parameters. The surface is folded and this causes the asymmetry in

the FC region: the acceptance region is deformed and disconnected to get far from

the LMA predictions.

The CG acceptance regions at 90% and 99% CL are plotted in figure 1. The

differences between the FC and CG confidence regions are readily understood. If we

fix the experimental data and begin from a very low CL, we expect an empty CG

region (there is no ellipsoid that contains the data) while the FC region is small but

non empty. As the CL increases, a CG region appears (roughly at 4% CL in our

case) and all the regions grow. With a large CL we expect the CG regions to be

larger than the FC ones as the ellipsoids have a larger projection on the “theoretical

surface” than the stretched FC acceptance regions (see figure 2). All these features

can be checked explicitly in figure 1.

In conclusion two points must be stressed: first of all we have checked that

a correct frequentist approach gives results only slightly different from the naive

analysis based on the ∆χ2-cut. This is apparently in contrast to what is obtained

in [14]. The main difference between that analysis and ours is that we use all three

rates to construct confidence regions, while [14] finds, with a Monte Carlo simulation,

the distribution of the maximum likelihood estimators ∆m̂2 and θ̂ and construct from
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this the confidence regions, using the Crow-Gardner ordering. Since the two ∆m̂2, θ̂

are not a sufficient statistics for the three rates, this procedure implies a certain loss

of information, which leads to larger confidence regions.

A second point is the comparison between the two methods, CG and FC: the

results are pretty similar. As we will see in the next section, this is no longer the

case when the SK data on the angular and energy distribution are included in the

fit. We have not shown “vacuum oscillation” fits of the solar rates because they are

strongly disfavoured by the SK data.

3. The inclusion of the whole data set

The SuperKamiokande collaboration has also measured the energy spectrum of the

recoil electrons as a function of the zenith-angle position of the sun. The full data set

usually employed in solar neutrino fits contains 38 independent dof (see appendix A).

With such a number of data it is practically impossible to perform a complete numeri-

cal construction of the acceptance regions, without any approximation. For example,

even if we divide every dimension of the data space in only 20 cells, we arrive to a

38-dimensional space divided into ∼ 1050 cells. For this reason we cannot construct
the FC confidence regions with all the data set. However, for the same reasons de-

scribed in the previous section, the approximated ∆χ2-cut method is expected to be

a reasonable approximation of the FC construction and to give confidence regions

slightly smaller than the FC ones.

For the CG ordering the situation is better. Since we have approximated the

pdf (1.1) as a gaussian function of the data, the CG construction is equivalent to

a cut on the χ2 with 38 dof (rather than on the ∆χ2). Note that in this case the

procedure is exact even if log det σ2 is not constant. For any m the χ2-cut defines

an ellipsoidal acceptance region A(m), and the confidence region is given by the
set of parameters with χ2 smaller than a given value. The comparison between the

CG ordering and the approximated ∆χ2-cut can be done analytically: for any given

value of CL

FC ≈ ∆χ2−cut : χ2(∆m2; θ)− χ2best ≤ Quantile(χ22 dof ,CL) ,
CG = χ2−cut : χ2(∆m2; θ) ≤ Quantile(χ238 dof ,CL) . (3.1)

The comparison between the CG method and the ∆χ2-cut, which we can consider an

approximation of the FC ordering, is shown in figure 4 and presents all the features

described in the previous section. The differences are now rather evident. The

CG regions are empty until the ≈ 40% CL, while the ∆χ2 regions are never empty
(as the FC ones). The two methods give equal regions for ∼ 45% CL. With a
larger CL the CG regions are bigger than the ∆χ2 regions. Figure 4 shows that the

arbitrariness in constructing frequentist acceptance regions can be quite significant.
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Figure 4: Comparison between the ∆χ2-cut (left), the CGmethod (middle) and a bayesian

fit done assuming a flat prior in the plotted variables (right). We show the 35% (dotted

lines), 68% (dashed), 90% (continuous) and 99% CL (dot-dashed) regions.

