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Abstract

We review recent work on analytical solutions to the MSW equations for three
neutrino flavours, for exponential and linear potentials. An application to a par-
ticular mass matrix is also discussed. The three neutrino masses are determined,
respectively, to be 0.001–0.004, and roughly 0.01 and 0.05 eV.

1 Introduction

In this paper we shall review some re-
cent results on analytical solutions of the
Mikheyev–Smirnov–Wolfenstein (MSW) ef-
fect [1] for the propagation of three neutrino
flavours. For two model densities which are
relevant to the neutrino propagation in the
sun, such results have been obtained. These
are the exponential density [2] and the linear
density [3]. (The case of a constant density,
which is of some relevance for propagation
through the Earth, has also been studied re-
cently [4].)

For the exponential density, the solu-
tions for the three neutrino wave functions
[2] can be expressed in terms of generalized
hypergeometric functions, 2F2 and 3F1. For
the linear density, the solutions can be ex-
pressed as a Fourier transform of a rather
simple expression, which, in the case N =

2 (two flavours) reduces to the well-known
parabolic cylinder functions or confluent hy-
pergeometric functions [5].

We also briefly discuss the application
of the results to the Lehmann–Newton–Wu
(LNW) mass matrix [6, 7].

2 Exponential density

Neutrino propagation through a medium
where the electron neutrino (denoted φ1(r))
interacts differently from the others, is gov-
erned by the equation
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where the mass matrix is real and symmet-
ric, M2

ji = M2
ij ≡ (M2)ij . Here, D(r) =√

2GFNe(r), with GF the Fermi constant
and Ne(r) the solar electron density.

For the sun, the density [8] is well ap-
proximated by an exponential,

Ne(r) = Ne(0) e−r/r0, r0 ' 0.1×R�. (2)

It is convenient to introduce a new radial
variable: u = r/r0 + u0, and perform a rota-
tion on the second and third components,

[
cos θ0 − sin θ0
sin θ0 cos θ0

]
r0
2p

[
M2

22 M2
23

M2
32 M2

33

]

×
[

cos θ0 sin θ0
− sin θ0 cos θ0

]
=

[
ω2 0
0 ω3

]
. (3)

Eq. (1) then takes the form

i
d

du


ψ1(u)
ψ2(u)
ψ3(u)


 =


ω1 + e−u χ2 χ3

χ2 ω2 0
χ3 0 ω3




ψ1(u)
ψ2(u)
ψ3(u)


 .

(4)

Let µ1, µ2 and µ3 be the eigenvalues of
the 3× 3 matrix


ω1 χ2 χ3

χ2 ω2 0
χ3 0 ω3


 . (5)

These µj are the squares of the neutrino
masses multiplied by r0/(2p). Together with
ω1 and ω2 they control the evolution of the
ψi.

We again introduce a new variable, z =
ie−u. Then, the solutions to Eq. (4) can be
expressed in terms of solutions to

[(
z

d

dz
− iµ1

)(
z

d

dz
− iµ2

)(
z

d

dz
− iµ3

)

− z

(
z

d

dz
− iω2

)(
z

d

dz
− iω3

)]
ψ = 0,

(6)

namely generalized hypergeometric func-
tions [9]:

ψ(1) = e−iµ1u

× 2F2

[ −i(ω2 − µ1), −i(ω3 − µ1)
1− i(µ2 − µ1), 1− i(µ3 − µ1)

∣∣∣∣ie−u

]
ψ(2) = e−iµ2u

× 2F2

[ −i(ω2 − µ2), −i(ω3 − µ2)
1− i(µ1 − µ2), 1− i(µ3 − µ2)

∣∣∣∣ie−u

]
ψ(3) = e−iµ3u

× 2F2

[ −i(ω2 − µ3), −i(ω3 − µ3)
1− i(µ1 − µ3), 1− i(µ2 − µ3)

∣∣∣∣ie−u

]
(7)

The 2F2 can be defined in terms of the series
expansions

2F2

[
α1, α2

ρ1, ρ2

∣∣∣∣z
]

=

∞∑
k=0

(α1)k(α2)k

(ρ1)k(ρ2)k

zk

k!
(8)

where (α)k is a Pochhammer symbol, (α)k =
α(α + 1) . . . (α + k − 1). The solutions to
Eq. (4) are thus

ψi = C1ψ
(1)
i + C2ψ

(2)
i + C3ψ

(3)
i , (9)

where the constants Cj are determined by
the boundary conditions: ψ1(r = 0) = 1,
ψ2(r = 0) = 0, ψ3(r = 0) = 0.

For neutrino masses and energies of phys-
ical interest, the parameters and arguments
of the 2F2 become too large for the series
expansion to be useful. A practical proce-
dure is to adopt a stationary-phase approx-
imation for the 2F2 of ψ

(3)
i , and express the

others by 3F1 functions. This procedure is
outlined below.

