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Abstract

A novel technique is proposed to study systematic errors on jet reconstruction in
W physics measurements at LEP2 with high statistical precision. The method is
based on the emulation of W pair events using Mixed Lorentz Boosted Z0 events.
The scope and merits of the method and its statistical accuracy are discussed in the
context of the DELPHI W mass measurement in the fully hadronic channel. The
numbers presented are preliminary in the sense that they do not constitute the final
DELPHI systematic errors.
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1 Introduction

The measurement of the W boson mass is one of the major topics in LEP2 research.
It provides a precision test of the Standard Model and a way to further constrain the
predictions for the Higgs boson mass. With a final expected statistical error on the W
mass of 20 MeV/c2 for the four LEP experiments combined, it is very important to control
systematic uncertainties to a level of 10 MeV/c2 or -where possible- even lower. This paper
focuses on systematic errors related to jet reconstruction, which have proven to be some
of the most challenging systematic errors at the moment. Typical errors quoted for the W
mass analyses of the four LEP collaborations at a centre-of-mass energy of 183 GeV [1-5],
vary between 20 and 60 MeV/c2 for jet fragmentation, and between 20 and 35 MeV/c2

for detector effects.
Our knowledge about jet reconstruction errors is almost entirely based on Z0 events.

Events recorded at LEP1, or during the calibration runs at the Z0 peak energy in between
the high energy runs in 1997, 1998 and 1999 are used as ’template’ to tune and check the
detector alignment and calibration, efficiency and resolution, and to test and tune models
describing jet fragmentation. The same models and detector simulation are then ported
to the description of W pair events.

The conventional way to estimate errors on this description follows a similar approach:
a ’realistic’ uncertainty in the simulation of Z0 data is derived from a comparison between
Z0 data and Monte Carlo and translated into a realistic ’shaking’ of the high energy
WW simulation (detuning fragmentation parameters, using different models or varying
the description of the detector, etc.). The shift in the W mass obtained from the Monte
Carlo sample is used as an estimate for this source of systematic error. This is repeated for
different possible sources of shaking, and the systematic errors are added in quadrature or
somehow combined taking into account the correlations between the different estimates.
The limitations to this approach are:

• Each of the individual systematic errors is typically close to statistical sensitivity.
This means that we often have to include statistical errors on the individual errors
in our estimate of the systematic error.

• To take into account a ’complete’ set of systematic effects, a considerable number
of different shifts has to be determined and combined.

• It is not always clear how different estimates of systematic effects are correlated.
The question often is how complementary and how realistic different shakings are.

This necessarily leads to conservative estimates of the systematic error.
The philosophy of the Mixed Lorentz Boosted Z0 (MLBZ) method presented in this

paper is to use Z0 events from data and Monte Carlo simulation (MC) to emulate WW
events first, and then do a comparison of the reconstructed W mass, applying the analysis
directly on the MLBZ events (see figure 1). In this way a large subset of all possible
detector effects and fragmentation model imperfections is probed at once, following a
well-defined procedure that simplifies the intricate task of composing a complete, realistic
list of effects and correctly handling the internal correlations to good approximation. It
should be stressed already here, however, that not all effects are covered. A breakdown
of the effects that are considered to be covered by the MLBZ method is given in table 2
and discussed further in section 4.1.
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The effective statistical precision on a systematic shift in the W mass obtained with the
MLBZ method with the example analysis described in this paper is around 300 MeV/c2

per generated or detected Z0 event 1, compared to a typical mass resolution of 3 GeV/c2

per generated WW MC event 2 used in the conventional approach.
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Figure 1: Conventional approach to estimate systematic errors vs. MLBZ

The aim of this paper is not to give definitive answers to all questions related to this
new method, but merely to give a comprehensive description of a first implementation
and present the first results. Hopefully this will serve as a basis for a fruitful discussion
about this new and potentially very useful technique.

Section 2 gives a description of the MLBZ method itself and appendix A the technique
used to determine the statistical precision. In section 3 the first results are presented,
followed by a discussion of the possible limitations of the method in section 4. The final
two sections contain an outlook and conclusions.

2 Description of the MLBZ method

The general outline of the MLBZ method 3 is as follows:

1. Select hadronic Z0 events taken during the Z0 calibration runs

1A better resolution can be obtained by increasing the number of mixed pairs per Z0 event (i.e.
increasing the sample size) or the number of boosts for each mixed Z0 event pair. For the analysis
described here available CPU time was a limiting factor.

2The statistical resolution of 3 GeV/c2 is a convolution of the Breit Wigner width of the W (≈2
GeV/c2) and the average resolution per event (≈2 GeV/c2).

3Here only the emulation of fully hadronic WW events is mentioned. See section 5.1 for other channels.
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2. Superimpose the measured 4-momenta of the particles of two Z0 bosons after Lorentz
boosting them in opposite direction with a boost typical for W bosons in the high
energy run, thus emulating the topology of a fully hadronic WW event.

3. To fully exploit the information in the calibration data, Z0 events should be used
more than once by mixing them more than once and using more than one (isotrop-
ically distributed) boost direction per mixed event pair.

4. Apply the WW analysis of which the systematic effects are to be studied to the
MLBZ events thus created.

5. Do this both on Z0 events from data and from MC simulation and study the observed
differences to draw conclusions about systematic errors.

2.1 Details of event selection and MLBZ procedure

For this paper the DELPHI W mass measurement at 183 GeV [3] in the fully hadronic
channel was used as an example. The Z0 events were mixed and Lorentz boosted in the
following way:

1. The Z0 events were collected at the beginning of 1997 with a beam energy of Ebeam(t),
varying slightly as a function of time t. It is not necessary to know Ebeam(t) to a
high precision. Instead a fixed beam energy of EbZ0 = 45.625 GeV was assumed.

