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1. Introduction

Supersymmetry Ward identities play a crucial role in disentangling general properties
of effective supersymmetric lagrangians arising from some more fundamental theory
at the Planck scale where gravity is strongly coupled.

A particular role is played by supersymmetry relations on the scalar poten-
tial [L, 2] and on supersymmetry preserving vacua which are at the basis for the
discussion. of partial supersymmetry breaking [B]-[7] and of BPS configurations
and non perturbative string or M theory vacua [6, §, 9, 10, 11]. Some of these
relations where studied long ago, [2], but more recently a more careful analysis of
supersymmetry preserving configurations has played a crucial role in the study of
the so called “attractor mechanism” [12] for charged “black holes” in four and five
dimensions [13] as well as for the study of supergravity flows [14, 15] related to the
so called “renormalization group flow” [16, 17] in the framework of the AdS/CFT
correspondence [1§].

Very recently these relations have been applied to a variety of interrelated prob-
lems such as domain walls in five dimensional supergravity [19]-[24], and supergrav-
ity instantons [25] responsible for non perturbative corrections to the hypermultiplet
moduli space in Calabi-Yau compactifications [28].



In the present note we make some general consideration on scalar potentials,
fermion masses and killing prepotentials in a generic supersymmetric theory encom-
passing any low-energy effective lagrangian of a more fundamental theory which at
low energy incorporates a theory of gravity with N-extended supersymmetry.

Much of the information comes from the analysis of simple terms in the super-
symmetry variation of the effective action, namely terms with one fermion and one
boson (or its first derivative).

It is shown that general formulae for fermion masses and scalar potential ex-
ist which are simply related to the fermion shifts of the supersymmetry transfor-
mation laws; in particular the N = 1 and N = 2 structures of the matter cou-
pled supergravities [27]-[B1], can be recovered in a simplified form. To illustrate
the general procedure we limit ourselves to the four-dimensional case, but it is
straightforward to see that our considerations can be extended also to higher di-
mensions.

In the particular case of N = 2 supergravity with arbitrary gauge interactions
turned on an important role is played by gauged quaternionic [32]-[84] and special
geometry [30, 85, 86] which was discussed in full detail some time ago [34, 81]. Here
we are able to find new relations between Killing prepotentials which allow us to
show that some gradient flow relations due to supersymmetry are merely due to
some simple properties of special and quaternionic geometry in presence of gauged
isometries. These relations purely depend on the geometrical data of the theory,
including gauging of isometries of the scalar manifold.! This note is organized as
follows: in section 2 we set up the formalism and derive some basic relations between
scalar potential, fermionic shifts and fermion mass-matrices.

In section B and 4 we specify these relations to N = 1 and N = 2 theories and
recast some results in a model independent set up.

Section 4 is particularly relevant because it deals with N = 2 supergravity with
general interactions of vector multiplets and hypermultiplets turned on [B1]. Here
some interesting relations emerge due to the special structure of coupled special and
quaternionic geometries in presence of gauge isometries.

One of the amusing results, already noted in some special cases, is that the (non
derivative) part of the spin 1/2-shifts can be written in terms of the (covariant)
derivative of some scalar functions [20, 24, 25, B8] (the hypermultiplet and vector
multiplet prepotentials) exactly as in the case of charged (abelian) black-hole config-
urations [12], where the “central charge” matrix is here replaced by the SU(2) valued
prepotential matrix.

cluded.

LA short account of the geometrical approach to Supergravity in the N = 2 case is given in [{_’;1_:]
(see especially the appendices of the second paper); a more general reference is [:_3-?, volume 2].



