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Abstract

We consider the matrix quantum mechanics of N D0-branes in the background
of the 1-form RR field. It is observed that the transformations of matrix coordinates
of D0-branes induce on the Abelian RR field symmetry transformations that are like
those of non-Abelian gauge fields. The Lorentz-like equations of motion for matrix
coordinates are derived. The field strengths appearing in the Lorentz-like equations
transform in the adjoint representation of U(N) under symmetry transformations.
A possible relation between D0-brane dynamics in RR background, and the semi-
classical dynamics of charged particles in Yang-Mills background is mentioned.
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One of the most interesting aspects of Dp-brane [1] dynamics is the appearance of

“matrix coordinates” as the dynamical variables describing the position of coincident

Dp-branes. From String Theory point of view, this enhancement of degrees of freedom

from numbers to matrices is due to the addition of dynamics of strings stretched between

Dp-branes to the usual degrees of freedom capturing the dynamics of each Dp-brane

individually. Consequently, it is understood that the correct degrees of freedom for a

system of bound state of Dp-branes (and strings) are matrices [2].

Though the appearance of matrix coordinates is interesting, a more interesting case

arises when Dp-branes are put in non-trivial backgrounds, namely non-trivial form fields.

Accordingly, the situation with matrix coordinates will be serious while it is understood

that the position dependences of background fields on transverse directions of Dp-branes

also should be given by matrix coordinates. Now a natural question can be about the

consequences of the enhancement of degrees of freedom on the symmetry issues, and one

of the important ones symmetry transformations. As we will see for the case of D0-

branes, the symmetry transformations of matrix coordinates induce on the 1-form RR

field symmetry transformations which are like those of non-Abelian gauge fields. In other

words, the new transformations of the RR fields are the result of “active transformations

on the matrix coordinates of space.”

We also investigate the covariance of the equations of motion under the symmetry

transformation of the 1-form RR fields. It is observed that the field strengths appearing

in the equations of motion transform under symmetry transformations as those of Yang-

Mills theory, i.e., in adjoint representation. Finally, we comment on a possible relation

between the dynamics of D0-branes and the semi-classical dynamics of charged particles

in Yang-Mills backgrounds.

To be consistent with T-duality of String Theory, Myers [3] proposed an action con-

taining the Born-Infeld and Chern-Simons parts for the dynamics of Dp-brane bound

states (see also [4]). The proposed bosonic action for the bound state of N Dp-branes (in

units 2πl2s = 1) is the sum of:

SBI = −Tp

∫
dp+1σa Tr

(
e−φ

√
− det(P{Eab + Eai(Q−1 − δ)ijEjb}+ Fab) det(Qi

j)
)
,(1)

SCS = µp

∫
Tr

(
P{ei iΦiΦ(

∑
C(n)eB)}eF

)
, (2)

with following definitions:

Eµν ≡ Gµν +Bµν , Qi
j ≡ δi

j + i[Φi,Φj]Ekj , (3)

µ, ν = 0, · · · , 9, a, b = 0, · · · , p, i, j = p+ 1, · · · , 9.
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In the above Gµν and Bµν are the metric and the NS-NS 2-form, and Φi are world-volume

scalars and N×N hermitian matrices, that describe the position of Dp-branes in the 9−p
transverse directions. The C(n) is n-form RR field, while F is the U(N) field strength.

In this action, P{· · ·} denotes the pull-back of the bulk fields to the world-volume of the

Dp-branes, and Tr is trace on the gauge group. iv denotes the interior product with a

vector v; for example, iΦ acts on a 2-form C(2) = 1
2
C

(2)
ij dx

idxj as

iΦC
(2) = ΦiC

(2)
ij dx

j , iΦiΦC
(2) = ΦiΦjC

(2)
ij =

1

2
[Φi,Φj ]C

(2)
ij . (4)

Therefore (iΦ)2C(n)=0 for the commutative case, i.e., for one Dp-brane.

