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1. Introduction

N = 4 supersymmetric Yang-Mills theory in D = 4 is a very interesting and ped-
agogically useful theory. It is completely determined by the choice of the gauge

group and is known to be “finite” [1]. All the couplings of the theory are related

to the gauge coupling, which has vanishing β function both perturbatively and non-

perturbatively. In the superconformal phase (at vanishing scalar vev ’s), the spectrum

of gauge invariant composite operators is very rich. They build up representations of

the supergroup SU(2, 2|4) that contains, as purely bosonic symmetries, the conformal
group, SO(4, 2), and the R-symmetry group, SO(6) ≈ SU(4).
The lowest (non-trivial) of such representations, the singleton, is made up by the

8+8 bosonic and fermionic components which are in correspondence with the funda-

mental fields of the theory. It has gauge invariant components only in the abelian

case. In the non-abelian case, gauge invariant operators must be at least bilinears

in the fundamental fields. The simplest gauge invariant supermultiplet is that of the

∗On leave of absence from Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della
Ricerca Scientifica, 00133 Roma, Italy.
†On leave of absence from Institute for Nuclear Research and Nuclear Energy, Bulgarian

Academy of Sciences, BG-1784, Sofia, Bulgaria.
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N = 4 supercurrent, which comprises 128 bosonic and as many fermionic operators.
The “lowest lying” components of the multiplet are the so-called chiral primary op-

erators (CPO’s), Q20′, belonging to the representation 20′ of SU(4)1. The operators
Q20′ , as well as their superconformal partners (among which the stress-tensor, 4
supercurrents, 15 axial currents, . . .), are protected against quantum corrections of

their (conformal) dimensions, since the supercurrent multiplet is (ultra) short.

All multiplets built starting from CPO’s with Dynkin labels of the form [0, `, 0]

and conformal dimension ∆0 = ` ≥ 2 are short multiplets. Relying on previous
studies of unitary irreps of SU(2, 2|N ) [3], further multiplet shortening conditions
have been identified in ref. [4] and classified in [5]. In particular the shortening

of the multiplet built starting from the scalar operator of dimension ∆0 = 4 in

the representation 84 of SU(4), which has Dynkin labels [2, 0, 2],2 nicely fits with

the results obtained in [6, 7], where the precise field theoretical definition of this

operator has been given. The problem with this and similar cases is that quantum

corrections induce mixing among (bare) operators with the same quantum numbers

and a basis of (independent) operators with well-defined conformal dimensions has

to be identified. In the case at hand the relevant mixing involves operators of the

so-called N = 4 Konishi multiplet. The properties of its N = 1 submultiplet (to
which we will refer in the following as the N = 1 Konishi multiplet) have been
studied extensively after the discovery of the Konishi anomaly [8] (see e.g. [9] for a

“pre–AdS/CFT” review). There has been a renewed interest in the subject in the

light of the proposed AdS/CFT correspondence [10]–[13], because, as first observed

in [14], the Konishi multiplet is a long multiplet that corresponds to the first string

level in the spectrum of type IIB excitations around the AdS5 × S5 background.
The purpose of this paper is to study the peculiar perturbative and non-perturba-

tive properties of the N = 4 Konishi multiplet. We will start by constructing the
multiplet, taking in due account the terms induced by the Konishi anomaly. Fol-

lowing [14], we decompose the multiplet in terms of N = 1 submultiplets. We will
then compute correlation functions involving the lowest dimensional scalar operator

of the multiplet, K1, which is an SU(4) singlet with (naive) conformal dimension
∆0 = 2. Since it has a non-vanishing anomalous dimension, these computations

require a careful definition of K1, as a finite, gauge invariant, renormalized operator.
We will compute to O(g2) two-, three- and four-point correlators involving K1

and/or the lowest scalar CPO’s of the supercurrent multiplet. If complemented with

what is known to O(g4) from refs. [7, 36], these calculations, besides confirming

the results known both at O(g2) [15, 6] and at O(g4) [7] on the K1 anomalous
dimension, allow us to identify some of the operators contributing to the OPE of

1SU(4) representations are classified by a triplet of Dynkin labels [k, `,m] [2]. In particular the

Dynkin labels of the representation 20′ are [0, 2, 0].
2Actually multiplets whose lowest scalar components have conformal dimension ∆0 = `+2k and

Dynkin labels [k, `, k] are short [4, 5].
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these Green functions and compute their anomalous dimensions. This is done by

exploiting certain rigorous bounds, that can be derived on general grounds on the

O(g2) corrections to the anomalous dimensions of operators contributing to the OPE

of four-point Green functions. We are able to show in this way at O(g4), as in [36],

the vanishing of the anomalous dimension of an a priori unprotected scalar operator

of dimension ∆0 = 4, belonging to the representation 20
′, which was already shown

to be zero at O(g2) and non-pertubatively [16, 17].

We will then consider non-perturbative instantonic contributions to the same

correlation functions and to our surprise we find vanishing results. This leads us

to conclude that not only K1 receives no instantonic contributions to its anoma-
lous dimension, but it tends to display a much larger “inertia” to non-perturbative

corrections. Our results imply the vanishing of non-perturbative corrections to all

presently studied trilinear couplings involving components of the Konishi multiplet.

The plan of the paper is as follows. After fixing our notations in section 2 and

giving the relevant components of the Konishi supermultiplet in section 3, in section 4

we construct the properly renormalized expression of K1 and compute to O(g2) its
two-, three- and four-point Green functions. We also report explicit formulae for the

four-point Green functions with single and multiple insertions of K1 and of the lowest
component operators belonging to the supercurrent multiplet, Q20′. In section 5, we
then derive a set of inequalities that anomalous dimensions of operators exchanged

in intermediate channels must satisfy for consistency. With these results and the

knowledge we have from the O(g4) calculation of the Green functions of four Q20′
operators, we show in section 6 what kind of information is possible to extract about

the anomalous dimensions of the composite operators of naive dimension ∆0 = 4,

belonging to the representation 20′ and to the singlet. An interesting corollary to
this analysis is that we are able to extend to O(g4), as in [36], the observation, made

in ref. [16] to O(g2), that there exists an operator in the representation 20′ which
has vanishing anomalous dimension, despite the fact that it does not obey any of the

known shortening conditions. At the same time we confirm the known results on the

anomalous dimension of the Konishi multiplet. The instanton contributions to the

Green functions considered in the previous sections are computed in section 7 and

shown to vanish. Conclusions and an outlook of future lines of investigation can be

found in section 8.