2. The formalism: entangling supersymmetry with geometry

We write down the generic form of 4D N -extended supergravity theory up to 4-
fermion terms in the following way:

1 _ A
(detV) 'L = —2R +1 (NasF F - — NanF i F o) 4+ BIAPY, +
2 B . 1 - B
\/_—g (¢;4’70DV¢A)\ - ¢AM'YJDV¢3\4) + 15 ()\I’}/MVM)\[ + )\[’)/MVM)\I) —
- p,fAj\I’YV7“¢Au - pIAuj\I’YVW“i#f +
+FS Nas (L 4yr® + LYgr4yr My + LE M 4" A + hee.) +
+ 25450, 47" Yy + 284 P YT + AN A Y Pua + INGAAYH YL +
+ MYA A+ Mg XA = V(g) (2.1)

_|_

where ¢“,\ 14, are the scalar fields, the spin 1/2 fermions, and 14, the gravitino
fields. The vector field-strengths F* are defined in equation (3.7) below. The labels
of the fields are as follows; we indicate by A, B, ... the indices of the fundamental
representation of the R-symmetry group SU(NN) ® U(1), their lower (upper) position
indicating their left (right) chirality. The indices I on the spin 1/2 fermions,besides
to enumerate the fields, are a condensed notation which encompasses various pos-
sibilities; if the fermions belong to vector multiplets we have to set I — I A since
they also transform under R-symmetry; if they refer to fermions of the gravitational
multiplet they are a set of three SU(/N) antisymmetric indices: I — [ABC]. In the
case of ny hypermultiplets I — « where « is in the fundamental of Sp(2ny).

The matrices entering the lagrangian are all dependent on the scalar fieds ¢'.
MNys is the kinetic symmetric matrix of the vector field-strengths, with A, Y indices
in the symplectic representation under which they transform; S,p, N4, M!/ together
with their hermitian conjugates S4Z, Ni', M;; are matrices of order g in the gauge
coupling constant while the scalar potential V(q) is of order g2. Note that S4Z M1’
are the mass matrices of the gravitino and the spin 1/2 fermions. Finally PIA are
the the gauged vielbein 1-forms of the scalar manifold defined as

P = P (9,q" + gANKY) = PIAV,.q" (2.2)
where P/4 is the ordinary vielbein of the scalar manifold. Also in this case the index
I of the vielbein must be given the same interpretation as explained in the case of
the spin 1/2 fields. Moreover for any boson field v carrying SU(V) indices we have
that lower and upper indices are related by complex conjugation,namely:

(vap. )" ~ 745 (2.3)



When N > 2, so that the scalar manifold is a coset G/H, the gauged vielbein 1-form
can be rewritten
P = (L7 dL) ™ + gL L ANTy) LM (2.4)

due to the general relation

s

PR = (L7'0,L) kY = L7 (Ty) L™, (2.5)

where T} are the generators of the gauge group.
We now write down the relevant terms of the supersymmetry transformation
laws of the various fields in order to perform the supersymmetry variation of the
lagrangian; this will allow us to identify the differential equations for the fermionic

shifts and other important relations between geometrical quantities mentioned in the
introduction. We have:

6¢AM = 'DMeSA—f-"'-f-SAB’}/“eSB (26)
SN = iPZ-IAsAVMqi o NTey (2.7)
Vi = —ith 4y, + hec. (2.8)
SAL = 2fNABlY | ep +if AN y,e4 + hc. (2.9)

6q P = Ney, (2.10)

where fAABl and fAM4 are symplectic sections on the scalar manifold. We are going
to explore the invariance of (2.1) (up to a total derivative) for terms of the form fe B
where f is a fermion and B is a function of the scalar fields.

We have to look to two kinds of terms:

e terms with one derivative
e terms with no derivatives

In the first case we can choose f0eq and fedq as independent variations [1]
since all these terms are independent. It is a simple exercise, first carried out in [il],
to see that the terms containing the derivative of the supersymmetry parameter just
fix the couplings 2 S’AB@Zlfy“”wf + iNAMA#), 4 + hec. of the lagrangian in terms of
the shifts proportional to g of the equations (2:6), (2.7).