2. On applying the runquality selection as used in [3], 1.6 pb−1 of Z0 data remained.

3. The Z0 candidates were selected with hadronic cuts giving a purity exceeding 99%:

• at least 8 charged particles

• carrying at least 15 GeV total energy

• of which at least 3 GeV per hemisphere

The measured angular distribution of jets in W+W− events is almost uniform (see
figure 2), while Z0 jets are distributed according to 1 + (cosθ)2, where cosθ is the
polar angle with the LEP beam. In order to have the same angular distribution of
jets in the Z0 candidates and the W+W− events, Z0 events were randomly discarded
according to the value of the polar angle of their thrust axis. 31557 events were
selected in 157 samples of 201 events each, using approximately 94% of the data
available. The sample size of 201 events was chosen as a compromise to have rea-
sonable statistics but still be able to perform the full analysis (as described below)
for one sample in a single 8 CPU-hour batch job. From Pythia/Jetset Z0 MC 161
samples of the same size were selected. Some distributions of Z0 event variables for
data and MC are shown in figure 3.

4. The 4-momenta 4 of the measured particles in the Z0 event were Lorentz boosted
in a single random direction with a boost given by γboson =

√
shigh

2mW
, where

√
shigh =

182.7 GeV is an approximation to the LEP centre-of-mass energy of the high energy
data (at 183 GeV) and mW = 80.35 GeV/c2 is a nominal value of the W mass.

4Assuming pion masses for charged particles and photon masses for neutrals.
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Figure 2: The distribution of the measured jets in simulated WW events as a function
of the cosine of the polar angle with the beam, with arbitrary normalisation for different
values of the centre-of-mass energy. The thickness of the line indicates the statistical
uncertainty.

5. Another Z0 candidate was then treated in the same way except the opposite direction
of the boost was chosen. The particles of both boosted Z0 events were mixed and a
new event created. Each event was used 400 times by mixing it k times (k different
isotropically distributed boost directions) with every other event from the same
sample of 201 events. k was chosen to be 2, giving 40200 MLBZ events per sample.

6. These MLBZ events have nearly the same kinematical properties as W+W− events.
The main differences come from the overall energy scale and Initial State Radiation
(ISR). The MLBZ events were then treated as W+W− events and a fitted mass
msim

MLBZ extracted from simulated Z0s and mdata
MLBZ from the Z0 data, using the 183 GeV

W mass analysis [3], assuming a centre-of-mass energy
√

sMLBZ = 4γbosonEbZ0 in the
constrained fits.

7. The difference of the fitted mass with respect to 2EbZ0 is interpreted as a measure
for the experimental bias at the scale of 2EbZ0 , the approximated Z0 mass. Thanks
to the use of relative errors on the jet energies in the constrained fit [6], the fit is
largely invariant under a scale transformation of all energies and masses. Therefore
the measured experimental bias is related to the experimental bias at the scale of
the W mass by a factor mW

2EbZ0
≈ mW

mZ
.

8. If the simulation of jet reconstruction in W+W− events is affected by systematic
errors most of these will be the same for simulated MLBZ events. Thus the difference
between the fitted mass on MLBZ data and MLBZ simulation, rescaled to the W
mass scale,

∆mMLBZ
W =

(
mdata

MLBZ −msim
MLBZ

)
· mW

mZ0

(1)

is a measure of the systematic error from non-perfect simulation on the W mass.
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This measure can be improved by taking into account the difference in flavour com-
position between Z0 and W boson decay products, as will be discussed in section 3.3.
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Figure 3: Comparison between 1997 data (the points with error bars) and MC (the filled
histogram) for different event variables of the selected Z0 events. The total Z0 multiplicity
includes both charged and neutral particles. The MC plots are normalised to the number
of data events.

2.2 Statistical accuracy

When applying the standard analysis to the MLBZ events as described in the previous
subsection, the statistical error on the measurement can not be determined in the usual
way assuming that events are uncorrelated observations of the quantity that is to be
measured. The Z0 events are independent, but the MLBZ events are not.

Therefore a resampling technique know as the ’Jackknife’ method [7, 8, 9, 10] was
used. A full description of its implementation is given in appendix A. As the data was
treated in such a way that many samples of 201 events are independent, a comparison
with the traditional RMS estimate can serve as a cross-check of the Jackknife method at
the level of the measured MLBZ mass per sample. This comparison is shown in table 1
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and confirms that the Jackknife procedure used estimates the statistical errors correctly
to within 10%.

Z0 data Z0 simulation
number of samples nsamp 157 161
uncertainty on mass per sample (MeV/c2)

average Jackknife estimate 〈σMLBZ
sample〉 23.7± 0.2 22.3± 0.2

cross-check: RMS of sample masses 22.0± 1.3 20.3± 1.1
all samples combined; uncertainty on mass (MeV/c2)

Jackknife estimate σMLBZ
all 1.9 1.8

cross-check: RMS of samples /
√

nsamp 1.8 1.6

Table 1: Comparison of different estimates of the statistical uncertainty on the mass
measured with MLBZ events.

For the example analysis discussed here the statistical precision on the fitted MLBZ
mass turns out to be 1/

√
nZ0 · 300 MeV/c2 at the scale of the W mass, where nZ0 is the

number of selected Z0 events. This allows a precise determination of various effects to a
precision of typically order of 2 MeV/c2 or better.

3 Results

In this section the expected experimental bias on the W mass is compared to the observed
bias in data and simulation, and the results are briefly discussed.