Some comments on the above action are in order:

i) All the derivatives in the longitudinal directions should be actually covariant deriva-

tives, i.e., ∂a → Da = ∂a + i[Aa, ] [5]. This point is true also for the pull-back quantities.

ii) The pull-back quantities depend on the transverse directions of the Dp-branes only

via their functional dependence on the world-volume scalars Φi [6], ordered by “sym-

metrization prescription” [3, 7, 8, 9, 10]. For example for the case of metric Gµν(x
ρ), we

can present the Φ dependences by a non-Abelian Taylor expansion as [3]

Gµν(σ
a, xi)|x→Φ ≡ Gµν(σ

a,Φi) = exp[Φi∂xi]Gµν(σ
a, xi)

=
∞∑

n=0

1

n!
Φi1 · · ·Φin(∂xi1 · · ·∂xin )Gµν(σ

a, xi)|xi=0. (5)

iii) This action involves a single Tr , and this Tr should be calculated by symmetriza-

tion prescription for the non-commutative quantities Fab, DaΦ
i and i[Φi,Φj ] [11] 3.

Let us consider the special case of D0-branes, with Gµν = ηµν and Bµν = 0. The low

energy action, with only non-vanishing the RR 1-form, is given by (σ0 = t) [3]

S =
∫
dt Tr

(
1

2
m0DtΦ

iDtΦi − µ0C
(1)
t (Φ, t)− µ0DtΦ

iC
(1)
i (Φ, t)− V (Φ)

)
, (6)

V (Φ) = −1

4
m0[Φ

i,Φj]2, Dt = ∂t + i[A0(t), ], (7)

in which C
(1)
t (Φ, t) and C

(1)
i (Φ, t) are the pull-backs of the RR 1-form C(1)

µ (xν) to the

world-line of the D0-brane bound state. Let us first check the effect of a U(1) gauge

transformation of the 1-form bulk field C(1)
µ (xν), defined by

C(1)
µ (xν) → C ′(1)µ (xν) = C(1)

µ (xν)− ∂µΛ(xν), (8)

3There is a stronger prescription, with symmetrization between all non-commutative objects Fab,
DaΦi, i[Φi, Φj ], and the individual Φ’s appearing in the functional dependences of the pull-back fields
[3, 12]. We do not use this one here, with no essential change in the conclusions.
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with Λ(xν) an arbitrary function in the bulk. Under this transformation, the variation of

the action (6) is

δS ∼ µ0

∫
dt Tr

(
∂tΛ(Φ, t) +DtΦ

i∂iΛ(x, t)|x→Φ

)
, (9)

in which the symmetrization prescription is understood after the replacements x → Φ.

One then obtains

δS ∼ µ0

∫
dt Tr

(
∂tΛ(Φ, t) + ∂tΦ

i∂iΛ(x, t)|x→Φ + i[A0,Φ
i]∂iΛ(x, t)|x→Φ

)
. (10)

The first two terms yield as the surface term dΛ(Φ, t)/dt, and therefore

δS ∼ µ0

∫
dt Tr

(
i[A0,Φ

i]∂iΛ(x, t)|x→Φ

)
(11)

∼ µ0

∫
dt Tr

(
iA0[Φ

i, ∂iΛ(x, t)|x→Φ]
)
. (12)

At first look this term seems non-vanishing, but in fact due to symmetrization prescription,

it also vanishes [8]. Hence, thanks to the symmetrization, the action (6) is invariant under

U(1) gauge transformations in the bulk.