The terms with no derivatives of the form fe B instead give rise to two im-
portant relations [1]. The first one is due specifically to the terms 47" B(q)
which determine the scalar potential V(g) in terms of the squared modulus of the

shifts (2.6), (2.%); one finds:

6aV(q) = —1284° Sep + N N} (2.11)



The second one is due to terms of the form AeB(q) and their h.c. that give rise
to a formula from which the Goldstone theorem for supergravity can be derived:
IV ira I GBA 1J ATA
8—qu = —4Np S7" +2M"" N7 . (2.12)
Tracing equations (2.11) with respect to A, B and differentiating with respect to
q", by comparison with equation (2.13), it follows that there must be some relation
between N7 and 0S4p as well as between M!7 and ON;. We shall refer to these
relations as “gradient flows” for the fermionic shifts. These gradient flows can be
obtained in the simplest way by looking at the terms f e dq of the first item (terms
with one derivative) which have not been yet considered.
Let us first consider the equations derived when considering terms of the form
e 0q. There are two independent structures proportional to the currents with §*”
and " respectively. The §*” current gives the equation:

ky fAABL L NIA pBITi — (2.13)

where one has to take into account the contribution coming from the kinetic term
of the scalars due to the definition of PJA which contributes through 5Aﬁ given in
equation (2.9). Equation (2.13) relates the Killing vector k% (6¢* = £ k%) to the
spin 1/2 shifts N7

The terms proportional to the v** current yield the gradient flow:

D,S4B = N“ pBIT. (2.14)

Considering next the equation coming from the terms Aedq we find the gradient
flow of the spin 1/2 shifts:

VuNi = guo kY f 42 Prg, SP4 + 2 M, P72, (2.15)
Alternatively eqgs. (2.13), (2.14) can be cast in the following form:
D S*P = PMNP — kyp fAAP) (2.16)

which is analogous to eq. (2:15).

We note that the previous results determine the full fermionic mass matrix M
through eq. (2.15).

If there are multiplets with no scalars as it happens in the N = 1 case then the
fermionic mass matrix for the fermions of such multiplets is obtained by looking in
the variation of the lagrangian to extra terms of the form Ae F, F being the field-
strength of the vector replacing in this case the 0q factor: indeed if A has no scalar
partner it must certainly have a vector partner and the mass matrix of the fermions
can be obtained by the aforementioned variation.



In a different fashion also behave multiplets where the fermions are the only
partner of scalar fields (Wess-Zumino multiplets in N = 1 and hypermultiplets in
N = 2) because in those cases fAA5l and fA4 do not exist in the eq. (2.9) and
therefore they do not enter in the determination of V,,N*. Under these circumstances
V.N# and M;; can be expressed through eqs. (2:15), (2.16) purely in terms of the
gravitino mass matrix Ssp and its derivatives [27].

3. The N =1 case

In order to apply our formulae to the N = 1 case we recall that the scalar manifold is
in this case a Kahler-Hodge manifold [32] and that the R~ symmetry reduces simply
to U(1). It is convenient in this case to use as “vielbeins” the differential of the
complex coordinates dz', dz" where 2*(x) are the complex scalar fields parametrizing
the K&hler-Hodge manifold of (complex) dimension no. Therefore in the present
case we have to set ¢ — (2,2 ). The spin 1/2 fermions are either in chiral or
in vector multiplets. So the index I runs over the number ny + n¢ of vector and
chiral multiplets, I = 1,...,ny + n¢. It is convenient to assign the index A, the
same as for the vectors, to the fermions of the vector multiplets and we will denote
them as A*, A = 1,...,ny; the fermions of the chiral multiplets will instead be
denoted by X%, x*" in the case of left-handed or right-handed spinors, respectively.
Since the gravitino and the gaugino fermions have no SU(XN) indices their chirality
will be denoted by a lower or an upper dot for left-handed or right handed fermions
respectively, namely (¢,, 1*); (AY, A*}). Moreover we have two metrics, namely the
Kéhler metric g;;« of the scalar manifold and the metric Ny of the vector kinetic
term with symplectic indices A, Y. Using these conventions we have the following
supersymmetry transformation laws for the fields [27, 29]:

0oy = Dyce + -+ - +1L(2, 2)7,e°
5" =iV, 2'qtee + -+ + N'e,
oA = Fi ey 4 -+ +iD%e,
OV} = —ithey,e® + h.c.
SAN = %Xﬁ“e' + h.c.
828 = x'e.,
where we have defined

Fr = %(]—"A FixFY)

iz
*fA = 16 prA
ny — 9 nvpo
«FANB,, = FFAE, (3.7)

and the dots mean 3-fermion terms (irrelevant for our purposes).