3.1 Expected reconstruction bias

The – average – reconstructed W mass obtained through kinematical reconstruction is
not equal to the average ’true’ or generated W mass. The difference of the two will from
now on be called reconstruction bias:

brec = mreconstructed −m′true′ (2)

This bias is caused by a range of many more or less correlated effects. It is known from
MC studies that the following two dominating effects give the largest contribution to the
reconstruction bias:

• A positive bias due to ISR photons that are lost inside the beam pipe and not taken
into account in the kinematical fit. At 183 GeV this causes an average positive shift
of the order of 300 MeV/c2 on the reconstructed mass.

• A negative bias due to the imperfect reconstruction of jets, which smears the masses
preferably downwards. As will be shown later in this section this bias turns out to
be of the order of -200 MeV/c2 at 183 GeV.
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The treatment of ISR falls outside the scope of this paper, as its effects cannot be studied
with the MLBZ method, and will not be discussed further. The negative bias due to jet
misreconstruction, on the other hand, can be studied very well using MLBZs, and is the
main subject of this paper.

3.1.1 Reconstructing a boosted Z0

The origin of the negative reconstruction bias can already be demonstrated with the simple
case of a single boosted Z0. When a Z0 boson, produced at rest, decays hadronically and
is detected by the DELPHI detector, the main error on the measured direction and energy
of the jets is caused by missing particles. In this way

• on average the measured energy is 10-20 % lower than the Z0 boson mass

• when clustered in two jets, the jets are not exactly back-to-back which means that
the measured boson is moving in the laboratory frame with a ’measured’ velocity
(or boost) βmeas .

This means that the invariant mass of the detected particles is typically 10-20% smaller
than the ’true’ Z0 mass. When the Z0 boson is boosted with a certain boost βboson before
or after the measurement, the detected invariant mass will remain the same 5. This is
no longer true, however, when applying a constrained fit to improve the measurement
of the invariant mass beyond the detector resolution, irrespective of the specific analysis
technique that is used. The DELPHI convolution method [3, 6] gives a bias in the recon-
structed mass which is corrected for by calibration curves, while Monte Carlo reweighting
methods [2, 4, 5] automatically correct for the bias in the procedure using simulation.
The two methods behave very similar to deficiencies in the simulation, and are therefore
affected by systematics in a comparable way.
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Figure 4: The observed boost βobserved is a combination of the true boost of the boson
βboson and the mismeasurement of the event βmeas . The plot on the right shows the
distribution of βmeas in data and MC.

To approximate the effect of a constrained fit, all particle momenta in our boosted Z0

event are rescaled with a rescaling factor so that the total energy equals the ’expected’

5This is only perfectly true when the same particles are missed before and after the boost (uniformity of
the detector), and assuming that the lack of Lorentz invariance of other resolution effects like momentum
resolution on the reconstructed tracks is negligible.
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energy γbosonmZ0 , with γboson = 1/
√

1− β2
boson. In this overall rescaling procedure the

directions of the observed particle momenta and therefore the ratio |p|/E = βobserved

remain constant. The final observed invariant mass is then given by:

mfit =
Eobserved

γobserved

=
γbosonmZ0

γobserved

= γbosonmZ0

√
1− β2

observed (3)

which is thus fully determined by the observed boost γobserved or equivalently βobserved

which is the combination of the artificial boost βmeas due to the resolution of the detector
and the true boost βboson given to the boson (see figure 4). The following expressions for
γobserved can be derived:

γobserved = γbosonγmeas(1 + βbosonβmeascosθ) (4)

and substitution of γobserved in equation 3 yields

mfit =
mZ0

γmeas(1 + βbosonβmeascosθ)
(5)

where θ is the angle between the two boosts in the laboratory frame. For two MC events
the distribution of measured masses is shown in figure 5, applying 100,000 boosts corre-
sponding to different centre-of-mass energies in random directions (uniformly distributed
in the laboratory frame). The peculiar ’box’ shape is easily understood from equation 5,
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Figure 5: For two MC Z0 events the distribution of rescaled masses is shown after boosting
each event a 100,000 times in random directions. This is done for a boost corresponding
to a WW event at

√
s=161 GeV (left) and

√
s=183 GeV (right). One event is measured

with large βmeas (shaded histogram); the other with small βmeas (open histogram).

bearing in mind that ~βboson has a uniform angular distribution, corresponding to a flat
distribution in cosθ.

For a perfectly measured event βmeas = 0 and γmeas = 1 so that equation 5 reduces to
mfit = mZ0 . In other cases the average bias mfit − mZ0 and the RMS of this bias can be
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calculated analytically:

mfit −mZ0 =
mZ0

2αγmeas

ln(
1 + α

1− α
)−mZ0 = mZ0

[
(
β2

boson

3
− 1

2
)β2

meas +O(β4
meas)

]
(6)

and

σ2
mfit

=
m2

Z0

γ2
meas

[
1

1− α2
−

(
1

2α
ln

(
1 + α

1− α

))2
]

=
m2

Z0

γ2
meas

[
β2

boson

3
β2

meas +O(β4
meas)

]
(7)

where α = βmeasβboson.
These formulas are in good agreement with the plots shown in figure 6 generated by

boosting 500 Z0 events from MC 50,000 times each. They show an increasing negative
bias for increasing values of βmeas (corresponding to worse jet reconstruction), and they
also show that this effect becomes less pronounced for increasing values of the boson boost
βboson . When extracting information about jet reconstruction systematics, the interesting
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Figure 6: The bias (left) and error on the bias (right) as a function of the measurement
boost, compared to the analytical predictions up to O(β2

meas)

quantity to obtain from a Z0 event is the average bias; not the measured mass obtained
for a single boost. For a boost corresponding to 183 GeV, 400 boosts per Z0 event and a
typical value of mZ0β2

meas of 0.5 GeV (see figure 4) the average bias is -210 MeV, and the
relative precision per event on this bias is ≈50%. It can be seen from figure 4 that the
peak in the distribution of βmeas in data is shifted to slightly higher values compared to
simulation. The shift of the peak corresponds to an average shift in mZ0β2

meas of ≈ 0.05
GeV, which in turn would be equivalent to a systematic shift of -21 MeV on the rescaled
mZ0 mass.
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This simplified experiment is only an approximation of the full MLBZ analysis, as in
a real constrained fit the rescaling factor is not the same for all jets, and jet masses and
transverse errors on the jet momenta are taken into account. Furthermore additional sta-
tistical effects from the interaction of the two mixed events (e.g. jet clustering ambiguities)
and more realistic analysis details play a role.