2. Notations and conventions

The field content of N = 4 SYM [18] comprises a vector, Aµ, four Weyl spinors, ψA
(A = 1, 2, 3, 4), and six real scalars, ϕi (i = 1, 2, . . . , 6), all in the adjoint represen-

tation of the gauge group, SU(N).3 In the N = 1 approach that we shall follow
3The generalization to different gauge groups is straightforward.
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the fundamental fields can be arranged into a vector superfield, V , and three chiral

superfields, ΦI (I = 1, 2, 3). The six real scalars, ϕi, are combined into three com-

plex fields, φI and φ†I , that are the lowest components of the chiral and antichiral
superfields, ΦI and Φ†I , respectively. Three of the Weyl fermions, ψ

I , are the spinors

of the chiral multiplets. The fourth spinor, λ = ψ4, together with the vector, Aµ,

form the vector multiplet. In this way only an SU(3) ⊗ U(1) subgroup of the full
SU(4) R-symmetry is manifest.

The complete N = 4 SYM action in the N = 1 superfield formulation has a non-
polynomial form. A gauge fixing term must be added to the classical action. We

shall use the Fermi-Feynman gauge, as it makes corrections to the propagators of

the fundamental superfields vanish at order g2 [1, 19, 20]. Actually a stronger result

has been proved in these papers, namely the vanishing of the anomalous dimensions

of the fundamental fields up to O(g4). With the Fermi-Feynman gauge choice the

terms relevant for the calculation of the Green functions we are interested in are

S=

∫
d4x d2θd2θ̄

{
V a2Va − Φa†I ΦIa − 2igfabcΦ†

a

IV
bΦIc + 2g2fabefecdΦ

†a
IV
bV cΦId −

− ig
√
2

3!
fabc

[
εIJKΦ

I
aΦ
J
bΦ
K
c δ
(2)(θ)−εIJKΦ†aIΦ

†
bJΦ

†
cKδ

(2)(θ)
]
+· · ·

}
,

(2.1)

where fabc are the structure constants of the gauge group. As neither the cubic and

quartic vector interactions nor the ghost terms will contribute to the calculations we

will present in this paper, we have omitted them in eq. (2.1).4

Since all superfields are massless, their propagators have an equally simple form

in momentum and in coordinate space and thus we choose to work in the latter, which

is more suitable for the study of conformal field theories. In euclidean coordinate

space one finds

〈Φ†Ia(xi, θi, θ̄i)ΦJb (xj , θj, θ̄j)〉 =
δI
Jδab

4π2
e(ξii+ξjj−2ξji)·∂j

1

x2ij
, (2.2)

〈Va(xi, θi, θ̄i)Vb(xj , θj, θ̄j)〉 = −
δab
8π2

δ(2)(θij)δ
(2)(θ̄ij)

x2ij
, (2.3)

where xij = xi − xj , θij = θi − θj , ξµij = θαi σ
µ
αα̇θ̄

α̇
j .

3. The N = 4 Konishi multiplet

The N = 4 Konishi multiplet is a long multiplet of the superconformal group,

SU(2, 2|4). Its lowest component, K1, is a scalar operator of (naive) conformal di-
4Unlike what we have done in refs. [6] and [7], in this paper we use a more standard definition

of g. To compare formulae of [6] and [7] with the present ones, one has to replace g there, with 2g.

We thank B. Eden and H. Osborn for pointing out to us that our notation was at odds with the

standard one.
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mension ∆0 = 2, which is a singlet of the SU(4) R-symmetry group. The highest

spin component of the Konishi multiplet is a classically conserved spin 4 current,

i.e. a 4 index totally symmetric tensor, of naive dimension ∆0 = 6, which is also a

singlet of SU(4).

The (naive) definition of K1 is

K1(x)
∣∣∣
naive
=
1

2

6∑
i=1

: tr(ϕi(x)ϕi(x)) : , (3.1)

where the trace is over colour and the symbol : stands for normal ordering. As usual,

normal ordering means subtracting the operator vev or, in other words, requiring

〈K1〉 = 0.
In terms of N = 1 superfields the formal expression of K1 is

K1(x)
∣∣∣
formal

=

3∑
I=1

: tr(e−2gV (x,θ,θ̄)Φ†I(x, θ, θ̄)e
2gV (x,θ,θ̄)ΦI(x, θ, θ̄)) :

∣∣∣
θ=0,θ̄=0

, (3.2)

where the exponents are included to ensure gauge invariance. From (3.2) it is clear

that the N = 4 Konishi multiplet contains the N = 1 Konishi submultiplet. The
latter is a real vector multiplet and among its components one finds the classically

conserved U(1) axial current

Kµ = ψ̄Aσ̄µψA . (3.3)

The anomalous divergence of the Konishi current is part of the Konishi anomaly [8],

which in N = 1 superfield notation reads

1

4
D̄2 : tr(e−2gVΦ†Ie

2gVΦI) := tr

(
ΦI
∂W
∂ΦI

)
+
6g2N

32π2
tr(W αWα) , (3.4)

where W is the superpotential, W α is the chiral super-field-strength, defined as

Wα = −
1

8g
D̄2(e−2gVDαe2gV ) (3.5)

and D, D̄ are the N = 1 supercovariant derivatives.
The presence of an anomalous divergence for the Konishi current (3.3) affects

the expression of the superconformal descendants of K1. In particular at level two
(i.e. after acting with two supersymmetry transformations), the explicit form of the

scalar operator in δ2K1 reads

(K10∗)AB = 3
√
2gtijkAB tr(ϕiϕjϕk) +

6g2N

32π2
tr(ψ̄α̇Aψ̄

α̇
B) , (3.6)

where tijkAB is the totally antisymmetric product of three matrices, t
i
AB, which in turn

are the Clebsch-Gordan coefficients for the decomposition of the vector index i into
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two spinor indices A,B. The operator (K10∗)AB belongs to the representation 10∗
and bears a close resemblance to the operator

(E10∗)AB = − tr(ψ̄α̇Aψ̄α̇B) +
√
2gtijkAB tr(ϕiϕjϕk) , (3.7)

that is a superdescendant at level two of the chiral primary operator

Q(ij)20′ = tr
(
ϕiϕj − δij

6
ϕkϕk

)
. (3.8)

Q20′ belongs to the representation 20′ of SU(4) and, as we already said, is the lowest
component of the N = 4 supercurrent multiplet.
The second, “anomalous”, term in eq. (3.6) is obviously crucial in the construc-

tion of higher level operators and plays also a key rôle in making the two-point

correlator 〈δ2K1(x)δ2Q20′(y)〉 vanish, i.e. in making K10∗ = δ2K1 “orthogonal” to
E10 = δ2Q20′, as expected on the basis of the so-called UB(1) “bonus symmetry” [21].
For later use, we need to get acquainted with the scalar operators of naive con-

formal dimension ∆0 = 4, that appear at level 4 in the Konishi multiplet. In order

to construct δ4K1, it is sufficient to perform two N = 1 supersymmetry transforma-
tions on

