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1. Introduction

In supergravity and (super)string models there exists a plethora of scalar and fermi-

onic fields (we will loosely call them moduli Φ) with masses of the order of the weak

scale and gravitational-strength couplings to ordinary matter. If produced in the

early Universe, such quanta behave like non-relativistic matter and decay at very

late times, eventually dominating the energy of the Universe until it is too late for

nucleosynthesis to occur. This poses a serious cosmological problem [1]. Typical

examples of these dangerous relics are the spin-3/2 gravitino (the supersymmetric

partner of the graviton), the scalar moduli which parametrize supersymmetric flat

directions in moduli space and seem almost ubiquitous in string theory, and their

fermionic superpartners.

The slow decay rate of the Φ-particles is the essential source of cosmological

problems because the decay products of these relics will destroy the 4He and D

nuclei by photodissociation, and thus successful nucleosynthesis predictions [2, 3].

The most stringent bound comes from the resulting overproduction of D + 3He;

this requires that the Φ-abundance relative to the entropy density s at the time of

reheating after inflation [4] should satisfy [5]

nΦ

s
. 10−12 , (1.1)

where the exact bound depends upon the mass mΦ.

The dangerous moduli can be produced in the early Universe in a number of

ways.1 They may be generated by thermal scatterings in the plasma during the

process of reheating after inflation when the energy density of the Universe gets
1Here we will study only production of moduli quanta and we do not consider the possibility of

moduli oscillations around their minimum.
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converted into radiation. The number density nΦ at thermalization is estimated to

be of the order of nΦ/s ' 10−2 (Tr/MPl), where Tr is the final reheating temperature
and MPl = 1.2 × 1019GeV is the Planck mass. This gives a stringent upper bound
on the reheating temperature after inflation of about 109GeV [3].

The generation of the dangerous relics may also proceed through non-thermal

effects. Scalar moduli fields may be copiously created by the classical gravitational

effects on the vacuum state between the end of inflation and the beginning of the

matter/radiation phase [6, 7, 8]. In such a case, the upper bound on the reheating

temperature is very dependent on the inflationary model, but it may be as low as

100GeV. Another possibility is represented by the parametric excitation of dan-

gerous relics occuring after inflation because of the rapid oscillations of the inflaton

field(s). Gravitino production is an interesting example of this kind [7, 9, 10, 11]

since the non-thermal generation of gravitinos in the early Universe can be ex-

tremely efficient and overcome the thermal production by several orders of mag-

nitude.2

The scope of this paper is to show that the abundant production of dangerous

relics is an unavoidable consequence of a period of preheating [13] after inflation.

The corresponding limits on the reheating temperature are often very tight and

more severe than the bound of 109GeV coming from the production of moduli via

thermal scatterings during reheating.

During the first stage of preheating non-perturbative quantum effects lead to an

extremely effective dissipational dynamics and explosive particle production. Par-

ticles coupled to the inflaton field can be created in a broad parametric resonance

with a fraction of the energy stored in the form of coherent inflaton oscillations at

the end of inflation released after a few oscillations. This rapid transfer of energy

density populates the Universe with quanta in highly non-thermal states which can

be viewed either as classical waves travelling through the Universe [14] or as quan-

tum particles in states with large occupation numbers. This phenomenon may even

excites other coupled fields to exponentially large occupation numbers [15].

In the second stage of preheating, called semiclassical thermalization [14], rescat-

terings of the produced fluctuations smear out the resonance peaks in the power spec-

tra and lead to a slowly evolving state in which the power spectra are smooth [14,

16, 17]. The system begins to exibit a chaotic behaviour characteristic of a classical

2Recently, this statement has been criticized in ref. [12], where it was shown that, in a simple

Polonyi model, gravitino production is suppressed. Undoubtedly, as emphasized in refs. [7, 9, 10, 11],

the non-thermal gravitino production depends sensitively on the assumptions on the inflationary

model and its couplings to the supersymmetry-breaking sector. Non-thermal production of graviti-

nos is expected to be significant and to pose a cosmological problem if — after inflation — there is

a strong mixing between the inflaton sector and the supersymmetry-breaking sector (of the present

vacuum). As it will become clear in the present paper, this is often the case because, during the

first few inflaton oscillations when the value of the inflaton field is close to MPl, generic Planck

mass-suppressed interactions can give a large contribution to such mixing.
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non-linear system with many degrees of freedom. In the course of the subsequent

slow evolution, the power spectra propagate to larger momenta, eventually leading

to a fully thermalized state.