3.1.2 Reconstructing a W pair event

It is evident that at WW production threshold, when the true jets of the W bosons are
strictly back-to-back, any imperfection in the mass reconstruction will lead to a negative
mass bias (analogous to the reconstruction of the Z0 bosons described previously). At a
centre-of-mass energy of 183 GeV, still a negative shift remains.

That the negative bias from jet reconstruction depends both on the W boost and on the
quality of the jet measurement can easily be checked using a simplified WW simulation.
In figure 7 the average bias is shown for 161 and 183 GeV, and jets generated as WW
events with Breit-Wigner but without ISR. The measurement errors where assumed to be
Gaussian according to the parameterisation as used in the fit of the 172 GeV analysis [6].
The transverse jet errors where multiplied with an additional factor X, and the bias
plotted as a function of this factor (see figure 7). For the most realistic value of X=1,
the bias at 183 GeV was found to be ≈ -200 MeV/c2, in agreement with the bias seen in
MLBZ events (see section 3.2).
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Figure 7: Bias as a function of a transverse jet error scaling factor in a simplified WW
simulation, for centre-of-mass energies of 161 and 183 GeV.

Again it is seen that the negative bias

• Is smaller for higher centre-of-mass energies (183 GeV compared to 161 GeV)

• Becomes larger when the jet reconstruction becomes worse.

3.2 Observed reconstruction bias

An interesting feature of the MLBZ method is that the mass bias can be studied as a
function of properties of the individual bosons, rather than the usual pairs of W bosons.
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Figure 8: Effective W mass bias as a function of the polar angle with the beam, for 1997
simulation (light shaded error band) and data (points with error bars).

It can be shown (see appendix A and B) that the MLBZ bias is a linear sum of the
reconstruction biases of the individual Z bosons:

bkl
MLBZ ≡

bk
Z + bl

Z

2
(8)

Hence one can use the relation

bi
rec =

〈bZ〉i + 〈bZ〉
2

(9)

to define an individual boson bias 〈bZ〉i in terms of measurable quantities:

〈bZ〉i = 2bi
rec − brec (10)

where brec (2) is the overall MLBZ reconstruction bias and bi
rec the reconstruction bias

obtained when mixing only Z0 events with a certain property i with all other Z0 events
(including the ones with property i). 〈bZ〉i should be interpreted as the average individual
boson bias of all Z0 events in bin i, while 〈bZ〉 is the average of this bias over all bins and
has to be equal to brec by definition.

In figures 8 to 10 〈bZ〉i is plotted as a function of individual Z0 event variables. In all
cases the bias has been rescaled to the W mass scale as in equation (1) and is denoted as
’effective W mass bias’.

In figure 8 the bias is shown as a function of the cosine of the polar angle with the beam.
It is clearly visible that the reconstruction of jets in the forward region (|cos(θ)| > .7)
is worse than in the barrel region, corresponding to a larger negative bias. The large
negative bias for the most central bin (|cos(θ)| close to 0) was unexpected and has not yet
been understood. It is comforting, however, that all features in the data are described
very well by the MC simulation, taking into account many effects of alignment, energy
calibration, acceptance and detection efficiencies for all particle types integrated over the
whole momentum range.
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The reconstruction of jets is not only hampered by detector effects, but also by the
broadening of jets due to soft and hard gluon radiation. Broader jets will be detected with
larger uncertainties on the jet direction and therefore cause larger negative shifts on the
mass. In addition broader jets will cause more confusion in the jet clustering effectively
leading to a further deterioration of the jet reconstruction. As shown in figure 9 the
reconstruction bias depends very strongly on the Z0 event thrust and particle multiplicity.
The negative bias increases with almost 20 MeV/c2 per extra particle. There is a positive
correlation between the amount of gluon radiation and the number of particles, giving
broader jets (i.e. a lower thrust value) for larger multiplicities. Again the behaviour of
the data is excellently described by the simulation, except for a significant discrepancy
for very low thrust events which however corresponds to an overall shift in the W mass
of only 2 MeV/c2.
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Figure 9: Effective W mass bias as a function of the multiplicity (charged + neutral) and
the thrust of the Z0 event, for 1997 simulation (light shaded error band) and data (points
with error bars).

Another important variable is the DELPHI combined b-tag variable that will prove
to be useful in studying light-quark jets and heavy-quark jets separately. Again the de-
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pendence visible in the data is followed nicely by the simulated event bias (see figure 10).
Extended study revealed that the dependence of 〈bZ〉i on the b-tag should not be ascribed
to the true b-quark content, but rather to indirect correlations through the strong depen-
dence on average multiplicity and thrust. When the expected bias is calculated from the
average multiplicity of all the events in the corresponding b-tag bin using the dependence
shown in figure 9, the main features of the shape of the curve are reproduced well in all
bins except for the lowest and the highest b-tag bins, where the higher value of 〈bZ〉i is
correlated with the lower than average fraction of low-thrust Z0 events.
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Figure 10: Effective W mass bias as a function of the b-tag variable, for 1997 simulation
(light shaded error band) and data (points with error bars) on the left, the difference
between simulation and data (top right), and the expectation from the average multiplicity
in each bin superimposed on the MC result (bottom right). The bottom left plot zooms
in on central part of the top left plot.
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3.3 Comparison between data and Monte Carlo

As was shown in this section, the behaviour of the individual boson mass reconstruction
bias 〈bZ〉i (10) in MLBZ events has been understood qualitatively, and is quantitatively
described by the simulation to excellent precision.