For example a CG fit accepts a large ∆m2 ≈ 10−3 eV2 at ≈ 75% CL, while the ∆χ2
approximation to the FC fit rules it out at ≈ 98% CL. One should keep in mind the
statistical assumptions behind this limit, when using it to demonstrate the necessity

of a hierarchy between the squared-mass differences characteristic of the solar and

atmospheric anomalies. We now explain the reason of this difference and argue that

the FC fit is the relevant one.

It could seem strange that, after including all data, the CG confidence regions

with high CL are much larger than when fitting only the rates. This happens because

the CG method does not use the information on the parameters contained in the data

in the most efficient way. Statistical fluctuation leads to experimental results that

do not lie on the theoretical surface. The CG ordering, treating in the same way

the directions in the data space “perpendicular” and “parallel” to the surface, does

not use the information contained in the “distance” from the theoretical surface to

obtain further information on the parameters. This is why the CG ordering leads to

strange results, though correct from the coverage point of view. The FC method uses

the “distance” from the theoretical surface to recognize and eliminate the statistical

fluctuations that have nothing to do with the determination of the parameters. This

difference between the two procedures is much more significant when fitting the full

data set than when fitting the rates only. There are now many more data than

unknown parameters: the theoretical surface is two-dimensional in a 38-dimensional

data space.

In figure 4 we also show a bayesian fit, done assuming a flat prior dp(∆m2, θ) =

d ln∆m2 d ln tan θ. Unlike the CG fit, this bayesian fit should coincide with the ∆χ2

approximation to the FC fit if the pdf were a gaussian function of ln∆m2 and ln tan θ.

By comparing the two fits we can again see visible but not crucial corrections due

to the non-gaussianity in the theoretical parameters ∆m, θ. The arbitrariness in the

prior distribution function p(∆m2, θ) gives an uncertainty comparable to the effect

due to the non-gaussianity.
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4. The goodness of fit

A goodness-of-fit (GOF) test studies the probability of the experimental data

p(data|theory) under given theoretical hypotheses (a model of the sun, the assump-
tion that neutrinos are oscillating rather than decaying. . . ) leading to statements of

the form: if all the hypotheses are true, the probability that the discrepancy between

predictions and data is due to statistical fluctuations is less than a certain amount.

The purpose is to understand if the theoretical hypotheses used to explain the data

are plausible or not.

When analyzing the most recent data, one encounters the following paradoxical

situation: the LOW solution gives a poor fit of the solar rates only (e.g. [23] finds a

GOF of 0.5%). After including the full data set, LOW gives a good fit (e.g. [23] finds

a GOF of 40%). The paradox is that we have added 35 zenith and energy bins, in

which there is no signal for neutrino oscillations. It is clearly necessary to understand

better the meaning of the GOF test before we can decide if LOW gives a decent fit

or not. This important question also applies to the other alternative solutions. Such

tests are based on Pearson’s χ2: the quantity [20]

∑
ij

(xexpi − x̂thi )σ̂−2ij (xexpj − x̂thj ) (4.1)

is asymptotically distributed as a χ2 with Ndata−Nparam dof.5 The hats indicate that
the corresponding quantity must be evaluated at the maximum likelihood parameter

point. The CG ordering is deeply linked to this GOF test: the absence of a confidence

region until a given CL value is correlated to the goodness of the fit.

The paradoxical increase of the GOF of LOW is clearly due to the fact that the

Pearson test does not recognize that there is a problem concentrated in the three solar

rates that contain all the evidence for neutrino oscillations. It only sees that the total

χ2 is roughly equal to the large total number of dof (38), so that the fit seems good.

We now explain why the Pearson’s test is not adequate for such a situation. Pearson’s

test does a precise thing: it tests the validity of a certain solution with respect to a

generic alternative hypothesis, which has a sufficient number of parameters to fit all

the data with infinite precision. Therefore the inclusion of more data changes also the

set of alternative hypotheses which we compare with. Describing the recoil electron

spectrum in terms of 18 energy bins implies that we admit alternative theories with

fuzzy energy spectra. No physical mechanism could generate an irregular spectrum, so

that we do not want to test this aspect. The measured spectrum is of course regular,

and Pearson test rewards the LOW solution for this reason. To better understand

5The result is exact if the variation of log detσ2 can be neglected. Furthermore, with a finite

number of data, this test is exact only with theoretical rates depending linearly on the parameters.