(K6∗∈10∗)11 = 3
√
2g tr(φ†1[φ

2, φ3]) +
6g2N

32π2
tr(ψ̄1ψ̄1) . (3.9)

(K6∗∈10∗)11 is one of the components in the 6∗ of SU(3) which appears in the de-
composition of the 10∗ of SU(4), to which the operator (3.6) belongs, with respect
to the subgroup SU(3) ⊗ U(1). We are confident that naive supersymmetry trans-
formations lead to the correct answer, since there is no need of normal-ordering the

operator (K6∗∈10∗)11 that is used as a starting point. The final result is a complex
scalar operator

(K6∗∈20′)11=6
√
2g tr([φ†1, ψ

2]ψ3)+6
√
2g2
{
tr([φ†1, φ

2][φ†2, φ
†
1])+tr([φ

†
1, φ

†
3][φ

3, φ†1])
}
+

+
6g2N

32π2

{
4 tr(Dµφ

†
1D
µφ†1) +

√
2g tr([φ†1, λ̄]ψ̄

†
1)
}
, (3.10)

that, as indicated, belongs to the 20′ of SU(4). In the following we will refer to it
as K20′. The conjugate operator, K†20′, enters in the decomposition of δ̄4K1. It is
important to stress that neither K20′ nor K†20′ appear in the OPE of Q20′ · K1 at the
order we are going to work. The UB(1) symmetry [21] would imply this to be true

at any order in g2.

The definition of the superdescendants in δ̄2δ2K1 is more involved. As far as the
scalar components are concerned, one has an operator of naive dimension ∆0 = 4

in the 84 that can only involve scalar quadrilinear terms (terms involving fermionic

fields would have conformal dimension larger than 4) and is consequently of the form

Kij,kl84 = g
2 tr
(
[ϕi, ϕj][ϕk, ϕl]

)
. (3.11)
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At the same level there is an SU(4) singlet of the form

K′1 = 6
√
2g
{
tiAB tr([ϕi, ψ

A]ψB) + tABi tr([ϕ
i, ψ̄A]ψ̄B)

}
− 3g2 tr

(
[ϕi, ϕj][ϕi, ϕj]

)
+

+
6g2N

32π2
[
2 tr(Dµϕ

iDµϕi)− tr(F µνFµν)
]
, (3.12)

that may be thought of as the trace of the singlet classically conserved symmetric

tensor, Kµν , orthogonal to the exactly conserved and traceless canonical stress-energy
tensor, Tµν .
In addition to the components we have discussed, the N = 4 Konishi multiplet

contains a huge number (altogether 216) of other gauge invariant composite operators.

A complete classification can be found in [14].

4. Correlation functions of the Konishi operator K1

Let us consider the lowest dimensional operator, K1, belonging to the Konishi multi-
plet. Its gauge invariant expression is given in eq. (3.2). As we said, K1 has (naive)
conformal dimension ∆0 = 2 and a non-vanishing anomalous dimension. Since we

will only be interested in the θ = θ̄ = 0 component, effectively in the exponents

of eq. (3.2) only the lowest component of the vector superfield, i.e. the scalar field

c(x), will be relevant. Similarly the chiral superfields ΦI(x, θ, θ̄) (Φ†I(x, θ, θ̄)) will
contribute only through their lowest components, φI(x) (φ†I(x)). Thus we have

K1(x)
∣∣∣
formal

=

3∑
I=1

: tr(e−2gc(x)φ†I(x)e
2gc(x)φI(x)) : . (4.1)

In the Fermi-Feynman gauge that we use in this paper the propagator 〈c(x) c(y)〉
vanishes [20].

To give a precise meaning to the formal expression in eq. (4.1) one has to re-

member that, since the operator K1 has an anomalous dimension, it will suffer a
non-trivial renormalization. We find it convenient to regularize K1 by point splitting

K1(x)
∣∣∣
reg
= a(g2)

3∑
I=1

: tr
(
e−2gc(x)φ†I

(
x+

ε

2

)
e2gc(x)φI

(
x− ε

2

))
: , (4.2)

where ε is an infinitesimal, but otherwise arbitrary, four-vector. a(g2) is a normaliza-

tion factor that admits an expansion of the form a(g2) = 1+g2a1+g
4a2+ · · ·. Unlike

the operators corresponding to symmetry generators (like the R-symmetry currents

or the stress-energy tensor), the Konishi scalar K1 has no intrinsic normalization, so
we shall use this freedom in the following to conveniently fix its normalization.

Note that, owing to our choice of gauge-fixing, there is no need to “point-split”

the vector field in the exponents, because, as observed above, the c-field has vanishing
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propagator. An additional refinement to the formula (4.2) could be to make the

replacement

egc(x) → eg
∫ 1
−1 dρc(x+ρε/2) , (4.3)

but this would not affect the anomalous dimension of the operator and would only

lead to a finite rescaling, which can be compensated by an appropriate change of

the normalization constant, a(g2) in (4.2). So in the following we shall stick to the

simpler regularized expression (4.2).

By conformal invariance, renormalization of K1 simply amounts to a multiplica-
tion by the “renormalization constant”

Z(µε) = (µ2ε2)−γK1 (g
2)/2 , (4.4)

where γK1(g
2) is the anomalous dimension of K1 (by superconformal invariance

γK1(g
2) is the anomalous dimension of the whole Konishi supermultiplet). We assume

(as is always the case in perturbation theory) that γK1(g
2) is small and represented

by the series expansion

γK1(g
2) = g2γ1 + g

4γ2 + · · · (4.5)

From the results of refs. [15] and [6, 7] the first two coefficients of the expansion are

known and (after the standard definition of g is used) are given by

γ1 =
3N

4π2
(4.6)

γ2 = −
3N2

16π4
. (4.7)

Below we show that two-, three- and four-point Green functions of K1 are made
finite (up to order we have computed them), if the renormalized operator is taken to

be of the form

K1(x)
∣∣∣
renorm

=
a(g2)

(ε2)
1
2
γK1 (g

2)

3∑
I=1

: tr
(
e−2gc(x)φ†I

(
x+

ε

2

)
e2gc(x)φI

(
x− ε

2

))
: , (4.8)

provided the expansion (4.5) is used with γ1 and γ2 as in eqs. (4.6) and (4.7). In

this equation and in the following, to avoid cumbersome formulae, we refrain from

displaying explicitly the obvious µ dependence.