The N = 1 supergravity lagrangian invariant under the transformations (8.1)-
(8:6)(up to 4-fermion terms) is:

1 . R
(detV)™'L = —5R+i (NasF N F 72— Nas FIAF ) 4 i V2" V2 +
2N
V=9 (

1 - o
—g (NAZ)\.A’}/MVM)\? — ./\/’Ag)\f’}/”v“)\.x) —
. 1 i 3 _ax i
—i50i (X7'Viux” + X 7"Vux') +
+9ije (%v”v“xiv“zj + Yo X Vuzi) -
—2iImMNyg (F A Y™ + FEAN Ty g)) +
- A .
+7 (BN AsF XV AT = (O Nas Fit X" v A7) +
F2LPay Y} 4 2LPep Y Ve + g3 (ijiv”'a/f; + Ny *'y“w.u) +
1 e Ay . —i. ] AA A
+5Pa (A" = A0y ) + Miux'n + Mij XX + (3.8)
FMasAAE - Mas AP AE 4 M A2+ M XX = V(2, 2)

+ 'L[_};’)/vaw.)\ - @.M'Yavud};\) -

and the kinetic matrix A ,x turns out to be a holomorphic function of 2*: Nis =
Nas(2') = Nas = Nax(2). Note that since the scalar manifold is a Kihler-Hodge
manifold all the fields and the bosonic sections have a definite U(1) weight p under
U(1). We have

p(V¥) = p(A") = p(z") = p(gij+) = pWNax) = p(D*) = p(Py) = p(V) =0
) = ) = A0 =ple) =
p(*) = p(x') = p(A**) = p(e*) = _%

p(L) = p(Mi;) = p(Mas) = 1

p(L) = p(Misj+) = p(Myz) = —1. (3.9)

Accordingly, when a covariant derivative acts on a field ® of weight p it is also
U(1) covariant (besides possibly Lorentz, gauge and scalar manifold coordinate sym-
metries) according to the following definitions:

where K(z, z) is the Kahler potential.
A covariantly holomorphic section of is defined by the equation: V;:® = 0.
Supersymmetry implies that all the quantities entering the transformation laws
and the lagrangian can be expressed in terms of the following geometric quantities:
the covariantly holomorphic gravitino mass-matrix L(z, z), the Killing vector real
prepotential P, (z, Z) the Kihler potential and the holomorphic matrix A'yx(2).



Indeed we have the following relations:?

L(z, %) = W(z)ez*=?) (3.11)
ViL(2,2) =0 (3.12)
N = 2ig"" V. L (3.13)
DA = 2Im(N,5) Py (3.14)
M;; = V,V,L (3.15)
1. ..
Mys = gNlaiNAE (3.16)
1 1
My; = —ig Im Ny50; D> — §kﬂA i (3.17)
o, |
V=4 (—SLL + 97 ViLV L+ 5 ImNAgDAD2> , (3.18)

where the Killing vector is defined in terms of the real prepotential P, as follows:
Note that egs. (8:14) and (3:17) imply:

My;D* = —ii@i(ImNAZDADZ). (3.20)
In Kéahler geometry k% = k% (z) is holomorphic and satisfies the following relations:
Vikja =0 (3.21)
Vikjsn = Vjskin . (3.22)
Finally the gradient flows are:
VNI = 2§

VN7 gpje = 2M i,
1 — ok

4. The N = 2 case

For the N = 2 supergravity the scalar manifold is a product manifold [B0;, B4, 45]

M(scalar) _ M(VGC) ® M(hYPer) (41)

since we have two kinds of matter multiplets, the vector multiplets and the hypermul-
tiplets. The geometry of M) is described by the Special K dhler geometry [B0, B5,
B8, 43] while the geometry of M™Pe) is described by Quaternionic geometry [B9]-

2For constant scalar background unbroken supersymmetry requires V; L = 0, i.e. the “norm”

|L|> = LL to be extremized on the Kéhler-Hodge manifold. This is the N = 1 example of
“attractor equation” [d, {[2].