In supersymmetric and superstring theories coupling constants and masses ap-

pearing in the lagrangian have to be thought as functions of the dimensionless ratio

Φ/MPl. For instance, a generic coupling constant h is in fact a function of the

scalar moduli

h(Φ) = h

( 〈Φ〉
MPl

)(
1 + c

δΦ

MPl
+ · · ·

)
, (1.2)

where c is a coefficient usually of order unity and δΦ = Φ − 〈Φ〉. This expansion
introduces a gravitational coupling between the scalar moduli and the matter fields.

If the underlying theory is supersymmetric, similar couplings of the scalar field Φ

and its fermionic superpartner to the matter fields will arise in the superpotential or

in the Kähler potential.

Since moduli fields couple to any form of matter at least gravitationally, the

production is present in a wide variety of inflationary models which have a preheat-

ing stage. In general, the equation of motion for the (quantum) field δΦ during

preheating is

2δΦ +m2 δΦ =
∑
i

hiJi , (1.3)

where the currents Ji are functions of the (classical) fields created at preheating and

have interaction vertices parametrized by the coupling constants hi. In a cosmologi-

cal setting particle creation in a time-varying classical background is usually caused

by the time dependence of the effective mass of the field (consider, for instance,

parametric resonance or gravitational creation of particles). As a result, particles

are created in a squeezed state. On the contrary, moduli are created by a non-zero

current Ji. During second stage of preheating, when rescattering becomes fully ef-

ficient, Ji can be considered as a classical current and therefore moduli are created

as coherent states. During the first parametric resonance stage of preheating, the

current can be represented as Ji ∝ φn0δφ, where φ0 is zero mode of the inflaton and

n is model-dependent number. At this stage creation of moduli can be considered

as oscillations of the field δφ into moduli quanta, analogous to oscillations in K-

meson system, or neutrino oscillations. From a quantum mechanical point of view,

this production mechanism is novel and differs from the more traditionally stud-

ied generation mechanism of squeezed states. Furthermore, the moduli production

does not depend upon the particular properties of the modulus unlike the gravitino

production [7, 9, 10, 11] and it is true both for scalar and fermionic moduli.

In this paper we perform a calculation of moduli production during the preheat-

ing stage in various inflationary models. In section 2 we consider the cases of chaotic

inflation with quartic and quadratic inflaton potentials, with and without couplings

of the inflaton to a new scalar field X. The case of hybrid inflation is discussed
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in section 3, while section 4 contains a study of the production at preheating of

modulinos, light fermions with only gravitational-strength couplings. In section 5 we

summarize our results.

2. Moduli production at preheating in chaotic inflation

Let us first consider a simple model of chaotic inflation with quartic potential V (φ) =
λ
4
φ4. As discussed in section 1, we expect a generic coupling of the scalar moduli

quanta δΦ with the inflaton field φ of the form λJδΦ, where J ≡ cφ4/(4MPl). Let

us denote the amplitude of the oscillating inflaton field as φ0, while the frequency of

the oscillations is ∼ √λφ0, where φ0 is the zero-momentum mode of φ.
In this model fluctuations of the inflaton field do not grow during chaotization

(they actually decrease due to the redshift) so the most efficient production of moduli

fields take place at the end of the resonance phase. As we noted, one can describe

the states we are considering either as a collection of interacting classical waves or as

a collection of particles in modes with large occupation numbers. Therefore at late

times it is possible to treat the system classically and to solve the relevant equations

of motion on a lattice. The initial conditions for the classical problem are found

solving the preceding quantum evolution by means of the appropriate Bogolyubov

transformations (for more details see ref. [14]).