The deviation from this approximation leads to a small overestimate of the GOF: for example,

fitting only the rates, the GOF of SMA gets corrected from 51.8% to 48.4% [14].
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Goodness (a) Rates only (b) Rates and spectra: (c) Rates and spectra:

of fit naive result refined result

SMA 55% (58% [22], 50% [23],51.8% [14]) 30% (34% [23]) . 2%
LMA 6% (10% [22], 8% [23], 6.3% [14]) 60% (59% [23]) . 15%
LOW 0.7% (1.6% [22], 0.5% [23], 1.1% [14]) 50% (40% [23]) . 2%
Pee = cte 0.3% 28% . 1%

Table 1: GOF of the SMA, LMA, LOW and energy-independent solutions obtained by

fitting (a) only the rates, (b) including all the data, (c) including only the “most significant”

data. The energy-independent solution contains only one free parameter, while SMA, LMA,

LOW have two free parameters. Our results are compared with the corresponding ones

in [14, 22, 23]. The symbol . recalls that the GOF values could be slightly lower.

this point, suppose that we add as new data the direction of arrival of the interacting

neutrinos. All solutions (including the no-oscillation hypothesis) would have a higher

GOF. It is obvious that these solutions are much better than a generic one, because

they at least “know” where the Sun is. A meaningful χ2 test should include only

those data that really test the hypothesis under consideration. On the contrary,

the inclusion of irrelevant data does not affect the confidence regions built with the

FC ordering, so that a naive application of the ∆χ2-cut correctly approximates the

best-fit regions.

We therefore conclude that testing the goodness of the fit using a lot of en-

ergy bins gives a formally correct answer to an irrelevant question. If a smaller set

of data were used to describe the spectral and angular information, the set of al-

ternative hypotheses would be more reasonable and one would conclude that there

is a goodness-of-fit problem. Most of the information on the energy and zenith-

angle spectra can be condensed into observables such as the mean recoil electron

energy and the day/night asymmetry, as shown in fits presented by the SK collabo-

ration [4].

Within our assumption of 2-neutrino oscillations, the main new information en-

coded in SK spectral and day/night data is that the survival probability Pee(Eν) can

only have a mild energy dependence around Eν ∼ 10MeV. This can be seen in a
simple way by parameterizing Pee(Eν) as

Pee(Eν) = P0 + P
′
0 ·
(
Eν

10MeV
− 1
)
+
P ′′0
2

(
Eν

10MeV
− 1
)2
+ · · ·

The SK spectral data measure P ′0 = −0.05 ± 0.1 and disfavour the SMA solution
because it prefers a larger slope P ′0. Significant non-linearities in Pee(Eν) are not
predicted in SMA, LMA, LOW oscillations, nor could be recognized by SK (the

present error on P ′′0 is ∼ 1). In conclusion most of the information contained in
the SK spectral data can be conveniently condensed into a single observable f , that

measures the slope of Pee(Eν). One possible choice is the ratio between the rate

of “low energy” (i.e. Te < 9MeV) and “high energy” (i.e. 9MeV < Te < 13MeV)
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recoil electrons, as measured by SK. The upper bound on the recoil electron energy

Te has been chosen in order to avoid potential problems due to an enhanced flux

of hep neutrinos. The measured value and the uncertainty on f(ρi) can be easily

deduced from the SK data on the full energy spectrum: σ2f = fiσ
2
ijfj (in gaussian

approximation), where fi ≡ ∂f/∂ρi, {ρi} is the full set of SK bins and σ2ij is the full
error matrix.