Actually the action (6) is also invariant under active transformations of coordinates,

as

Φi → Φ̃i = U †(Φ, t)ΦiU(Φ, t)

A0(t) → Ã0(Φ, t) = U †(Φ, t)A0(t)U(Φ, t)− iU †(Φ, t)∂tU(Φ, t), (13)

with U(Φ, t) as an arbitrary N × N unitary matrix; in fact under these transformations

one obtains

DtΦ
i → D̃tΦ̃

i = U †(Φ, t)DtΦ
iU(Φ, t),

DtDtΦ
i → D̃tD̃tΦ̃

i = U †(Φ, t)DtDtΦ
iU(Φ, t). (14)

Now, in the same spirit as for the previously introduced U(1) symmetry of eq.(8), one

finds the symmetry transformations:

Φi → Φ̃i = U †(Φ, t)ΦiU(Φ, t)

A0(t) → Ã0(Φ, t) = U †(Φ, t)A0(t)U(Φ, t)− iU †(Φ, t)∂tU(Φ, t),

C
(1)
i (Φ, t) → C̃

(1)
i (Φ, t) = U †(Φ, t)C(1)

i (Φ, t)U(Φ, t)− iU †(Φ, t)∂iU(x, t)|x→Φ,

C
(1)
t (Φ, t) → C̃

(1)
t (Φ, t) = U †(Φ, t)C(1)

t (Φ, t)U(Φ, t)− iU †(Φ, t)∂tU(Φ, t), (15)

in which we assume that U(Φ, t) = exp(−iΛ) is arbitrary up to this condition that Λ(Φ, t)

is totally symmetrized in the Φ’s. The above transformation on the 1-form RR field is
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similar to those of non-Abelian gauge theories, and we see that it is just the consequence

of the existing matrix coordinates. In other words, a U(1) theory on a matrix coordinate

space has symmetry transformations like those of a non-Abelian theory.

The above observation on gauge theory associated to D0-brane matrix coordinates

on its own is not a new one, and we already know another example of this kind in non-

commutative gauge theories. In spaces whose coordinates satisfy the algebra

[xα, xβ] = iθαβ, (16)

with constant θαβ , the symmetry transformations of the U(1) gauge theory are like those

of non-Abelian gauge theory, and are known as non-commutative U(1) transformations

[13, 14, 15]. Note that the above algebra is satisfied also for the transformed coordinates

x̃α ≡ U †(x, t)xαU(x, t).

In addition, the case we see here for D0-branes may be considered as another example

of the relation between gauge symmetry transformations and transformations of matrix

coordinates [16].

The last notable points are about the behaviour of A0(t) and C
(1)
t (Φ, t) under symme-

try transformations (15). From the world-line theory point of view, A0(t) is a dynamical

variable, but C
(1)
t (Φ, t) should be treated as a part of background, however they behave

similarly under transformations. Also we see by (15) that the time, and only time depen-

dence of A0(t), which is the consequence of dimensional reduction, should be understood

up to a gauge transformation.

As expected, the action (6) looks like that of an electric charged particle in an elec-

tromagnetic background (C
(1)
t (x, t), C

(1)
i (x, t)). Thus in principle, one expects to obtain

Lorentz-like equations of motion from this action. For the moment ignoring the potential

term V (Φ), one can derive the equations of motion for Φi and A0 as

m0DtDtΦi = µ0

(
Ei(Φ, t) +DtΦ

jBji(Φ, t)︸ ︷︷ ︸
)

(17)

m0[Φi, DtΦ
i] = µ0[C

(1)
i (Φ, t),Φi], (18)

with the definitions:

Ei(Φ, t) ≡ −∂iC
(1)
t (x, t)|x→Φ + ∂tC

(1)
i (Φ, t), (19)

Bji(Φ, t) ≡ ∂jC
(1)
i (x, t)|x→Φ − ∂iC

(1)
j (x, t)|x→Φ (20)

where the symbol DtΦ
jBji(Φ, t)︸ ︷︷ ︸ denotes the average over all of positions of DtΦ

j between

the Φ’s of Bji(Φ, t). As mentioned, the above equations for the Φ’s are like the Lorentz
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equation of motion, with the exceptions that two sides are N × N matrices, while the

time derivatives ∂t are replaced by their covariant counterpart Dt
4.