Consider the ordinary differential equa-
tion for 2F2 in the form

[(
z
d

dz
+ β1

)(
z
d

dz
+ β2

)(
z
d

dz
+ β3

)

− z

(
z
d

dz
+ α1

)(
z
d

dz
+ α2

)]
f = 0.

(10)
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This can be converted to an ordinary dif-
ferential equation for 3F1 by substituting
ẑ = z−1:[(

ẑ
d

dẑ
− α1

)(
ẑ
d

dẑ
− α2

)

+ ẑ

(
ẑ
d

dẑ
− β1

)(
ẑ
d

dẑ
− β2

)
(
ẑ
d

dẑ
− β3

)]
f = 0. (11)

Two solutions are of the form

zpower
3F1

[
a1, a2, a3

b

∣∣∣∣− z−1

]
. (12)

The full solutions (9) can then be con-
structed schematically (leaving out powers)
as follows:

ψi = Ai 2F2(1) +Bi 3F1(1) + Ci 3F1(2).
(13)

The series expansion for 3F1 has zero radius
of convergence. However, it can be expressed
in terms of an integral involving the familiar
hypergeometric function 2F1,

3F1

[
a1, a2, a3

b

∣∣∣∣− x−1

]

=
1

Γ(a1)
xa1

∫ ∞

0

dt e−xt ta1−1

× 2F1(a2, a3; b;−t)

For large parameters and argument, the
Pochhammer contour P is useful [2]:

2F1(a, b; c;−t)

=
−Γ(c)e−iπc

4Γ(b)Γ(c− b) sin πb sin π(c− b)

×
∫
P
sb−1(1− s)c−b−1(1 + ts)−ads

This approach leads to an accurate and ef-
ficient evaluation of the three neutrino wave
functions in terms of stationary phase ap-
proximations to the 2F2 and 3F1 functions.

3 Linear density

The terminology “linear electron density” is
used to mean that Ne(x) is a linear function
of x.

3.1 Two generations

The case of two states and a linear potential
has been studied extensively, starting with
Landau and Zener in the 1930s and applied
to neutrino mixing in the 1980s [5]. After a
suitable scaling and shift of the variable, one
has

i
d

dt

[
ψ1(t)
ψ2(t)

]
=

[−t a2

a2 0

] [
ψ1(t)
ψ2(t)

]
, (14)

or more explicitly:

i
d

dt
ψ1(t) = −tψ1(t) + a2ψ2(t),

i
d

dt
ψ2(t) = a2ψ1(t). (15)

Elimination of ψ2 gives

d2ψ1(t)

dt2
− it

dψ1(t)

dt
+ (a2

2 − i)ψ1(t) = 0.

(16)

The first-derivative term can be removed
by taking

ψ1(t) = eit2/4 φ1(t). (17)

Then the equation for φ1(t) is

d2φ1(t)

dt2
+ (1

4
t2 + a2

2 − 1
2
i)φ1(t) = 0. (18)

Two linearly independent solutions of this
equation are the parabolic cylinder functions

Dρ(±eiπ/4 t) (19)

where ρ = −ia2
2 − 1.

Parabolic cylinder functions are special
cases of the confluent hypergeometric func-
tion,

Dρ(z) = 2(ρ−1)/2 e−z2/4 zΨ(1
2
− 1

2
ρ, 3

2
; 1

2
z2)
(20)
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In terms of confluent hypergeometric func-
tions Ψ and Φ:

ψ1(t) = t
[
C Φ(1 + 1

2
ia2

2,
3
2
; 1

2
it2)

+C ′Ψ(1 + 1
2
ia2

2,
3
2
; 1

2
it2)
]
(21)

Unfortunately, it is not clear how to gener-
alize this approach to N ≥ 3.

Let us therefore consider an alternative
solution to the N = 2 case [3]. We start by
writing

F (ζ) =
1

2π

∫ ∞

−∞
dt eiζt ψ1(t). (22)

Then it follows from Eq. (16) that F (ζ) sat-
isfies the first-order differential equation

−ζ2F (ζ)− d

dζ
[−iζF (ζ)] + (a2

2 − i)F (ζ) = 0

(23)

or

1

F (ζ)

dF (ζ)

dζ
=
i

ζ
(a2

2 − ζ2). (24)

Integrating over ζ , one finds

F (ζ) = const. e−iζ2/2 ζ ia2
2. (25)

With the notation [cf. Eq. (30)]

b1 = −∞ and bN+1 = +∞, (26)

the two solutions can be written as

ψ
(n)
1 (t) =

∫ bn+1

bn

dζ e−iζt e−iζ2/2 |ζ |ia2
2 (27)

for n = 1, 2. It can be shown that they are
confluent hypergeometric functions of the
correct parameters and argument [i.e., iden-
tical to Eq. (21)].

3.2 General N

This second approach outlined above has the
advantage that it can be generalized to an
arbitrary number of neutrino flavors [3]. We

start out by writing the equation analogous
to (1) in dimensionless standard form

i
d

dt
ψ(t) = A(t)ψ(x), (28)

where

ψ(t) =




ψ1(t)

ψ2(t)

ψ3(t)
...