Relevant for the final systematic error on the W mass is the average difference in
reconstruction bias between data and MC simulation. Combining all analysed 1997 MLBZ
data the overall difference bdata

rec − bsim
rec = ∆mMLBZ

W is equal to :

∆mMLBZ
W =

(
mdata

MLBZ −msim
MLBZ

)
· mW

mZ0

= −1.9± 2.6 MeV/c2 (11)

This value has been scaled to the W mass scale as in equation (1).
As W bosons hardly ever decay into b quarks, it is interesting to determine ∆mMLBZ

W |b
for b-quark jets and ∆mMLBZ

W |udsc for light-quark (u,d,s,c) jets separately. The following
model, based on a linear dependence on the b-quark purity Pb was used:

∆mMLBZ
W (Pb) = Pb ·∆mMLBZ

W |b + (1− Pb) ·∆mMLBZ
W |udsc (12)

The dependence of Pb as a function of b-tag as known from MC simulation was used to fit
this model to the difference between data and simulation of brec as a function of the b-tag
(see figure 10) giving the following values for the heavy-quark and light-quark systematic
MLBZ shifts:

∆mMLBZ
W |b = −5.7± 5.7 MeV/c2 (13)

and
∆mMLBZ

W |udsc = −0.3± 2.8 MeV/c2 (14)

The latter number is to be used as ‘best MLBZ estimate’ of the systematic bias on the W
mass, even though the difference in systematic bias between light-quark and heavy-quark
jets is not statistically significant.

4 Coverage and possible limitations

This section will start with some comments on the coverage of the MLBZ method as
presented in table 2, then concentrate on possible limitations and finally propose a scheme
for a complete treatment of the systematic errors.

4.1 Coverage of the MLBZ method

As listed in table 2 the MLBZ technique is expected to give relevant information about
the modelling of jet fragmentation and detection. The method constitutes a stringent test
on many aspects of the simulation of jets that may influence the W physics measurement.
The basic idea is that imperfections in the WW simulation that bias our measurement
will also be present in the Z0 simulation and thus give a measurable difference between
MLBZ data and Monte Carlo.

As long as the emulation of the WW event topologies is reasonable, with a realistic
coverage of phase space, this difference is believed to represent the actual systematic error
to first order, automatically including
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Fragmentation effects covered ’fully’ partly not at all
Hard gluon radiation X
Soft gluon radiation X
Fragmentation functions X
(+ detector response)
2-particle correlations inside W’s/Z0’s X
(+ detector response)
FSI between W’s/Z0’s X

Detector effects covered ’fully’ partly not at all
Jet energy scale at 45 GeV X
Jet energy versus (θ,φ) X
Jet energy non-linearity

below 45 GeV X
above 45 GeV X

Jet direction syst. bias
asymmetric X
back-to-back symmetric X

Track density X
Most other effects X

Table 2: Summary of systematic effects covered by the MLBZ method.

• practically all fragmentation effects with their internal correlations and the bulk of
’known’ detector systematics

• and possible ’unknown’ additional systematic effects that are not covered by tradi-
tional error estimates and would otherwise have escaped attention.

The advantage of such an ’inclusive’ approach is that with one well-defined measurement
the combined systematic effect is determined with excellent precision. In addition to this
inclusive measurement different contributions to the systematic error can be studied as
a function of relevant event variables (as discussed in section 3.2), providing a highly
sensitive test to disentangle more exclusive effects. This is important to

• improve our understanding of the different contributions that play a role

• to spot hypothetical large systematic discrepancies that accidentally cancel in the
inclusive measurement but could render the result unstable for imperfections in the
WW emulation by MLBZ events.

Systematic effects that are obviously NOT covered include the LEP beam energy
calibration, the description of the ISR spectrum in WW events, Final State Interference
(FSI) effects between particles from different W bosons and the description of background
from non-WW physics processes. Those effects have to be taken into account separately.

4.2 Limitations

The MLBZ events contain the full information of any systematic bias in the description
of the fragmentation, thanks to the fact that practically all processes involved are Lorentz
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invariant.
This is less true for the detector response for which, however, the main features are still

expected to be the same in MLBZ and W+W− events except for higher order (non-linear)
corrections.

To estimate how much a certain imperfection in the MLBZ description might affect the
MLBZ measurement we will use the following approach: if there is a systematic deficiency
in the detector description it will turn up in an (independent) data/MC comparison when
this effect is larger than xlocal. For effects smaller than xlocal we have to rely on the
MLBZ correction, so it has to be investigated to what precision p% of the effect the linear
model is precise on the range up to x = xlocal. This will then give a maximal possible
contribution of y = p · xsum MeV/c2 to the W mass, where xsum is the linear sum of the
local deficiencies xlocal, again known from independent study. The x, p and y have to be
determined for the individual problems.