The results of the numerical integration on a 1283 lattice for λ = 10−12 are
summarized in figure 1, where we plot the values of 〈φ2〉, 〈Φ2〉 and of the inflaton
zero mode squared φ20 as a function of the conformal time [14] and in units M

2
Pl. The

field variance is given by 〈φ2〉 = [(2π)3V]−1 ∫ d3kφ2k, where V is the volume and φk
is the Fourier k-mode of the field φ. Here and in the following we have taken c = 1.

Time and particle momenta are given in units of
√
λφ0(0), where φ0(0) is the initial

value of the zero inflaton mode at the end of inflation. The time t = 0, when inflation

ends, is chosen as the moment of the first extremum of φ(t). The maximum value

of 〈φ2〉 is achieved at the time tr, which marks the end of the resonance phase, and,
as shown in figure 1 is about 10−7 M2

Pl, corresponding to 〈Φ2〉 ∼ 10−15 M2
Pl. At the

same time the zero mode is about φ0(tr) ∼ 10−3 MPl.
We will now present some analytical estimates which approximately reproduce

the numerical results of figure 1. To obtain the intensity of the moduli gravitational

production which accompanies the creation and annihilation of the fluctuations gen-

erated during preheating, we first express the solution of the modulus equation of

motion in terms of the retarded Green function

Φ(x) = Φin(x) + λ

∫
d4x′Gret(x− x′)J(x′) . (2.1)

Here Φin is the initial configuration at time t = 0 and the retarded Green function is
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Figure 1: The variances of the inflaton and the moduli fields in units of M2Pl in a model

with inflaton potential V = λ
4φ
4 and moduli interaction cλφ4δΦ/(4MPl), with λ = 10

−12

and c = 1. The dashed line shows the amplitude square of the inflaton field oscillations in

the same units.

given by

Gret(x− x′) = θ(t− t′)
∫

d3k

(2π)3
sinωk(t− t′)

ωk
ei
~k·~x . (2.2)

In the case under consideration, the source term is given by J = cφ4/(4MPl). Ex-

panding the fields in Fourier modes, performing the integral over spatial coordinates,

and taking φ0 � δφk (justified by the numerical results of figure 1), we obtain

Φk(t) =
cλ

MPl

∫ t

0

dt′
sin [ωk(t− t′)]

ωk
φ30(t

′) δφk(t′) , (2.3)

A crucial point is that the effect is linear in the inflaton fluctuations δφk. There-

fore, the phenomenon of moduli production is due to the oscillations (similar to

oscillations of neutrino species in a medium) of the inflaton quanta into moduli in

presence of the inflaton background φ0, rather than to real rescatterings. From a

pure quantum mechanical point of view, scalar moduli are generated as coherent

states and not as squeezed states as in the usual parametric resonance.

The fluctuations δφk grow exponentially during the resonance phase as e
µt where

2µ ' 0.07√λφ0(0) [14] and φ0(0) ' 0.3 MPl is the initial value of the inflaton field
at the end of inflation. Therefore the integral in eq. (2.3) can be approximately

evaluated by assuming that the exponential determines the full time dependence
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of the integrand. Then we obtain that the maximum value of the variance of the

modulus field, achieved at the end of the resonance phase, is given by

〈Φ2〉 ' c2λ2 φ60(tr) 〈φ2〉
ω2k(tr)µ

2M2
Pl

' 104c2φ
4
0(tr)

M4
Pl

〈φ2〉 . (2.4)

Here we have used ωk(tr) ∼
√
λφ0(tr) as the typical frequency at the end of the

resonance phase. Taking from figure 1 the values φ0 ∼ 10−3MPl and 〈φ2〉 ∼ 10−7M2
Pl

at t = tr, eq. (2.4) gives 〈Φ2〉 ∼ c210−15M2
Pl, in very good agreement with the

numerical result. Notice that the dependence on λ dropped out from eq. (2.4).

Our numerical calculation confirms that the maximum of 〈Φ2〉 is independent of the
coupling λ and it scales quadratically with c.