By supplementing the fit of the total neutrino rates with a single observable f

we find the GOF values shown in table 1. The symbol . recalls that, especially in
the SMA case, it could be possible to obtain slightly lower GOF values by identifying

another observable more sensitive to the energy dependence of the neutrino survival

probability. However, a variation of the GOF between, say, 1% and 4%, is within the

uncertainty due to arbitrariness inherent in any statistical analysis. The important

point is that the GOF values are significantly lower than the values based on a naive

χ2 test, and motivate a non-standard analysis of the solar neutrino anomaly [24]. The

SK collaboration [2] finds that SMA now gives a poor fit using another reasonable

procedure: at 97% CL, the region favoured by total rates falls inside the region

disfavoured by spectral and day/night data.

5. Conclusions

Fits of solar neutrino data are usually done using the ∆χ2-cut valid in the gaus-

sian approximation and find few distinct best-fit solutions (LMA, SMA, LOW, . . . ).

Since a gaussian would have only one peak, it is useful to check the validity of the

∆χ2-cut approximation by comparing its results with the exact confidence regions

built using the Neyman construction. This has been done using two different order-

ing prescriptions, proposed by Crow-Gardner (CG) and by Feldman-Cousins (FC).

We find that the ∆χ2 cut provides a good approximation to the Feldman-Cousins

confidence regions.

When the full data set is used, there is some significant difference between the

CG and FC regions. Even if the two methods give regions with the same statistical

meaning, their conceptual significance is different. The FC regions are not influenced

by statistical fluctuations with no information on the oscillation parameters, while the

CG regions are composed by all the oscillation parameters that provide an acceptable

fit of the data. The meaning of the results is deeply influenced by the assumptions

involved in the statistical analysis. We finally show that a correct understanding

of the meaning of Pearson “goodness-of-fit” test invalidates the statement that all

solutions (LMA, LOW and SMA) presently give a good fit.

We hope that our refined statistical analysis has been useful for clarifying some

aspects of solar neutrino fits. Only refined experimental data will allow to identify

the solution of the solar neutrino problem.
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A. Details of the computation

The energy spectra for the independent components of the solar neutrino flux have

been obtained from [8]. The neutrino production has been averaged for each flux

component over the position in the sun as predicted in [5, 8]. This averaging does

not give significant corrections. MSW oscillations inside the sun have been taken

into account in the following way. The 3× 3 density matrix ρS for neutrinos exiting
from the sun is computed using the Landau-Zener approximation with the level-

crossing probability appropriate for an exponential density profile [6, 7]. The density

profile has been taken from [8] and is quasi-exponential: small corrections to ρS have

been approximately included. Oscillation effects outside the sun are described by

the evolution matrix U , so that at the detection point ρE = UρSU
†. In particular,

earth regeneration effects have been computed numerically using the mantle-core

approximation for the earth density profile. We have used the mean mantle density

appropriate for each trajectory as predicted by the preliminary Earth model [25].

The detection cross sections in Gallium and Chlorine experiments have been taken

from [8], performing appropriate interpolations. We have used the tree-level Standard

Model expression for the neutrino/electron cross section at SK.

The total neutrino rates measured with the three kinds of experimental tech-

niques are [1]–[4]

RCl|exp = (2.56± 0.22)SNU ,
RGa|exp = (74.7± 5)SNU ,
RSK|exp = (2.40± 0.08) · 106 cm−2s−1 (A.1)

where SNU ≡ 10−36 interactions per target atom and per second. We have combined
systematic errors in quadrature with statistical errors. The probability distribution

function p(data|theory) is computed using the covariance matrix described in [9,
22]. Around the best-fits, it agrees well with the simpler pdf used in [24]. The

experimental energy resolution at SK has been taken into account as suggested in [26,

27].

The solar-model-independent SK data included in the fit are the energy spectrum

of the recoil electrons measured separately at SK during the day and during the night.

Each energy spectrum [28] is composed of 17 energy bins between 5.5 and 14MeV,

plus one bin between 14 and 20MeV. For these data we have used the pdf suggested

by the SK collaboration [28], and described in [27] for a slightly different set of data.
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