Detector-related limitations:

• Back-to-back detector holes
The Z0 events are produced back-to-back unlike the jets from W pair production.
This could lead to correlations in MLBZ events not present in WW decays. This
effect was studied by applying possible deteriorations to the simulation of the Z0

events before and after they have been mixed and Lorentz boosted. We have put a
hole in | cos(θ)| varying the hole from 0.795-0.800 (realistic) to 0.700-0.800 (unrealis-
tic). Applying the hole before Lorentz boosting corresponds to a discrepancy in the
description of the detector during the Z0 data taking, while applying the hole after
Lorentz boosting corresponds to the effect of this additional hole on the kinematical
reconstruction of WW events. As shown in figure 11 the estimated systematic shift
agrees better than p = 15% up to an additional artificial hole of 0.02 in cosθ for
the two cases. The overall acceptance of DELPHI is known from independent stud-
ies to an accuracy of xsum = 0.01 (conservative), giving a maximal effect of these
correlations of the order of y = 0.9 MeV/c2.

• Another consequence of the back-to-back topology of the Z0 events is that the MLBZ
result is highly insensitive to certain systematic biases in the reconstruction of the
jet direction only rotating the thrust axis direction (e.g. always 1 degree away from
the beampipe). This kind of biases on the direction of the jets has to be investigated
separately.

• Track density and detector occupancy
The tracking efficiency depends on the track density. This effect is covered by
MLBZ events, but only for particles originating from the same vector boson. It was
seen by analysing the bias as a function of the thrust of the individual Z0 events
used in the MLBZ events (see previous chapter) that the bias depends highly on
this quantity since events with gluon radiation have a low thrust value and give a
much larger negative bias than events where the jets are slim. This was shown to
be correctly described by the simulation. To study the effect of increased particle
density for a 4-jet event with boosted jets, an additional particle inefficiency was
artificially introduced as a function of the track density. This was studied on 1998
Z0 simulation. Tracks that are close to each other were discarded according to a
Gaussian with width of 5 mrad in Rφ, leading to a total loss of particles up to
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Figure 11: The left plot shows the effect of an additional back-to-back symmetric hole in
the detector, applying the hole before and after Lorentz boosting. The right plot com-
pares the extra bias induced in MLBZ events and WW events from standard simulation
introducing an additional track-density dependent tracking inefficiency.

7%. This change is applied both in MLBZ events before boosting, and in fully
simulated WW events as shown in figure 13. A linearity agreement of p ≈ 20% can
be derived, giving a maximum additional systematic of y = 2.4 MeV/c2 for a track
density discrepancy of xsum = 1.0% (conservative).

• The energy spectrum of jets in W+W− events is quite different from Z0 decays. Any
non-linearity in the energy response could become a systematic error in mW. This
effect is partly covered for jet energies below 45 GeV in 3-jet (low-thrust) Z0 events
but not at all for jet energies above 45 GeV. This requires separate study.

• The distribution and correlation of jet directions are not completely identical. As a
cross-check the bias was estimated as a function of the polar angle of the Z0 thrust
(see section 3.2) with excellent agreement between simulation and data.

• A final detector-related point is the time dependency of the bias. By definition the
data used for the MLBZ measurement is taken during the Z0 calibration runs outside
the high energy data taking periods. Therefore the conclusions about detector
performance and description have to be extrapolated and/or interpolated in time.
In 1997 on-pole Z0 events were only recorded at the start of data taking while in 1998
Z0 data were taken both at the beginning and towards the end of the year. In order
to illustrate both the short term and the long term stability 1998 data was analysed
and the MLBZ mass plotted as a function of time in figure 12. The measured overall
mass differences between data and Monte Carlo are listed in table 3. From these
numbers and the fact that the stability plot in figure 12 is compatible with a fully
stable detector, a preliminary estimate for this effect is 5 MeV/c2. By studying the
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Figure 12: Experimental stability of the systematic difference in W mass bias between
data and simulation for 1998 Z0 data.

detector stability over the years taking into account also the calibration data of 1999
and with additional studies (e.g. using Z0s from radiative returns during the high
energy data taking) one can probably draw more firm conclusions.

Fragmentation-related limitations:

• The flavour composition is different in Z0 and W decays. A non-perfect simulation
of the b decays would then lead to wrong estimation of the bias. As a function of
the event b-tag variable the simulation describes the data perfectly and an upper
bound of 1 MeV/c2 is estimated.

• The fragmentation of Z0 events happens at a scale 13% larger than W+W− decays.
This has negligible impact on the bias since the simulation is adequately able to
describe this energy evolution.

• When boosting the particles in the MLBZ procedure the particle masses are not
precisely known. The approximation used (no mass for neutral particles, pion mass
for charged particles) was compared to the all-photons and all-kaons hypothesis,
giving a maximal effect of xx MeV on the W mass.
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Z0 data taking period ∆mMLBZ
W |udsc (MeV/c2)

1997 -0.3 ± 2.8
1998 P1 -1.0 ± 1.5
1998 P2 -4.7 ± 2.9

Table 3: Measured systematic mass difference between data and Monte Carlo simulation
for the different Z0 data taking periods in 1997 and 1998.

General limitations:

• No-width approximation (reducible)
The MLBZ events produced in the analysis reported here have no width of the boson
masses. This is a ’reducible’ limitation, as it can be solved by using a more complete
algorithm (see section 5.2). By using only simulated WW decays where the two
masses are within 2 GeV/c2 of mW, it was verified that the bias from undescribed
(tracking) inefficiencies of the detector was the same for WW event samples with the
nominal W width and samples with the low width within the statistical error (see
figure 13). With a precision p equal to 15% over a large range, this approximation
leads to an estimated systematic error of 1.8 MeV/c2 for a conservative xsum = 1.0%.
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Figure 13: The effect of an additional track-density dependent tracking inefficiency is
shown for WW events from standard simulation compared to WW events with both gen-
erated masses less than 2 GeV/c2 away from mW(left) and events without ISR radiation
(right). The different points are highly correlated within each plot.