As a check of the correctness of eq. (4.8), one can compute the O(g2) correc-

tions to the two- and three-point functions of K1. The coordinate dependence of
these correlators is completely determined by conformal invariance. We shall use the

freedom in the normalization factor a(g2) in eq. (4.8), to make the normalization of

the two-point function independent of g2. This is achieved at the order we work by

setting a1 = 3N/8π
2 (the other coefficients would require higher order computations

to be fixed). With this choice one finds for the two-point function

〈K1(x1)K1(x2)〉 =
3(N2 − 1)
4(4π2)2

1

(x122)
2+γK1 (g

2)
, (4.9)
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and for the three-point function

〈K1(x1)K1(x2)K1(x3)〉 =
cKKK(g2)

(x122x132x232)
1+ 1

2
γK1 (g

2)
, (4.10)

where the cubic coupling is given by

cKKK(g2) =
3(N2 − 1)
4(4π2)3

+O(g2) . (4.11)

Taking γ1 = 3N/4π
2, as in eq. (4.5), the g2-expansion of the above expressions turns

out to be in complete agreement with the results of the perturbative calculations,

which give

〈K1(x1)K1(x2)〉
∣∣∣
g2
= −9N(N

2 − 1)
4(4π2)3

1

x412
ln(x212) , (4.12)

〈K1(x1)K1(x2)K1(x3)〉
∣∣∣
g2
= −9N(N

2 − 1)
8(4π2)4

1

x212x
2
13x
2
23

[ln(x212x
2
13x
2
23) + 3] (4.13)

for the O(g2) corrections to two- and three-point correlators, respectively.

The tree-level value of the Green function of four Konishi scalars is

〈K1(x1)K1(x2)K1(x3)K1(x4)〉
∣∣∣
tree
=
(N2 − 1)
16(4π2)4

[
9(N2 − 1)
x412x

4
34

+
9(N2 − 1)
x414x

4
23

+ (4.14)

+
9(N2 − 1)
x413x

4
24

+
6

x212x
2
34x
2
13x
2
24

+

+
6

x212x
2
34x
2
14x
2
23

+
6

x214x
2
23x
2
13x
2
24

]
,

while for the O(g2) correction we find

〈K1(x1)K1(x2)K1(x3)K1(x4)〉
∣∣∣
g2
= −3N(N

2 − 1)
16(4π2)5

[
B(r, s)

x212x
2
34x
2
14x
2
23

×

×(1 + r2 + s2 + 4r + 4s+ 4rs) +

+
6

x212x
2
34x
2
13x
2
24

(
ln

(
x212x

2
34x
2
13x
2
24

x214x
2
23

)
+ 2

)
+

+
6

x212x
2
34x
2
14x
2
23

(
ln

(
x212x

2
34x
2
14x
2
23

x213x
2
24

)
+ 2

)
+

+
6

x214x
2
23x
2
13x
2
24

(
ln

(
x214x

2
23x
2
13x
2
24

x212x
2
34

)
+ 2

)
+

+
9(N2 − 1)
x412x

4
34

ln
(
x212x

2
34

)
+
9(N2 − 1)
x414x

4
23

ln
(
x214x

2
23

)
+

+
9(N2 − 1)
x413x

4
24

ln
(
x213x

2
24

)]
, (4.15)
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where the massless scalar box integral

B(r, s) =
1
√
p

{
ln(r) ln(s)−

[
ln

(
r + s− 1−√p

2

)]2
−

− 2Li2
(

2

1 + r − s+√p

)
− 2Li2

(
2

1− r + s+√p

)}
, (4.16)

is a function of the two conformally invariant ratios

r =
x212x

2
34

x213x
2
24

, s =
x214x

2
23

x213x
2
24

. (4.17)

In eq. (4.16) we have introduced the definition

p = 1 + r2 + s2 − 2r − 2s− 2rs (4.18)

and assumed proper analytic continuation of Li2(z) =
∑∞
n=1 z

n/n2.

Note that, contrary to the case of the four-point functions involving only pro-

tected operators, which depend only on the conformally invariant cross ratios (4.17),

the four-point function (4.15) has an explicit logarithmic dependence on coordinate

differences. This behaviour, which is similar to what one finds for the two- and three-

point functions (4.12) and (4.13), does not contradict conformal invariance and it is

just a manifestation of the anomalous dimension of the Konishi scalar K1.
Let us now consider Green functions involving both the protected operators Q20′

in (3.8) and the unprotected operator K1.
We recall that the case of the four protected operators Q(ij)20′ has been studied

previously. The relevant correlators are known explicitly up to O(g4) and at the

one-instanton level [6, 7, 22, 23].

In terms of SU(3)⊗U(1) the Q(ij)20′ ’s decompose in

CIJ(x) = tr(φI(x)φJ(x)) , C†IJ(x) = tr(φ
†
I(x)φ

†
J(x)) (4.19)

and

VIJ = tr
(
e−2gc(x)φ†J(x)e

2gc(x)φI(x)
)
− δIJ
3
tr
(
e−2gc(x)φ†L(x)e

2gc(x)φL(x)
)
, (4.20)

where again the operators have been regularized by point-splitting like in eq. (4.2).

Note that no normal-ordering is needed as the vev ’s of all these operators vanish,

since they are not SU(4) singlets.

As an additional check of the correctness of our approach, we may compute the

three-point function of two protected operators Q20′ and one K1, for which again
we find a perturbative expression in perfect agreement with the form required by

conformal invariance, which reads

〈Q(i1j1)20′ (x1)Q
(i2j2)
20′ (x2)K1(x3)〉 =

cQ(i1,j1)Q(i2j2)K(g
2)

x122x132x232

(
x12
2

x132x232

) 1
2
γK1 (g

2)

. (4.21)
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Indeed one finds at tree-level

〈C11(x1)C†11(x2)K1(x3)〉
∣∣∣
tree
=
(N2 − 1)
2(4π2)3

1

x212x
2
13x
2
23

(4.22)

and at O(g2)

〈C11(x1)C†11(x2)K1(x3)〉
∣∣∣
g2
=
3N(N2 − 1)
4(4π2)4

1

x212x
2
13x
2
23

(
ln

(
x212

x213x
2
23

)
− 1
)
. (4.23)

Again this result is consistent with the known O(g2) value of the K1 anomalous
dimension.

Passing to four-point Green functions, there are only two non-vanishing choices

〈Q(i1j1)20′ (x1)Q
(i2j2)
20′ (x2)K1(x3)K1(x4)〉 (4.24)

〈Q(i1j1)20′ (x1)Q
(i2j2)
20′ (x2)Q

(i3j3)
20′ (x3)K1(x4)〉 , (4.25)

because the expectation value of three K1 with one Q(ij)20′ is trivially zero due to SU(4)
symmetry.