[42], [82, B0, 34, 44]. A full account of Special K dhler geometry is given in refs. [31].

With respect to the general case we now have

A=1 ... ny; A B=1,2; i=1,....4ng + 2ny ; I=1,...ng+ny.

(4.2)
We will use the same notations and conventions as in ref. [31] where the complete
theory of the N = 2 supergravity has been fully worked out in a geometrical setting.

Let us now shortly describe how our general framework particularizes to the
present case.

As in the case of N = 1 we denote the complex scalars parametrizing M (¢°)
by z¢,z, while the scalars parametrizing M) will be denoted by ¢*. As already
noted in the previous section, when the index I runs over the vector multiplets it
must be substituted by I B in all the formulae relevant to the vector multiplet, since
the fermions A\’4 are in the fundamental of the R-symmetry group U(2). Furthermore
if we use coordinate indices as in the N = 1 case so that the vielbeins of M) are
simply dz!,dz* we have to perform the following substitutions:

PAdg" — P/ PAdz' = —e*Pd2!
PFAdgs — P BAGE" = —eABdz” (4.3)

AB]  fAIA

In particular, the general objects fAl introduced in equation (2.9) be-

come in our case:
A[AB ABTA AA AA A FA

where L*(z, z) and its “magnetic” counterpart My (z, zZ) = Nyx L* actually form a
2ny dimensional covariantly holomorphic section V = (L*, M,) of a flat symplectic
bundle.

When the index I runs over the hypermultiplets we will rename them as follows:
(I,J) — (a, B) and since there are no vectors in the hypermultiplets we have f24 =0

The vielbeins of the quaternionic manifold M"¥P¢") will be denoted by U*4 =
UAdg* where o = 1,...,2ny is an index labelling the fundamental representation
of Sp(2ng). The inverse matrix vielbein is UY,. We raise and lower the indices
a,B3,... and A, B, ... with the symplectic matrices C, 3 and €4 p according to the
following conventions

AB epo = —04 (AB _ _ BA (45)
C* Cpy = —62; Cof = —CPe, '
For any SU(2) vector P4 we have:
eap PP = Py; e pp = —pA (4.6)



and equivalently for Sp(2n) vectors P,:
Cos PP =P,; C¥Py=-pP~. (4.7)
Since we have a product manifold the generic Killing vector kY splits into
Ky — (Kh, KL ki (4.8)

and they can be determined in terms of the prepotentials of special Kahler and
Quaternionic geometry as follows:

ki(2) = 197" 8; Pa(z, 2)

where QF = are the SU(2)-valued components of the quaternionic curvature strictly
related to the three complex structures existing on a quaternionic manifold. Note

prepotentials satisfy the following “harmonic” equation:3.

V. VUPE = —dng PE. (4.10)

For the purpose of making the paper self contained we report now the lagrangian
and the transformation laws of the N = 2 lagrangian as given in reference [31].We
limit ourselves to report the lagrangian up to 4-fermion terms and the supersymmetry
transformation laws up to 3-fermion terms since this is sufficient for our treatment.

We have:
N=2 Supergravity lagrangian.
1 , "
(detV)fl L= —aR -+ gij*V“ZZVuZ] + huvvuquvuqv +

GMVAJ

+\/_—g (1/;;:"70/0%11/)\ - 77EA;L’)/zIIO;/4)\) -

0 (FAPVN + NV, — 1 (9 + L V%) +
H (N F A F 5 - Ny FIAF ) 4 { gV PENA
—2UL Y 4 q " PiCa + Gi V2 XAV Y 4 4+ UV g oy han +
he o+ {Fut im Nys [ALZG4 9™ e — 41 fEN 7 e