ψN (t)




(29)

and

A(t) =




−t a2 a3 . . . aN

a2 b2 0 . . . 0

a3 0 b3 . . . 0
...

...
...

...

aN 0 0 . . . bN


 . (30)

There are two kinds of equations:

i
dψ1(t)

dt
= −t ψ1(t) +

N∑
j=2

ajψj(t) (31)

and, for k = 2, 3, 4 . . .N :(
i
d

dt
− bk

)
ψk(t) = akψ1(t). (32)

One finds

ψ(t) =
N∑

n=1

Cn ψ
(n)(t), (33)

where [3]

ψ(n)(t) =

∫ bn+1

bn

dζ e−iζt e−iζ2/2

×
(

N∏
j=2

|ζ − bj |ia2
j

)



1
a2

ζ−b2
a3

ζ−b3
...

aN−1

ζ−bN−1
aN

ζ−bN




(34)
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While these solutions are reasonably sim-
ple, a numerical Fourier transform is re-
quired. As t→ ±∞, explicit expressions can
be written out for the different ψ(n). How-
ever, these can not directly be used for im-
posing the boundary conditions, since they
would correspond to negative density at t→
−∞.

4 The LNW mass matrix

For quark mixing, it was found [6] that a
particular, simple texture for the d (d, s, b)
and u (u, c, t) quark mass matrices leads to
an acceptable CKM matrix [10]. This same
mass matrix has been applied to the case of
three neutrinos [7], and rather good fits to
the atmospheric [11] and solar [12–16] neu-
trino data have been obtained.

The mass matrix is assumed to have the
form

M =


0 d 0
d c b
0 b a


 (35)

with b2 = 8c2. The eigenvalues are given by
m1, m2, and m3, with m1 ≤ m3.

In order to outline the diagonalization,
whereby M = RMdiagR

T, let us introduce
the notation

S1 ≡ m3 −m2 +m1,

= a+ c

−S2 ≡ m3m2 −m3m1 +m2m1,

= 8c2 + d2 − ac

−S3 ≡ m1m2m3

= ad2. (36)

Then, a cubic equation for the parameter a
can be written as

9a3 − 17S1a
2 + (8S2

1 + S2)a− S3 = 0. (37)

A physical solution requires a real and posi-
tive. This is equivalent to having three real
solutions for a. One of these is negative and

two are positive. At any point inside the al-
lowed domain in the m1/m3–m2/m3 plane,
there are thus two allowed solutions, denoted
Solutions 1 and 2.

Let us consider first the atmospheric neu-
trino data. The Super-Kamiokande results
[11] give ∆m2 ' (2 − 3) × 10−3 eV, with
sin2(2θ) ' 1. The survival of muon neutri-
nos is given by

Pνµ→νµ(t) = 1− 4

[
U2

µ1U
2
µ2 sin2

(
∆m2

21t

4p

)

+ U2
µ1U

2
µ3 sin2

(
∆m2

31t

4p

)

+ U2
µ2U

2
µ3 sin2

(
∆m2

32t

4p

)]
, (38)

where U is the neutrino mixing matrix. In
the limit of ∆m2

21t/4p � 1 this simplifies,
and invoking further unitarity, one finds

Pνµ→ντ (t) ' 4U2
µ3U

2
τ3 sin2

(
∆m2

32t

4p

)
, (39)

which suggests that one needs |Uµ3Uτ3| =
O(1). This can be achieved within the model
(for both Solutions 1 and 2), for m1 � m3,
with also m2 small compared with m3. Fur-
thermore, the data suggest that the scale m3

must be such that m2
3 ' (2− 3)× 10−3 eV.

Fits to atmospheric data confirm this
qualitative analysis. Invoking also the so-
lar Cl, Ga and Super-Kamiokande neutrino
data [12–16], one finds that both Solutions 1
and 2 give good fits for m1 � m3, with m2

also small as compared with m3. Forming
a χ2 from these different atmospheric and
solar survival probabilities, we found good
fits [7], with m3 of the order of 0.05 eV, m2

about 0.01 eV, and m1 ∼ 0.001–0.004 eV. In
terms of the more conventional two-flavour
analyses for the solar-neutrino sector, these
fits roughly correspond to the large-mixing-
angle solution.
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5 Summary

We have reviewed analytic work on the so-
lutions to the MSW equations for three neu-
trino flavours. Such results are very valuable
for a fast scanning over the parameters of
some given model for the mass matrix.

Also, we have more briefly reviewed the
LNW mass matrix, as applied to the neu-
trino data. This is a very constrained model
that in the quark sector describes the CKM
matrix, and in the neutrino sector gives the
mixing in terms of the mass eigenvalues.

The solar neutrino data has also been
studied within the same model, using nu-
merical integration methods (no 2F2’s) [17].
An additional fit was then found at m1 '
2.8 × 10−6 eV, corresponding to the small-
mixing-angle solutions. However, this point
is disfavoured by the atmospheric neutrino
data, and by the electron recoil spectrum.
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