• No-ISR approximation (reducible)
Unlike WW events MLBZ events contain hardly any ISR. Like the previous point
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this problem can be solved using the algorithm described in section 5.2. It was
verified that WW events without ISR responded in the same manner as the full
sample to additional tracking inefficiencies, requiring a generated effective centre-
of-mass energy less than 0.5 GeV away from 2 times the LEP beam energy. As
shown in figure 13 the deviation y for a discrepancy xsum = 1.0% and a precision
p = 20% is again of the order of 2 MeV/c2.

• The true LEP beam energy during Z0 data taking is not exactly the same in sim-
ulation as in data. The only way this difference enters in the MLBZ measurement
is through the measured Z0 energy. As the energy uncertainty (10-20%) is very
large compared to the fluctuations and the calibration uncertainty on the beam en-
ergy, this influence is hardly significant. By varying the assumed LEP beam energy
(EbZ0) in the MLBZ analysis we have found that this effect amounts to 0.5 ± 0.2
MeV/c2 using a conservative uncertainty of 100 MeV on the average LEP beam
energy during the Z0 calibration runs.

4.3 Towards a complete estimate of the systematic error

From this study and other studies that are ongoing at the moment it can be concluded
that the MLBZ method can be used to measure the combined systematic error from jet
fragmentation and detector description, provided that the following additional effects are
taken into account separately:

• non-linearity in jet energy response

• systematic bias in the jet directions

• stability in time

It is recommended to use the full 4-fermion MLBZ emulation (see section 5.2) if CPU
time allows that. Otherwise the effect of neglecting ISR and the W decay width have to be
re-investigated for other analyses. When there is reason to believe that another detector
or analysis will have a significantly different response to the back-to-back correlations
present in Z0 events, the cross-checks as presented in this paper have to be repeated.

5 Outlook

5.1 Semileptonic channel

MLBZs can also be applied to the semileptonic channel 6. There the jets can be taken
from hadronic Z0 events, while the lepton can either be constructed by taking half a
leptonic Z0, or can be generated artificially, as the only information in the lepton is its
energy and direction. By using artificially generated leptons one can statistically optimise
the study of the systematics of the hadronic part, and later fold in the knowledge of the
full energy and momentum spectrum of the lepton.

For the semileptonic channel systematic shifts from the reconstruction of the hadronic
part of the event are expected to be larger than in the fully hadronic channel, because

6The method can also be of use for other 4 fermion final states like ZZ or HZ.
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mass shifts are less strictly controlled by the constraints in the constrained fit. The final
statistical sensitivity should be of the same order of magnitude, as it depends purely on
the number of hadronic Z0 events available and the resolution of the boost in the Z0

events.

5.2 Improved emulation

The method described in this paper can be extended in order to improve the emulation
of WW events. In DELPHI an algorithm is being developed (by Chris Parkes [11]) in
which the Z0 events can be rotated, rescaled and boosted reproducing the 4-fermions taken
from WW simulation, thus including the effects of Initial State Radiation, a Breit-Wigner
with the correct ΓW , helicity structure and proper energy scale in the MLBZ topology 7.
This will emulate WW events closer to the truth, thus further improving the reliability
of the measured systematic shift. The only drawback is that more mixings and boosts
will be needed to obtain the same statistical precision because of the Breit-Wigner mass
distribution and ISR.

The greatest virtue of such an improved emulation is that it will allow the use of anal-
yses that are not easily scalable with energy, are sensitive to the helicity structure (TGC
analyses) or e.g. contain neural networks that have been trained with WW simulation.

This was not needed for the DELPHI analysis used in this paper as it has a very
simple cut based selection and kinematic fits that are very well scalable with energy.

6 Conclusion

A new technique to measure systematic errors from jet reconstruction in W physics mea-
surements at LEP2 has been presented: the MLBZ method. A full description of the
method itself and the procedure to determine the statistical precision has been given.

Some results relating to the W mass measurement on 1997 DELPHI data in the fully
hadronic channel were shown and discussed. They give a consistent picture and show
that the combined systematic error on jet fragmentation and a large fraction of detector
effects in the fully hadronic channel is around 5 MeV/c2, which is a factor 4 smaller than
so far quoted by DELPHI [3] for fragmentation only (20 MeV/c2). For a precise estimate
of the jet energy response error more work is needed, as outlined in this paper.

The coverage and limitations of the MLBZ method were discussed, leading to the
conclusion that it can be used for a complete estimate of the systematic error due to jet
reconstruction effects, provided the method is complemented with separate studies of non-
linearity in the jet response, back-to-back symmetric systematic biases in reconstructed
jet directions, and a sound estimate of time stability of the detector.

One of the main worries, being the back-to-back correlation of Z0 event topologies with
the detector symmetry, was shown to have a negligible influence for realistic uncertainties
on the DELPHI detector simulation.

Thus the method seems to be a very promising candidate to replace a number of
existing methods thanks to its better precision, greater coverage and ease of use and
definition.

7The package already includes the possibility to emulate ZZ and semileptonic WW final states.
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Our understanding of the MLBZ method and its merits is rapidly improving, and will
certainly benefit when it is further tested, used and improved in other analyses, including
W physics analyses other than the W mass measurements. In particular it would be
interesting to compare results obtained for different LEP experiments.
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A The Jackknife method

The statistical errors on the measured MLBZ masses were estimated using the ’Jackknife’
resampling method [7, 8, 9, 10]. It is a non-parametric statistical method, i.e. a technique
that can be used to estimate a statistical quantity without assuming knowledge about the
underlying probability distribution. These methods have become more and more popular
with the advance of modern computers. A well-known example of a rather advanced (and
CPU time consuming) non-parametric technique is the Monte Carlo technique.