Since it is a good approximation to assume that the dominant particle production

occurs around the time tr, we find

nΦ ∼ ωk(tr)〈Φ2〉 , and nφ ∼ ωk(tr)〈φ2〉 . (2.5)

Using eq. (2.4) we obtain

nΦ
nφ
∼ 10−8c2

[
φ0(tr)

10−3MPl

]4
(2.6)

at the end of the resonance phase.

The ratio of the number density of moduli in units of the entropy density s ∼
ρ3/4 ∼ λ3/4φ30(tr) is given by

nΦ

s
∼ 10−6c2

(
10−13

λ

)1/4(
φ20(tr)

10−6M2
Pl

)( 〈φ2〉
10−7M2

Pl

)
. (2.7)

For λ = 10−13 (as fixed by the COBE normalization), this results contradicts the
bound (1.1) by about six orders of magnitude (for c of order unity) when the energy

density in the scalar field is transferred to the energy density of a hot gas of relativistic

particles. Notice that the ratio nΦ/s does not depend on the time of thermalization,

because both nΦ and V
3/4 vary with the scale factor a as a−3.

In this calculation (and throughout all this paper) we have made the implicit

hypothesis that the moduli fields are light during the preheating stage. However,

the same generic expansion in eq. (1.2) is expected to provide the moduli fields with

a mass of the order of the Hubble rate H during the preheating stage. Consider

the simple model of chaotic inflation with potential V (φ) = λ
4
φ4. The expansion

of the coupling λ(Φ/MPl) at the quadratic order in Φ/MPl leads to a term in the

lagrangian of the form ∼ λ(δΦ/MPl)
2φ4 ∝ H2(δΦ)2. Nevertheless, our numerical

and analytical estimates are not affected by treating the moduli as light states. This

is because moduli fields are generically produced with frequencies ω much larger than

the Hubble rate (ω ∼ √λφ0(tr)� H(tr) in the chaotic model λφ
4) and kinematically
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Figure 2: The variances of the inflaton, X and moduli fields in units of M2Pl in a model

with potential V = λ
4φ
4+ g2

2 φ
2X2 and moduli interaction cλφ4δΦ/(4MPl), with λ = 10

−12,
q ≡ g2/(4λ) = 25 and c = 1. The dashed line shows the amplitude square of the inflaton
field oscillations in the same units.

they may be regarded as massless. This does not come as a surprise since it is known

that superheavy particles may be easily generated at preheating [18].

A simple variation of the model considered so far is the one in which a massless

inflaton field is coupled to another field X, V = 1
4
λφ4 + 1

2
g2φ2X2. The oscillating

field φ amplifies fluctuations of the field X via parametric resonance. The strength

of the resonance can be parametrized by the q-parameter q ≡ g2/4λ. Fluctuations

of the inflaton field grow rapidly because of the back-reaction and the energy of the

inflaton zero mode is quickly released into quanta of theX-field and the inflaton field.

For q = 25, we numerically find that the maximum value of 〈φ2〉 is about 5 ×
10−7M2

Pl while 〈X2〉 is about one order of magnitude smaller, see figure 2. The
resonance stage ends when φ20(tr) ∼ 5 × 10−6 M2

Pl � 〈φ2〉. If we again restrict
ourselves to the interaction of the form cλδΦφ4/(4MPl), moduli are produced through

the scatterings of the inflaton quanta and — at the end of the resonance stage —

〈Φ2〉 ∼ 10−13 M2
Pl.

The analytic estimate in eq. (2.4) well reproduces this numerical result for 〈Φ2〉.
The corresponding ratio nΦ/s, derived from eq. (2.7), violates the bound (1.1) by

seven orders of magnitude for c = 1.