To avoid cumbersome notations, instead of writing correlators for generic SU(4)

labels, we shall choose representatives. Note that reconstructing the general expres-

sion of the amplitudes is immediate, since in the cases of interest there is only one

independent SU(4) structure for both the Green functions (4.24) and (4.25). In fact

in the corresponding SU(4) tensor product there is only one singlet, unlike what

happens for the Q20′Q20′Q20′Q20′ product, where there are six singlets (related by
permutations and by a non-trivial functional relation [7, 23]). In particular we find

for the Green function with two Q20′’s and two K1’s at tree-level

〈C11(x1)C†11(x2)K1(x3)K1(x4)〉
∣∣∣
tree
= (4.26)

=
(N2 − 1)
4(4π2)4

[
1

x212x
2
34x
2
13x
2
24

+
1

x212x
2
34x
2
14x
2
23

+
1

x214x
2
23x
2
13x
2
24

+
3(N2 − 1)
2x412x

4
34

]
,

while the O(g2) correction is

〈C11(x1)C†11(x2)K1(x3)K1(x4)〉
∣∣∣
g2
= −N(N

2 − 1)
8(4π2)5

[
B(r, s)

x212x
2
34x
2
14x
2
23

×

×(1 + r2 + s2 − 2r + 4s− 2rs) +

+
3

x212x
2
34x
2
13x
2
24

(
ln

(
x434x

2
13x
2
24

x214x
2
23

)
+ 2

)
+

+
3

x212x
2
34x
2
14x
2
23

(
ln

(
x434x

2
14x
2
23

x213x
2
24

)
+ 2

)
+

+
3

x214x
2
23x
2
13x
2
24

(
ln

(
x214x

2
23x
2
13x
2
24

x412

)
+ 2

)
+

+
9(N2 − 1)
x412x

4
34

ln
(
x234
)]
. (4.27)
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This function is of particular interest, since in the 3-4- and 2-3-channels (x34 → 0
and x23 → 0, respectively) it gets contributions from operators in well defined SU(4)
representations. Indeed only the singlet can contribute in the 3-4-channel and only

the representation 20′ in the 2-3-channel.
For the Green function with three Q20′ ’s and one K1, we find at tree-level

〈C11(x1)C†11(x2)V22 (x3)K1(x4)〉
∣∣∣
tree
= (4.28)

= −(N
2 − 1)

12(4π2)4

[
1

x212x
2
34x
2
13x
2
24

+
1

x212x
2
34x
2
14x
2
23

+
1

x214x
2
23x
2
13x
2
24

]

and at O(g2)

〈C11(x1)C†11(x2)V22 (x3)K1(x4)〉
∣∣∣
g2
=
N(N2 − 1)
24(4π2)5

[
B(r, s)

x212x
2
34x
2
14x
2
23

×

×(1 + r2 + s2 − 2r − 2s− 2rs)−

− 3

x212x
2
34x
2
13x
2
24

(
ln

(
x223

x224x
2
34

)
− 1
)
−

− 3

x212x
2
34x
2
14x
2
23

(
ln

(
x213

x214x
2
34

)
− 1
)
−

− 3

x214x
2
23x
2
13x
2
24

(
ln

(
x212

x214x
2
24

)
− 1
)]

. (4.29)

In this case in all channels only the representation 20′ can be exchanged.

5. Anomalous dimensions and OPE

In this section we analyze the general structure of the consistency conditions that can

be obtained combining conformal invariance, which requires power-like expressions

for the Green functions, with the observed logarithmic behaviour found in perturba-

tion theory. In particular an exact resummation of the logarithms to all orders in g2

is expected to take place. Although this has been explicitly checked so far only at

order O(g4) for the lowest operator of the supercurrent multiplet, we shall assume it

to be true in general, since otherwise scale invariance would be violated.

We shall consider a general four-point function of not necessarily protected oper-

ators. We schematically write it in the form 〈Q1(x1)Q2(x2)Q3(x3)Q4(x4)〉, and work
in the double OPE limit, say, x1 → x2 and simultaneously x3 → x4 (s-channel). In

this limit the perturbative corrections to the four-point functions exhibit a logarith-

mic behaviour, which, as we said, is a manifestation of the non-vanishing anomalous

dimensions of the external operators and/or of the operators exchanged in the inter-

mediate channel. For simplicity we shall concentrate only on the leading logarithmic

contributions, that behave like lnn(x2ij) at order O(g
2n), but similar considerations

are valid also for subleading logarithmic terms.

12



J
H
E
P
0
5
(
2
0
0
1
)
0
4
2

Let us consider the logarithmic contributions coming from a finite set of oper-

ators Oi, i = 1, . . . , k, all with the same tree-level scale dimension, ∆0, but with

different O(g2) anomalous dimensions. Note that operators with the same anoma-

lous dimension cannot be separated unambiguously in this approach. We assume

that the intermediate operators have been made orthogonal at tree-level in the sense

that they are chosen to satisfy the equations

〈Oi(xi)Oj(xj)〉
∣∣∣
tree
= δij

Ni

(x2ij)
∆0
, (5.1)

with Ni > 0 due to positivity.

The coefficients of the leading logarithm lnn(x224) (due to conformal invariance,

consideration of the other two leading logarithmic behaviours, i.e. lnn(x212) and

lnn(x234) does not lead to independent conditions) will satisfy the following relations

• tree-level (corresponding to n = 0)

k∑
i=1

Fi = P0 , (5.2)

• order O(g2) (corresponding to n = 1)

k∑
i=1

Fiγi = P1 , (5.3)

• order O(g4) (corresponding to n = 2)

k∑
i=1

Fi(γi)
2 = P2 , (5.4)

where γi is the O(g
2) correction to the anomalous dimension of the i-th operator, Oi,

and the coefficients, Fi, are ratios of tree-level normalization constants

Fi =
cQ1Q2OicQ3Q4Oi

Ni
. (5.5)

Pn is what results from the explicit perturbative calculations, after the contributions

of the leading operators have been removed. Here we shall sketch the procedure one

has to follow in order to compute Pn in the case of interest (scalars of naive dimension

∆0 = 4). The generalisations to higher ∆0 and to tensor operators is straightforward,

though algebraically rather involved. One first expands in double power series for

small x12 and x34 the correlator

(−1)nn!〈Q1(x1)Q2(x2)Q3(x3)Q4(x4)〉
∣∣∣
g2n

, (5.6)
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keeping only the terms proportional to lnn(x224). As already noted, consideration

of the other leading logarithmic terms, proportional to lnn(x212) and ln
n(x234), would

lead to equivalent conclusions, but the equations coming from the lnn(x224) terms

are simpler, since they are manifestly independent of the anomalous dimensions of

the external operators. The result of the expansion has (in general) power singular-

ities for small x12 and x34. These come from intermediate scalar operators of naive

dimension ∆S0 = 2, from vectors of naive dimension ∆
V
0 = 3 and from symmetric

rank two traceless tensors of naive dimension ∆T0 = 4. In order to single out the

contribution of the scalars of dimension ∆0 = 4 we are interested in, one has to

subtract the contributions of all the above operators, together with their derivatives

(descendants). This procedure is made possible by the fact that the coefficients with

which descendants contribute are completely determined by conformal invariance.