It is a good exercise to study the behaviour of eqs. (17) and (18) under gauge trans-

formation (15). Since the action is invariant under (15), it is expected that the equations

of motion change covariantly. The left-hand side of (17) changes to U †DtDtΦU by (14),

and therefore we should find the same change for the right-hand side. This is in fact the

case, since

f(Φ, t) → f̃(Φ̃, t) = U †(Φ, t)f(Φ, t)U(Φ, t),

δf(Φ, t)

δΦi
→ δ̃f̃(Φ̃, t)

δΦ̃i
= U †(Φ, t)

δf(Φ, t)

δΦi
U(Φ, t),

∂f(Φ, t)

∂t
→ ∂f̃ (Φ̃, t)

∂t
= U †(Φ, t)

∂f(Φ, t)

∂t
U(Φ, t), (21)

in which ∂i has been realized via its functional form, δ/δΦi. In conclusion, the definitions

(19) and (20), lead to

Ei(Φ, t) → Ẽi(Φ̃, t) = U †(Φ, t)Ei(Φ, t)U(Φ, t),

Bji(Φ, t) → B̃ji(Φ̃, t) = U †(Φ, t)Bji(Φ, t)U(Φ, t), (22)

a result consistent with the fact that Ei and Bji are functionals of Φ. We thus see that,

in spite of the absence of the usual commutator term i[Aα, Aβ] of non-Abelian gauge

theories, in our case the field strengths transform like non-Abelian ones. We recall that

these are all consequences of the matrix coordinates of D0-branes. Finally by the similar

reason of vanishing of (12), both sides of (18) transform identically.

An equation of motion similar to (17) is considered in [17, 18] as a part of similarities

between the dynamics of D0-branes and bound states of quarks–QCD strings [17, 18, 19].

The point is that the center-of-mass dynamics of D0-branes is not affected by the non-

Abelian sector of the background, i.e., the center-of-mass is “white” with respect to

SU(N) sector of U(N). The center-of-mass coordinates and momenta are defined by:

Φi
c.m. ≡

1

N
Tr Φi, P i

c.m. ≡ Tr P i
Φ, (23)

where we are using the convention Tr 1N = N . To specify the net charge of a bound state,

its dynamics should be studied in zero magnetic and uniform electric fields, i.e., Bji = 0

and Ei(Φ, t) = E0i
5; thus these fields are not involved by Φ matrices, and contain just

4Dt is absent in the definition of Ei, because, the combination i[A0, Ci] has been absorbed to produce
DtΦj for both parts of Bji.

5In a non-Abelian gauge theory an uniform electric field can be defined up to a gauge transformation,
which is quite well for identification of white (singlet) states.

6



the U(1) part. In other words, under gauge transformations E0i and Bji = 0 transform to

Ẽi(Φ, t) = V †(Φ, t)E0iV (Φ, t) = E0i and B̃ji = 0. Thus the action (6) yields the following

equation of motion:

(Nm0)Φ̈
i
c.m. = µ0NE

i
0(1), (24)

in which the subscript (1) denotes the U(1) electric field. So the center-of-mass only inter-

acts with the U(1) part of U(N). From the String Theory point of view, this observation

is based on the simple fact that the SU(N) structure of D0-branes arises just from the

internal degrees of freedom inside the bound state.

It will be interesting to mention the relation between the dynamics of D0-branes in

RR background, and the semi-classical equations of motion for charged particles in Yang-

Mills background. By semi-classical, as will be more clear later, we mean treating the

space-time motion of charged particles classically, while describing the charge degrees of

freedom, calling them “isotopic spin,” quantum mechanically. The classical mechanics of

the charged particles is known by the original work of Wong [20], based on an appropriate

limit of the equations of motion of operators; see [21] as a good review. The starting point

is the standard action of U(N) gauge theory, accompanied with fermionic matter in the

fundamental representation (in units c = 1, h̄ = 1)

S =
∫
ddx

(
− ψ̄γµ(∂µ + iAµ)ψ −mψ̄ψ − 1

4g2
Tr FµνF

µν
)
, (25)

µ, ν = 0, · · · , d− 1, Aµ = Aµ
aT

a, F µν = F µν
a T a. (26)

In above T a, a = 1, · · · , N2, are N×N matrices as generators of the U(N) group, with the

commutation relation [T a, T b] = ifab
c T

c; we assume sum over the lower and upper indices.