Another option is to have a coupling of the form g2δΦφ2X2/(2MPl). In such a

case the production of moduli cannot take place through oscillations at the initial

7
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Figure 3: The variances of the inflaton,X and moduli fields in units ofM2Pl in a model with

potential V = λ
4φ
4 + g2

2 φ
2X2 and moduli interaction g2φ2X2δΦ/(2MPl), with λ = 10

−12,
q ≡ g2/(4λ) = 25. The dashed line shows the amplitude square of the inflaton field
oscillations in the same units.

stage of the parametric resonance, but only via inverse decays of already created

fluctuations of the X field. This is equivalent to say that the effect in the Green

function method is not linear in the fluctuations, but at most quadratic. However,

moduli are produced at the initial stage of the semiclassical thermalization and the

result is not much different from the previous case, see figure 3.

The main difference during the evolution arises because the effective couplings

in the system depend upon the avereage value of the fluctuations of the moduli field.

This changes effectively the parameter q and the time development of the resonance

which is very sensitive to any change of q.

We can now use the Green-function method to give an estimate which approx-

imately reproduces the results found in figure 3. The Fourier modes of the moduli

fields at time t can be written as

Φk(t) =
cg2

2MPl

∫ t

0

dt′
sin [ωk(t− t′)]

ωk
φ20(t

′)
∫
d3pXp(t

′)Xk−p(t′) . (2.8)

As expected, the moduli Fourier modes are quadratic in the fluctuations of the X

field. We can perform the time integral by assuming that the leading time depen-

dence comes from the exponential growth of Xp, which is proportional to e
µX t, with

µX ' 0.1
√
λφ0(0). Since the momentum distribution of the X fluctuations is sharply

8
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Figure 4: Particle number densities of X, inflaton and moduli fields, from top to bottom,

at τ = 180 in the comoving reference frame, in units of
√
λφ0(0), for the same model

studied in figure 3.

peaked, the integral over k of the square of eq. (2.8) at the end of the resonance gives

〈Φ2〉 '
[
g2φ20(tr)〈X2〉
4MPlµXωk(tr)

]2
' 103q2φ

2
0(tr)〈X2〉2
M4
Pl

. (2.9)

Here we have used ωk ∼
√
λφ0 as the typical frequency. From figure 3 we gather

that, at the maximum, 〈X2〉 ' 10−7M2
Pl, corresponding to φ

2
0(tr) ' 10−5M2

Pl. For

q = 25, eq. (2.9) gives 〈Φ2〉 ' 10−13M2
Pl, in fair agreement with our numerical results.

In all cases we also have calculated the particle occupation numbers to make sure

that the lattice spacing and the integration box are suitably chosen and the relevant

particle momenta are well represented. Particle number densities in the comoving

reference frame are shown in figure 4 for the same model which is represented in

figure 3 and at the time τ = 180. Let us also note that the production of moduli

during the preheating stage should be analyzed by letting the moduli be coupled

to the matter fields in all the interaction terms. Therefore, our estimates provide a

lower limit on the abundance of moduli states.

Reassured by the capability of reproducing the numerical results by analytical

means, we have also considered the quadratic inflaton model with quartic coupling

to another field X, V = 1
2
m2φ2 + 1

2
g2φ2X2. The q-parameter is q = g2φ20(0)/4m

2.

It is also useful to introduce the redshifted resonance parameter at the end of the

resonance stage qr = q(φ0(tr)/φ0(0))
2. Parametric resonance can fully develop in

9
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an expanding Universe if qr & 1 [16]. Resonant production is most effective for
fluctuations of fields which couple not too weakly but also not too strongly, those

with qr ∼ 1. For qr � 1, the maximal size of X fluctuations is suppressed by

non-linear effects [16, 17]. The zero mode rapidly drops at the end of the chao-

tization stage and all its energy is transferred to fluctuations [17]; the variance of

the inflaton field is much larger than the value of the zero mode at the chaotiza-

tion phase.

We now want to perform an analytical estimate of the number density of mod-

uli fields for moderate qr. If the mass term has a dependence on the modulus field

Φ, m2 = m2(Φ/MPl), this will introduce a trilinear coupling m
2φ2δΦ/(2MPl) be-

tween the quanta of the modulus and the inflaton quanta. In such a case, the

Green-function method previously illustrated gives a modulus variance at the end of

resonance equal to

〈Φ2〉 ' m4〈φ2〉2
16ω2(tr)µ2M

2
Pl

' 〈φ
2〉2

M2
Pl

. (2.10)

Here we have taken ω ∼ m as the typical energy and µ ∼ 0.2 m [13]. For qr ∼ 1,
which corresponds to q ∼ 104 [16], the inflaton completely decays into fluctuations
during the chaotization phase; at the end of it φ20 ∼ 〈φ2〉 ∼ nφ/m ∼ 10−6M2

Pl.