Notice that contributions coming from the second derivative of a scalar, as well as

those coming from the first derivative of a vector or the trace of a tensor give rise

to regular behaviours. Consequently, their subtraction is crucial to get the correct

value of Pn, which is the residual coefficient of the regular term we are after.

The generalization of eqs. (5.2) to (5.4) to order O(g2n) is straightforward and

reads
k∑
i=1

Fi(N)(γi(N))
n = Pn(N) , (5.7)

where we made explicit the dependence of both Fi and Pn on the number of colours

N . Note that the N dependence of Pn for n ≤ 3 is polynomial for all four-point
functions we computed. Indeed the N dependence of the four-point functions comes

only from the traces over the colour indices which can be rewritten as traces of

products of an even number of SU(N) matrices in the adjoint representation. For

` = 2, 4, 6 matrices only the “planar” factor (N)`(N2 − 1) appears. For more than
eight matrices, non-planar contributions start to appear with colour factors that will

depend on the exact structure of the four-point function under consideration.

Eliminating the quantities Fi(N) from the system (5.7) leads to the following

consistency equations

Pk+L −
(∑

i

γi

)
Pk+L−1 +

(∑
i<j

γiγj

)
Pk+L−2 −

(∑
i<j<l

γiγjγl

)
Pk+L−3 + · · ·

+(−1)kγ1γ2 . . . γkPL = 0 (5.8)

for any L ≥ 0. Eqs. (5.8) imply that the combinations of anomalous dimensions∑
i

γi ,
∑
i<j

γiγj ,
∑
i<j<l

γiγjγl , . . . γ1γ2 . . . γk (5.9)

as well as all the Pn’s are completely determined, once one knows the leading loga-

rithmic behaviour up to order O((g2)2k−1). In fact to solve for the k variables (5.9)
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one needs eq. (5.8) for k different values of L. Thus the knowledge of the coefficients

Pn from n = 0 to n = 2k − 1 is enough to determine everything. Unfortunately,
except for some special cases, the currently available data is far from meeting the

minimal information required, even when k is relatively small (e.g. k = 3 or k = 4).

Considering several different correlators only partially improves the situation, since

the number of unknowns is anyway very large.

On the other hand the knowledge of only P0, P1 and P2 allows one to obtain

bounds for the smallest and largest anomalous dimensions of the operators con-

tributing to the four-point functions of two identical pairs of operators of the form

〈Q1Q2Q1Q2〉, even without knowing the explicit expressions of the intermediate op-
erators Oi.

Indeed if γmin is the smallest anomalous dimension (or any of them if there are

several), then multiplying eq. (5.2) by γmin and subtracting it from eq. (5.3), one

obtains ∑
i

Fi(γi − γmin) = (P1 − γminP0) . (5.10)

The left hand side is non-negative, since by assumption γmin is smaller than or equal

to all the other γi, while Fi are non-negative due to the assumption Q3 = Q1,

Q4 = Q2. One thus derives the inequality

γmin ≤
P1

P0
. (5.11)

Calling γMax the largest of the anomalous dimension and repeating the previous

argument, we find

γMax ≥
P1
P0

. (5.12)

Both in (5.11) and in (5.12) the equality is reached if all the operators have the same

anomalous dimension.

In the same way, if γs is the anomalous dimension with smallest square (or any

of them if there are several), then multiplying eq. (5.2) by γ2s and subtracting it from

eq. (5.4), one gets ∑
i

Fi((γi)
2 − (γs)2) = (P2 − (γs)2P0) , (5.13)

implying

γ2s ≤
P2

P0
. (5.14)

An important implication of these considerations is that, if P2 = 0 (which implies

also P1 = 0) in some Green function, then the O(g
2) corrections to the anomalous di-

mensions of all the operators that contribute to it are zero, since all the non-negative

products Fiγ
2
i vanish. Thus for each i one either has Fi = 0, which means that the

corresponding operator is not present in the OPE, or γi = 0. Let us stress that
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the vanishing of P1 alone cannot guarantee the vanishing of the anomalous dimen-

sions, due to possible cancellations among positive and negative terms. However, if

P1 is negative, then it is immediate to deduce that at least one of the anomalous

dimensions (and in particular the smallest one) must be negative.

6. The icosaplet and the singlet

In this section we will present the results one can get for the anomalous dimensions

of the operators of naive conformal dimension ∆0 = 4 in the singlet and in the

icosaplet (the representation 20′), making use of the O(g2) computations reported
in the previous section and of the O(g4) results obtained in ref. [7, 36].

For the purpose of isolating the representations of interest it turns out to be

convenient to consider the correlators

〈[C11(x1)C†11(x2)− C22(x1)C†22(x2)][C11(x3)C†11(x4)− C22(x3)C†22(x4)]〉 (6.1)

for the study of the icosaplet and

3∑
I,J=1

〈CII(x1)C†II(x2)CJJ(x3)C
†
JJ(x4)〉 (6.2)

for the singlet. Both the above correlators in the relevant channels actually receive

contributions also from ∆0 = 4 operators belonging to other representations, namely

the 105 and the 84. While all the operators in the 105 are protected,5 there exist

operators in the 84 that belong to the unprotected Konishi supermultiplet. Hence a

laborious subtraction procedure is required to single out the contribution of individ-

ual representations.

Let us start discussing the case of the representation 20′. There are 6 possible
operators of naive dimension ∆0 = 4. Two of them, K20′ and K20′†, are of the
Yukawa type at leading order in g (see eq. (3.10)) and do not contribute to functions

of only scalars at the order we work. The other four operators are at leading order

purely scalar (since they have to be orthogonal to K20′ and K20′†). In preparation
to our later analysis, it is convenient to split them into a double trace operator

D
(ij)
20′ (x) =: Q

(ik)
20′ (x)Q

(jk)
20′ (x)−

δij

6
Q(kl)20′ (x)Q

(kl)
20′ (x) : (6.3)

which appears in the OPE of Q(i1j1)20′ (x) · Q
(i2j2)
20′ (y) and three addittional operators,

spanning a 3-dimensional space orthogonal to D20′. In this space it is convenient to

take as reference “directions” the double trace operator

M̂
(ij)
20′ (x) =: Q

(ij)
20′ (x)K1(x) : −

6

3N2 − 2D
(ij)
20′ (x) , (6.4)

5The representation 105 has Dynkin labels [0, 4, 0].
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which couples to Q(ij)20′ (x) · K1(y) and two single trace operators that vanish for
SU(2). One, L20′, is proportional to the quartic Casimir of the SU(N) gauge

group, the other, O20′, is a linear combination of D20′, M̂20′ and tr([ϕ
i, ϕk][ϕk, ϕj])−

δij/6 tr([ϕl, ϕk][ϕk, ϕl]).