The Jackknife is a method for estimating the bias and standard error of an estimate.
Here we are interested in the standard error. For a sample x = (x1, x2, ...xn) and an
estimator θ̂ = f(x), the method focuses on samples that leave out one observation at a
time:

x(i) = (x1, x2, ..., xi−1, xi+1, ..., xn)

for i = 1, 2, ..., n. These samples are called Jackknife samples. The ith Jackknife sample
consists of the data set where the ith observation is removed. Now θ̂(i) = f(x(i)), is called
the ith Jackknife replication of θ, with a replication average

θ̂(·) =
∑

i=1,n

θ̂(i)/n

The Jackknife estimate of the standard error on θ̂ is then defined as

ŝJack =

√√√√n− 1

n

∑
i=1,n

(θ̂(i) − θ̂(·))2 (15)

and is known to be a reliable estimator of the standard deviation provided that the
distribution of θ̂(i) is smooth (in our case it turns out to be a Gaussian distribution). For
non-smooth statistics, other methods like the Bootstrap [9, 10] can be used. In the central
limit theorem the Jackknife error is shown to be equal to the Minimum Variance Bound
for uncorrelated measurements.

The main building block for the technical implementation of the Jackknife method in
the MLBZ analysis is the summed log-likelihood curve

Lmlbz
j,k (mW) =

∑
m=1,nboost

Lmlbz
j,k,m(mW)

where
Lmlbz

j,k,m(mW) = −2 · log(Lmlbz
j,k,m(mW))

with the event likelihood curve Lmlbz
j,k,m(mW) calculated for the MLBZ event consisting of Z0

event no. j mixed with Z0 event no. k using random boost no. m. In order to reduce the
number of possible combinations to a managable level the data is divided in independent
samples of n = 201 Z0 events, and each event is mixed and Lorentz boosted nboost = 2
times with all other events from the same sample.

Taking the sum over all MLBZ events that contain event j, one obtains the Z0 event
likelihood curve

LZ0

j (mW) =
∑

k=1,j−1

Lmlbz
k,j (mW) +

∑
k=j+1,n

Lmlbz
j,k (mW)
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and combining all MLBZ events from the whole samples gives the overall sample likelihood
curve

Lsample(mW) =
∑

j=1,n

∑
k=j+1,n

Lmlbz
j,k (mW) =

∑
j=1,n

LZ0

j (mW) · 1

2

For each sample the mass can be extracted by finding the minimum of the overall sample
likelihood curve.

To calculate for each sample the Jackknife estimate of the statistical error on the fitted
mass mfit, we need the Jackknife replications mfit(i) obtained by minimising Lsample(mW)(i)

given by
Lsample(mW)(i) = Lsample(mW)− LZ0

i (mW)

thus totally removing event no. i from the sample.
As the shape of the summed log-likelihood curve Lsample(mW) around the minimum is

very close to a parabola, the influence of event i on the fitted mass mfit(i) − mfit can be
approximated by

∆i =

δLZ0

i (mW )

δmW

δ2Lsample(mW )
δm2

W

∣∣∣∣∣∣∣
mW =mfit

=
δLZ0

i (mW )

δmW

∣∣∣∣∣
mW =mfit

· 1

2
σ2

mfit
(16)

where σmfit
is the standard likelihood error on the fitted sample mass. The average

Jackknife replication mfit(·) is then given by

mfit(·) =
∑

i=1,n

mfit(i)/n = mfit +

∑
i=1,n

δLZ0

i (mW )

δmW

n · δ2Lsample

δm2
W

∣∣∣∣∣∣∣
mW =mfit

= mfit

as ∑
i=1,n

LZ0

i (mW ) = 2 · Lsample(mW )

giving ∑
i=1,n

δLZ0

i (mW )

δmW

∣∣∣∣∣
mW =mfit

= 2 · δLsample(mW )

δmW

∣∣∣∣∣
mW =mfit

= 0

by definition. This means that we can substitute the Jackknife influence value θ̂(i) − θ̂(·)
in equation 15 by ∆i and use the following very simple formula

σMLBZ =
√ ∑

i=1,n

∆2
i =

√
n

n− 1
· ŝJack

as an excellent approximation of the Jackknife estimate 15 of the standard error on the
fitted MLBZ mass for reasonably large values of n.

The same procedure applied to the whole data set of nsamp independent samples l used
should give consistent results:

σMLBZ
all =

√ ∑
l=1,nsamp

∑
i=1,n

∆2
i,l ≈

〈σMLBZ
l 〉√
nsamp

where ∆i,l is calculated according to equation 16 replacing the sample error σmfit
by the

overall likelihood error on the fitted mass when combining all samples.
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In table 1 a comparison of the different error estimates is given. It shows that for the
number of events used the Jackknife method estimates the statistical error correctly to
within 10%.

B Linearity

Similarly to the Z0 event influence ∆i (16) one can define the MLBZ event influence ∆ij

as the change in the fitted sample mass when removing the MLBZ events containing the
mixed pair of Z0 events i and j:

∆ij =
δLmlbz

i,j (mW )

δmW

∣∣∣∣∣
mW =mfit

· 1

2
σ2

mfit
(17)

In figure 14 the average ∆ij is plotted as a function of the sum of the individual boson
influences ∆i and ∆j of the constituent Z0 events. The dependence is quite linear over
the whole range, which means that linearity is conserved during the whole procedure of
mixing and boosting the bosons, jet clustering, applying a constrained fit for each jet
pairing and extracting the mass.

(∆i + ∆j)/(n-1)

∆ ij
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Figure 14: The average MLBZ event influence as a function of the sum of the individual
Z0 event influences, in units of 1

2
σ2

mfit
.
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