Therefore, from eq. (2.10), we obtain nΦ/nφ ∼ 10−6.
Notice that we could obtain the same estimate using the Boltzmann equation

for the number density nΦ:

ṅΦ + 3HnΦ ∼ m4

ω4
n2φ

M2
Pl

. (2.11)

Assuming again ω ∼ m and knowing that nφ grows exponentially with rate 2µ, we

get nΦ/nφ ∼ nφ/(µ M
2
Pl).

At the end of the reheating stage, the energy density stored in the inflaton is

converted into a relativistic thermal bath with temperature Tr ∼ (mnφ)1/4. The
number density of moduli per entropy density will then be

nΦ

s
∼ nΦ

nφ

Tr

m
∼ 10−6Tr

m
. (2.12)

Since the COBE normalization gives m ∼ 1013GeV, the upper bound on the reheat-
ing temperature becomes

Tr . 107GeV . (2.13)

If the coupling of the modulus is g2δΦφ2X2/(2MPl), the Green function method

gives

〈Φ2〉 '
[
g2φ20(tr)〈X2〉
4MPlµXω(tr)

]2
'
[
qr〈X2〉
0.2MPl

]2
. (2.14)

Here we have assumed ω ∼ m and µX ∼ 0.2m. Repeating the same argument used
above, we find nΦ/s ∼ 107q2r〈X2〉2Tr/(M4

Plm). Since at the end of the resonance

10
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phase qr ∼ 1, we find that the bound 1.1 gives a limit on the reheating temperature
of 105GeV if — for instance — we use q = 106 and the maximum value of 〈X2〉 ∼
10−6M2

Pl [17].

So far we have always considered moduli couplings arising from the scalar poten-

tial, but similar results are also obtained when the moduli couplings are derived from

non-minimal kinetic terms. For instance, from an interaction of the form δΦφ̇2/MPl
we estimate

〈Φ2〉 ∼ φ̇20〈φ̇2〉
M2
Plω

4
∼ φ20〈φ2〉

M2
Pl

. (2.15)

In the case of chaotic inflation with quadratic potential, eq. (2.15) is equivalent to

eq. (2.10), valid for moduli coupled to the inflaton mass term.

3. Moduli production at preheating in hybrid inflation

In this section we study the moduli production during the preheating phase following

a period of hybrid inflation [19]. This scenario involves two scalar fields, the inflaton

field φ, and the symmetry breaking field σ, and different mass scales and couplings.

During inflation, the inflaton field φ rolls down along a flat potential while the Higgs

field σ is stuck at the origin providing the vacuum energy density driving inflation.

However, when φ gets smaller than a critical value φc, both fields roll down very

quickly towards their present minima, completing the inflationary phase.

We take the simplest hybrid inflation potential as suggested by Linde [19]. 3

V (φ, σ) =
λ

4

(
v2 − σ2)2 + 1

2
m2φφ

2 +
1

2
g2φ2σ2 . (3.1)

This potential has a valley of minima at σ = 0 for φ2 > φ2c ≡ λ
g2
v2. Most of the

inflation occurs while φ is slowly rolling down from its initial value to φc. During

this phase σ = 0 and the potential reduces to V = λ
4
v4 + 1

2
m2φφ

2. For φ < φc, the

concavity of the potential in the σ direction changes so that the φ-axis is a ridge of

unstable maxima.

Inflation ends because of the growth of quantum fluctuations in σ. For φ > φc,

these are quickly damped out, but beneath φc they cause the fields to fall very quickly

to global minima at φ = 0 and σ2 = v2. There, they will execute damped oscillations.