After subtracting out the contribution of the lowest dimensional operators, we

find from eq. (6.1) P2 = 0. According to our previous discussion, this means that

the O(g2) correction to the anomalous dimension of D20′, which we know has a

non-zero coupling to Q20′ · Q20′, has to vanish. The three other scalar operators
are orthogonal to D20′. Tree-level orthogonality (eq. (5.1)) is enough to ensure the

absence of contributions from these operators to all logarithmic corrections (even

to the subleading ones) at order O(g4). Consequently, in agreement with [36], we

conclude that also the O(g4) correction to the anomalous dimension of D20′ is zero.

The vanishing of the O(g2) anomalous dimension was first pointed out in [16]. The

absence of O(g4) correction confirms the conjecture made by these authors that

D20′ is protected, although there is no known shortening condition associated to its

quantum numbers.

Since the analysis of the amplitude 〈CC†VK1〉 does not lead to independent rela-
tions (it merely confirms previous O(g2) results), we are left with only one constraint

from the Green function 〈CC†K1K1〉 (eqs. (4.26) and (4.27)). Although this is not
enough to determine the six remaining unknowns (the 3 angles of mixing and the 3

anomalous dimensions of the operators M̂20′, O20′ and L20′), we can, nevertheless,

obtain bounds for the order O(g2) corrections to the anomalous dimensions of the

operators appearing in the OPE of Q(ij)20′ (x) · K1(y), namely

γmin ≤
(3N2 − 2)
(N2 − 2) ×

g2N

4π2
≤ γMax . (6.5)

From eq. (6.5) we conclude that in the limit N → ∞, g2N fixed, γMax will be non-
vanishing, like what happens for K1.
The case of SU(2) is peculiar, since both O20′ and L20′ vanish, hence the only

relevant operator is M̂20′. Its anomalous dimension can then be determined and

turns out to be equal to 5× 2g2

4π2
.

In the singlet sector again there are too many operators and from the compu-

tations we have at our disposal we can only get bounds for the relevant anomalous

dimensions. The smallest possible value for the O(g2) anomalous dimension of the

∆0 = 4 singlet operators contributing to the OPE of Q(i1j1)20′ (x) · Q
(i2j2)
20′ (y) turns out

to be negative and to satisfy the bound

γmin ≤ −
12

(3N2 − 1) ×
g2N

4π2
≤ 0 . (6.6)

For the smallest square, γs (γs may be different from γmin), one finds the inequality

(γs)
2 ≤ 54

(3N2 − 1) ×
(
g2N

4π2

)2
. (6.7)
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For the anomalous dimensions of the operators contributing to the K1(x) · K1(y)
OPE we finally find

γmin ≤
3(6N2 + 1)

3N2 − 2 ×
g2N

4π2
≤ γMax . (6.8)

Again in the limit N →∞, g2N fixed, γMax will be non-vanishing, like in the previous
case. Note that two sets of operators contributing to the OPE of K1(x) · K1(y) and
Q(i1j1)20′ (x) · Q

(i2j2)
20′ (y) have a non-trivial intersection, since the function 〈CC†K1K1〉 is

non-vanishing, but obviously do not coincide.

We conclude this section by observing that without performing further calcu-

lations, either at higher orders or involving operators with fermionic content, it is

impossible to disentangle all the ∆0 = 4 operators belonging to the singlet and the

icosaplet representations. One might be tempted to try an ansatz that satisfy all

the constraints with a number of operators smaller than the maximum in principle

allowed. Indeed there are many such possible choices. Rather surprisingly, it turns

out that a very severe constraint on any such conjecture comes from the requirement

that the right hand side of eq. (5.7) has to be polynomial in N for any n ≤ 3.

7. Vanishing of instanton contributions

We would like to prove the validity of the non-perturbative result

〈K1K1K1K1〉np = 0 (7.1)

for any instanton number and any gauge group.

Let us start considering the case of one-instanton (κ = 1) and SU(2) gauge group.

For this type of calculations it is more convenient to work in the Wess-Zumino gauge,

where the operator K1 takes the simple form

K1 =
1

4

6∑
i=1

3∑
a=1

ϕiaϕ
a
i . (7.2)

The effective one-instanton contribution to the fundamental scalars, ϕ, is given by

ϕia = f
2(x)tiABζ

Aσaζ
B , (7.3)

where

f(x) =
ρ

(x− x0)2 + ρ2
(7.4)

is the instanton profile function (incidentally, in the AdS/CFT correspondence [10]–

[12] f(x) plays the rôle of boundary-to-bulk propagator [22]) and

ζAα = η
A
α + x̂αα̇ξ̄

Aα̇ (7.5)
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is a Weyl spinor in the representation 4 of SU(4) with x̂αα̇ = xµσ
µ
αα̇. Explicitly,

inserting eqs. (7.3) and (7.5) in (7.2), we get

K1
∣∣∣
inst
= f 4(x)δijt

i
AB(ζ

Aσaζ
B)tjCD(ζ

Cσaζ
D) . (7.6)

From the completeness relation of σ matrices and the SU(4) relation

δijt
i
ABt

j
CD = 2εABCD , (7.7)

one immediately gets the identity

K1
∣∣∣
inst
= 2f 4(x)εABCD(ζ

AζB)(ζCζD) = 0 . (7.8)

The last equality follows from the antisymmetry of the ε-symbol and the symmetry of

(ζAζB). The vanishing of the one-instanton contribution to the operator K1 trivially
implies for the SU(2) case

〈K1K1K1K1〉SU(2)κ=1 = 0 , (7.9)

since there is no way to absorb the 16 exact fermionic zero-modes that exist in the

one-instanton background.6

The generalization to higher instanton numbers and other gauge groups is as

always straightforward. An instanton correlator may be non-vanishing only if all

the “unlifted” 16 supersymmetric and superconformal fermionic zero-modes are ab-

sorbed by suitable operator insertions. But we have just shown that K1 can be of
no help in this job. Thus the correlator 〈K1K1K1K1〉 vanishes for any κ and any
gauge group. The same type of argument leads to the conclusion that the three-

point function 〈Q20′Q20′K1〉κ and four-point correlators, such as 〈Q20′Q20′K1K1〉κ
or 〈Q20′Q20′Q20′K1〉κ, are zero for any κ and any gauge group. Similar results extend
to other operators in the Konishi supermultiplet. For instance

〈K(x1) . . .K(xn)〉κ = 0 (7.10)

for any n ≤ 4, any κ and any choice of K in the multiplet.
However, five- and higher-point functions with insertions of operators in the Kon-

ishi multiplet can receive non-vanishing contributions from instantons. The simplest

example of a correlator of this type is

〈Q20′(x1)Q20′(x2)Q20′(x3)Q20′(x4)K1(x5)〉 . (7.11)

Similarly the simplest non-vanishing correlator with only K1 insertions is the eight-
point function.