Consequently, the classical equation of motion for the charged particle are proposed as

m
d2ξµ(τ)

dτ 2
=

(
F µν

a (ξ)T a
cl(τ)

)
dξν(τ)

dτ
, (27)

where ξµ(τ) denote the world-line of the particle, parametrised with τ . In above, T a
cl(τ)

are numbers as the classical analogues of the matrices T a, with the canonical relation

{T a
cl(τ), T

b
cl(τ)} = fab

c T
c
cl(τ), and the equation of motion as

dT a
cl(τ)

dτ
− dξµ

dτ
fab

c A
µ
b (ξ)T c

cl(τ) = 0. (28)

Thus, the particle is described by an internal vector T a
cl(τ) as well as its space-time co-

ordinates ξµ(τ). Also, by the equations for T a
cl(τ) one deduces that d/dτ(T a

clTcla) = 0.

Hence the isotopic spin of the particle performs a precessional motion.
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Now we try to sketch the relation. Let us first take the simple case of one charged

particle. One may define the covariant derivative along the world-line by notion of world-

line gauge field Aτ ≡ ξ̇µA
µ
cl(ξ, τ) = ξ̇µA

µ
a(ξ)T a

cl(τ), as follows

Dτ ≡ ∂τ − {Aτ , }. (29)

We notice that, from the world-line theory point of view, Aτ is a dynamical variable.

Hence the equation of motion (28) reduces to DτT
a
cl(τ) = 0. Then we define the variables

as Xµa(τ) ≡ ξµ(τ)T a
cl(τ); for these variables we have

DτX
µa = ξ̇µ(τ)T a

cl(τ). (30)

Also by using (27) we find that

mDτDτX
µa = mξ̈µ(τ)T a

cl(τ) = F µν
cl (ξ, τ)ξ̇νT

a
cl(τ) ⇒

mDτDτX
µa = F µν

cl (ξ, τ)DτX
a
ν , (31)

in which we are using the notation F µν
cl (ξ, τ) = F µν

a (ξ)T a
cl(τ). The last equation for Xa are

reminiscent of the D0-brane equation of motion in the RR 1-form background, with this

exception that here the field strength F µν
cl (ξ, τ) depends on variables ξµ. Here one can

define a map from fields F µν
cl (ξ, τ) to new fields F̂ µν(Xa, τ). The map defines the fields

F̂ µν(Xa, τ) by the relation

F µν
cl (ξ, τ) = F µν

a (ξ)T a
cl(τ) ≡ F̂ µν(Xa, τ). (32)

Thus we have the equations: mDτDτX
µa = F̂ µν(Xa, τ)DτX

a
ν . The map also may be

defined at the level of gauge potentials Aµ
cl(ξ, τ) and Âµ(Xa, τ), in a Lagrangian or Hamil-

tonian formulation of the problem.

The last equation we obtained have already the extra index a on the variables Xµa.

One may consider N2 copies of variables ξµ
a (τ), with common charge variables T a

cl(τ).

Since in this case there are N2 copies of variables, and so world-lines, the definition of a

unique world-line covariant derivative Dτ is not possible. The best one can think about,

as the case for coincident D0-branes, is that the N2 copies are nearly “identified” in space-

time. Thus we assume ξa(τ) = ξ(τ) + δξa(τ), with δξa � ξ. Actually the thing one needs

is a unique combination of Aτ = ξ̇aµA
µ
cl(ξa, τ) as a unique world-line gauge field. So to

have a unique world-line gauge field, and consequently common charge variables T a
cl(τ),

we have the condition δ̇ξaµA
µ
a + ξ̇aµδξ

ρ
a∂ρA

µ
a = 0, for each a. Therefore we can define

Dτ ≡ ∂τ − {Aτ , }, (33)
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with Aτ ≡ ξ̇µA
µ
cl(ξ, τ). Thus all of the charges can be taken equal, satisfying DτT

a
cl(τ) = 0.