The results of numerical integration for the case v = 10−3MPl are shown in
figure 5, where we have supposed that the modulus is coupled to the inflaton field

and the Higgs field via the coupling g2Φφ2σ2/(2MPl). In hybrid models the coupling

constant λ does not have to obey the same restrictions as in the case of chaotic

inflation. However, for the numerical integration we have chosen a rather low value,

λ = 10−8. This is because the particle number in the inflaton or Higgs excitations
3For other hybrid inflation models, including those motivated by supersymmetry, see ref. [4].
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Figure 5: Variances of the inflaton, Higgs and moduli fields in units of v2 in the hybrid

model with g2/λ = 10, λ = 10−8 and v = 10−3MPl. The moduli are coupled according to
the g2φ2X2Φ/(2MPl) interaction.

at the beginning of chaotization is n(k) ∼ 1/λ and to be able to treat moduli fields
classically, we need occupation numbers nΦ � 1. Since nΦ � n(k), we need a rather

small value of λ. For the run presented in figure 5 we have chosen g2/λ = 10.

The initial conditions were chosen in such a way that Higgs oscillations occur

only around one of the minima, and domain creation and other effects leading to

complete chaotisation during the first oscillation (see ref. [20]) can be disregarded.

Our numerical findings show that the variance of the moduli fields does depend

only upon the ratio g2/λ.

The Green function method tells us that

〈Φ2〉 ' g4

M2
Pl

〈φ2〉2
ω2φ

〈σ2〉2
ω2σ
' g2

λ

〈φ2〉2
M2
Pl

, (3.2)

since the typical frequencies are given by ω2φ ∼ λ〈σ〉2 and ω2σ ∼ g2〈σ〉2. Using the
same values of the couplings and mass scales adopted in figure 5 and reading from

there the variance of the inflaton field 〈φ2〉 ∼ 10−2v2, we get 〈Φ2〉 ∼ 10−9v2, in fair
agreement with our numerical results. Notice that the numerical values of the inflaton

and Higgs variances at their maximum are well reproduced by 〈φ2〉 ∼ (λ/g2)v2 and
〈σ2〉 ∼ v2. Using these values we estimate 〈Φ2〉 ∼ (λ/g2)(v4/M2

Pl), in good agreement

with our numerical results and with the fact that these results depend only upon the

ratio g2/λ.

12



J
H
E
P
0
6
(
2
0
0
1
)
0
2
0

If the final reheating takes place via decay of the lightest particles in the system,

i.e. the Higgs particles with mass squared λv2, the final moduli number density-to-

entropy-ratio is given by
nΦ

s
∼ nΦ

nσ

Tr√
λv

(3.3)

which implies

Tr .
√
λ

(
10−3 MPl

v

)(
g2/λ

10

)
1011GeV . (3.4)

This result illustrates how, in certain ranges of parameters, the coherent production

of moduli can become more dangerous than the generation of moduli via thermal

scatterings.

4. Modulino production at preheating

So far we have been considering the generation of scalar moduli during the preheating

stage. In this section we consider the production of the fermionic partners ψΦ of the

moduli fields, sometimes dubbed modulini. As for the scalar moduli, the modulini

are generically coupled to the matter fields through couplings suppressed by MPl.

Consider — for instance — the superpotential W =
√
λ
3
φ3 giving rise to the

inflaton potential V = λφ4. If the coupling λ is a function of Φ/MPl, where now Φ

has to be considered as a superfield, the lagrangian will contain the following coupling

√
λ

MPl
ψΦψφφ

2 , (4.1)

where have denoted with ψφ the inflatino, the fermionic partner of the inflaton field.

We can again make use of the Green function method to obtain the Fourier

component of ψΦ. Using the retarded Green function for a fermionic field, we find

ψΦ(k, t) =

√
λ

MPl

∫ t

0

dt′
{
−iγ0 sin [ωk(t− t′)]− ~γ · ~k

ωk
cos [ωk(t− t′)]

}
×

×φ20(t′) ψφ(k, t′) . (4.2)

We can then approximately estimate the quantity 〈ψΦψΦ〉 as

〈ψΦψΦ〉 '
λ

M2
Pl

φ40
ω2
〈ψφψφ〉 . (4.3)

One can now use as a guide the recent results obtained in the theory of generation of

Dirac fermions during and after inflation [21]. During the first inflaton oscillations,

the Fermi distribution function of the inflatini is rapidly saturated up to some max-

imum value of the momentum k, i.e. nk ' 1 for k . kmax and it is zero otherwise.