6We recall that the 16 (supersymmetric and superconformal) fermionic zero-modes, generated

by the 16 possible independent choices of the spinors ηA and ξ̄A in eq. (7.5), are lifted neither by

the Yukawa couplings nor by the quartic potential term of the scalars [24].
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Based on the OPE analysis of the one-instanton contribution to the four-point

correlator 〈Q20′Q20′Q20′Q20′〉, we proved in ref. [6] the result γ(κ=1)K1 = 0. The new

calculations presented here seem to point to a much larger “inertia” of the Konishi

operators to non-perturbative corrections, namely to the vanishing of the whole non-

perturbative correction to their anomalous dimension (γ
(np)
K1 ≡ 0) and to the vanishing

of similar corrections to trilinear couplings, like 〈K1K1K1〉 or 〈Q20′Q20′K1〉.

8. Conclusions

In this concluding section we would like to briefly summarize the present understand-

ing of the spectrum and properties of composite operators in N = 4 SYM in view of
the AdS/CFT correspondence.

First of all, there are short multiplets with maximal spin 2, which are dual to

the supergravity multiplet and its Kaluza-Klein (KK) excitations. Their scaling

dimensions, which are integer for bosons and half-integer for fermions, do not receive

quantum corrections and the same seems to be true for their trilinear couplings [25,

26, 6, 7]. AdS computations at strong coupling [27] have shown that extremal [28,

29] and next-to-extremal [30] correlators of these operators do not receive quantum

corrections either. The AdS results have been tested both in perturbation theory

and non-perturbatively with N = 4 field theoretical computations [30]–[32].
Other short multiplets with spin larger than two, that cannot possibly be dual

to the supergravity fields or their KK excitations, are known to have similar non-

renormalization properties [33]. Multitrace operators of this kind are interpreted as

dual to BPS-like bound states at threshold.

Next there are multitrace operators in long multiplets with anomalous dimen-

sions that vanish in the large N limit and are thus visible in the supergravity approx-

imation [34, 35]. Their interpretation is more troublesome. They can be viewed as

non-BPS bound states, since their anomalous dimensions are of the correct order of

magnitude, i.e. γ ∝ 1/N2, to be holographically dual to gravitational binding ener-
gies,7 but it is not clear what is the meaning that should be attached to a “classical”

bound state.8

We then have long Konishi-like multiplets that are expected to acquire large

anomalous dimensions (∆ ≈ (g2N)1/4) and decouple from the operator algebra at
strong ’t Hooft coupling in the large N limit. They are dual to string excitations,

whose mass is of the order of ∆ in AdS units. In this paper we have confirmed

previous results on the perturbative anomalous dimension of the N = 4 Konishi
multiplet and gone one step further on the non-perturbative side by showing the

vanishing of instanton contributions to correlators with up to four operator insertions.

7A gravitational-like mass defect δM = GNM
2/L2 ≈ g2s/L = g4YMN2/N2L precisely corre-

sponds to an anomalous dimension γ ∝ 1/N2 at fixed ‘t Hooft coupling.
8We would like to thank A.C. Petkou for an interesting discussion on this point.
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Finally there are unprotected operators that rather surprisingly do not receive

corrections to their tree-level dimensions. This was known for a double trace operator

of dimension ∆0 = 4 belonging to the representation 20
′ of SU(4) at O(g2) and includ-

ing one-instanton corrections [16]. We have confirmed this at O(g4) (see also [36]) and

for any instanton number in the present paper. Partial non-renormalization of near-

extremal correlators of CPO’s [37], and in particular a functional relation between

two a priori independent four-point functions of lowest dimension CPO’s [7, 23],

seems to be at the heart of the vanishing of the anomalous dimensions of some un-

protected operators [36]. In this context an important step forward has been made

in ref. [36], where the constraints imposed by N = 4 superconformal invariance on
four-point functions have been studied along the lines of what has been done in [38].

We would like to conclude with a few comments on the UB(1) bonus symmetry

of ref. [21] and on the SL(2,Z) invariance expected to be realized in N = 4 SYM.
On the first issue our results confirm the conjecture that correlators of single-

trace operators in short multiplets with up to four-point as well as three-point func-

tions with at most one operator belonging to a long multiplet obey the UB(1) selection

rule.

As for the question of how SL(2,Z) invariance is realized, we can make the

following observations. Since physics is θ dependent in N = 4 SYM, we expect ob-
servables, such as anomalous dimensions and trilinear couplings, to generally depend

on the vacuum angle. It is thus conceivable that some of the observables may be

non-holomorphic, but still θ dependent, modular functions of the complexified cou-

pling, τ = θ/2π + 4πi/g2. The class of operators whose dimensions and couplings

may depend on τ in a modular invariant way is, however, restricted to the operators

with γ ∝ 1/N2 in the large N limit, like, for instance, the unprotected double-trace
operators of dimension 4 in the singlet of SU(4). As remarked above, when dis-

cussing the relation between gravitational binding energy of non BPS states and

anomalous dimensions, this kind of non-BPS multi-trace operators (dual to non BPS

multi-particle states) are rather “elusive” from the AdS perspective. Konishi-like

operators, on the contrary, do not seem to receive any non-perturbative corrections

to their anomalous dimensions and trilinear couplings. This means that none of the

observable quantities associated to them can possibly show simple modular prop-

erties. A better understanding of string theory on AdS space and in general on

backgrounds with non-vanishing RR charge might shed some light on the pattern of

dimensions of operators dual to string excitations and non-BPS bound states of KK

excitations.

In conclusion N = 4 SYM seems to be a very interesting theory. Though

superconformal symmetry strongly constrains the dynamics, it allows for interest-

ing features to emerge both at weak coupling (in perturbation theory and non-

perturbatively) and at strong coupling, where the supergravity description is in good

qualitative agreement with field theory expectations [39].
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Some puzzling features call for a deeper understanding of the rôle of superconfor-

mal invariance on the dynamics or for the emergence of some new hidden symmetries,

such as the UB(1) bonus symmetry or symmetries associated to “central” extensions

of the superconformal algebra.
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