Then we define Xµ(τ) = ξµ
a (τ)T a

cl(τ), and accordingly we have

mDτDτX
µ = mξ̈µ

aT
a
cl,

mDτDτX
µ = F µν

cl (ξa, τ)ξ̇aνT
a
cl(τ),

mDτDτX
µ =

(
F µν

b (ξa)T
b
cl(τ)

)
ξ̇aνT

a
cl(τ), (34)

where in the right-hand side the sums on a and b are recalled. The dependence of field

strength on ξa prevents us to do the sums on a and b independently, to get ξ̇aνT
a
cl(τ) =

DτXν . Like the case for a single particle, we can define the map between fields F µν
cl (ξa, τ)

and F̂ µν(X, τ) such that the expression in the right-hand side appears as following

(
F µν

b (ξa)T
b
cl(τ)

)
ξ̇aνT

a
cl(τ) ≡ F̂ µν(X, τ)DτXν . (35)

The map can also be presented in components with group indices. Finally one concludes

with equations

mDτDτX
µ = F̂ µν(X, τ)DτXν . (36)

All the relations we had in above, rather than matrices, were about numbers unfor-

tunately! It is because that in Wong’s theory also the charge variables are treated with

their classical analogues. It may be possible to find a semi-classical version of the prob-

lem, assuming space-time motion classically, while the isotopic spin T a’s remain matrix

variables, as they should be as group generators; similar to the situation we have for

ordinary spin in Stern-Gerlach experiment. Then, a relation between the semi-classical

dynamics of charged particles and D0-brane dynamics will appear very interesting. It is

remain for future progresses to know more about both D0-brane dynamics and charged

particle dynamics in Yang-Mills background.

All the above can be considered in non-relativistic limit, though the case needs more

study, may be defined by 6

DτX
0 ' 1, ξ̇i

a � 1. (37)

In this limit we have Aτ (t) = A0a(t, ξ
i)T a

cl(t)+O(ξ̇i), which means that the world-line gauge

field equals effectively to zero component of gauge field, which for very small velocities

may be assumed to be function of t only.

6For the case concerning more than one massless particle, the more systematic way can be going to
the light-cone gauge to recover non-relativistic dynamics in the transverse directions; see Appen. of [18].
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In the above we saw the important role of a map between the Yang-Mills fields,

and fields which depend on Xµ variables. In [13] a map between field configurations

of non-commutative and ordinary gauge theories is introduced, which preserves the gauge

equivalence relation. It is emphasized that the map is not an isomorphism between the

gauge groups. It will be interesting to study the properties of the map between non-

Abelian gauge theory and gauge theory associated with matrix coordinates of D0-branes;

on one side the quantum theory of matrix fields, and on the other side the quantum

mechanics of matrix coordinates. Since in this case we have matrices on both sides, it

may be possible to find an isomorphism between all objects involving in the two theories,

i.e., dynamical variables and transformation parameters.

We have seen how the U(1) symmetry of the 1-form RR field C(1)
µ (xν) can show a U(N)

structure inside the bound states. The U(N) structure in bound states is a consequence

of the fact that the correct dynamical variables of the bound states are N ×N hermitian

matrices, rather than numbers. From the String Theory point of view, this is possible by

taking into account degrees of freedom corresponding to N copies of the U(1) structure,

together with N2 − N additional ones coming from the dynamics of strings stretched

between charged particles. Here each D0-brane carry 1/N fraction of the bound state

total charge. This is an example of a mechanism that how small (fractional) charges of

an Abelian symmetry can form a bound state with an internal non-Abelian symmetry; a

mechanism which may be called “non-Abelian from fractional Abelian charges.”
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