The resulting number density is therefore nk ∼ k3max. The value of kmax is expected

13
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to be roughly of the order of the inverse of the time-scale needed for the change of

the mass of the inflatini. In the model under consideration, such a mass changes by

an amount
√
λφ0 in a time scale (

√
λφ0)

−1 and one expects kmax ∼
√
λφ0. Therefore

〈ψφψφ〉 ∼ λ3/2φ30(0) , (4.4)

where we have used the fact that most of the fermion production takes place during

the first oscillation. Under these circumstances, one can also assume that the number

density of inflatini nψφ and modulini nψΦ is well measured by 〈ψφψφ〉 and 〈ψΦψΦ〉,
respectively. This gives

nψΦ
nψφ
∼ φ20(0)

M2
Pl

, (4.5)

where we have taken ω ∼ kmax in eq. (4.3).

Finally, the ratio of the number density of modulini in units of the entropy

density s ∼ ρ3/4 ∼ λ3/4φ30 is given by

nψΦ
s
∼
(

λ

10−13

)3/4(
φ0(0)

0.3 M2
Pl

)2
10−11 . (4.6)

This result will contradict the bound (1.1) by about an order of magnitude when the

energy density in the scalar field is transferred to the energy density of a hot gas of

relativistic particles.

Similar considerations apply to the inflaton model with quadratic potential. Sup-

pose there is a coupling of the form mφ2Φ/MPl in the superpotential. This gives rise

in the lagrangian to a coupling of the modulini with the fermionic partners of the

inflaton of the form m
MPl

ψΦψφφ. Using the Green function method we again obtain

nψΦ ∼ nψφ(φ0(0)/MPl)
2. This gives nψΦ/nψφ ∼ (m/MPl)2 ∼ 10−12 and the gener-

ation of dangerous relics is not large enough to provide a strong constraint on the

reheating temperature.

In the case of the hybrid model though, the bound is more restrictive. In

supersymmetric hybrid models, the coupling constants λ and g are related, and

typically one finds λ/g2 ∼ 1 [4]. The COBE normalization implies that typically
v ' 5 × 1015GeV. During the oscillations of the Higgs and the inflaton field, one
expects that the number density of “Higgsini ” ψσ and inflatini ψφ is of the or-

der of the number density of Higgs particles excited during the preheating phase,

nψσ ∼ nψφ ∼ nσ ∼ λ3/2v3. If the modulus couples to the Higgs superfield via the

interaction
√
λ(Φ/MPl)σ

2φ in the superpotential, the number density of modulini is

expected to be
nψΦ
nσ
∼
(

v

MPl

)2
. (4.7)

The corresponding bound on the reheating temperature can be obtained using the

same arguments which led us to eq. (3.4); we find Tr .
√
λ (5×1015GeV/v) 1010GeV.
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5. Conclusions

In this paper we have investigated the production of scalar and fermionic moduli

fields which occurs during the preheating stage after inflation. If produced with too

large abundances, the late decays of these relics may jeopardize the successful pre-

dictions of standard big-bang nucleosynthesis. Since the moduli couple to any form

of matter at least gravitationally, their generation is unescapable in the large class of

inflationary models which have a preheating stage. They are generated as coherent

states initially. From this point of view, the production mechanism of moduli differs

from the generation mechanism of squeezed states during the parametric resonance

which has been studied in recent years. We have shown that moduli are efficiently

produced during the preheating stage. The corresponding upper bound on the re-

heating temperature is model dependent and sensitive to the details of the stage

of thermalization following the period of parametric resonance. It is often tighter

than the bound of 109GeV found considering the generation of moduli via thermal

scatterings during reheating.
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