%vi FENA NIB ey Lﬁiafyﬂ"ggcaﬂ + h.c.} +

+g [QSAB"QZ,f’VWwf +igi WHABN 1l + 2AN2 (a0 +

F Mo + MY LT + My apNANE + h.c.} —V(z,%,q), (4.11)

Mhwper) This is required by four dimensional supersymmetry of the lagrangian (see [34, 31))

10



where we have set ]:jVA = (]:A G“VPU]:A) .7-";}1, being the field-strengths of the
vectors AA Furthermore LA(z z) are the covariantly holomorphic sections of the
special Geometry, fA = VLA and the kinetic matrix My is constructed in terms of
L? and its magnetic dual according to reference [31]. The normalization of the kinetic
term for the quaternions depends on the scale A of the quaternionic manifold for
which we have chosen the value A = —1,(see footnote B). Finally the mass matrices
of the spin 1/2 fermions M®? M up;;, M, (and their hermitian conjugates) and

the scalar potential V they are given by:*

M = —UYAUPP ¢ 45 VIR LA (4.12)
Mg = —4Ug, k3 [} (4.13)
Mup ik = € goufikh — %iPAAB Vifi (4.14)

V(2 2,0) = ¢°| (90 kikE + Ahuikish) INL® + g7 fAFEPIPE — BLALEPEPE|
(4.15)

The supersymmetry transformation laws leaving invariant (4.11) are:

Supergravity transformation rules of the (left-handed) Fermi fields:

(SwAu = DH €x + (igSAan, + GABT;:,,) ")/VEB (4.16)
SN =iV, 2iytet + Gy epe? + gWiAPeg (4.17)
6Co = iUPPV ,q"yetean Cup + gNZ ey (4.18)

where T, = 2i ImNAELEFé‘; and Gf; = —gij*fjf* ImNFAF[ﬁ;.
Supergravity transformation rules of the Bose fields:
SVE = —itha,y* et — i) 1% eq (4.19)
5A2 = 2L ¢AMEBEAB + 2LA¢ Beap +
+1 ANy eap +1 i Nyyuep P (4.20)
62 = Ndey (4.21)
62" = S\ZEA ( )
0q" =UL, (EO‘GA + CaﬁeABfgeB) ) (4.23)
The gauge shifts for the three kinds of fermions, gravitinos 14,,(A=1,2), gauginos

XA (i =1,...ny) and hyperinos (%, (o« = 1,...,ny) appearing both in the lagrangian
and in the supersymmetry transformation laws are given by [31]:

! ! N R
Sap = 1§PABA A = 1§PAB = 1§P o4B (4.24)
WiAB — AB Zj fA ABkA vaAB_'_eABkz (425)
N4 = 2uA KL = 2uA kv, (4.26)

4There are misprints in the equation @ -1%) as given in reference [‘gl.'] which have been corrected.

11



where:®

PuppaL* = PIL* 0% = P o%y, (z=1,2,3) (4.27)
(PaapL?)* = —P{PLN = —P{L"0""? = —p*o™*P (4.28)
and we have further defined
kALY = K
kLY = k"
Papa L* = Pap

PP g A = VL IAPRB g9 = VIPAB.

Taking into account the definitions (4.29), (4.30) we see that the §A** and dy,, shifts
are all covariant derivatives of the quaternionic and Kihler prepotentials:®

WiAB — I(VZPAB 4 EABviPAEA) (433)
1
N = —gu;‘u Q™ v, P" = 2UL kY. (4.34)

The gradient flow equations (2:I5)and (2:16) adapted to the present case are:

V, WiAB = 2 512; SAB _ AB id” o o fﬁ (4.35)
. sk 1 sk
Vi WS = —g 7 MPE, + 5.sABg” (frkaw + fiskaj) (4.36)
j* 1 ij* a
VuWip = —agj Miis Unyou (4.37)
1
VZNX - 5 M?A (438)
U B, N4 = 40P §AB | AB A (4.39)
1

Vu‘S’AB = _5 au(A Ng) (440)

1.
ViSap = 3 Wiy 9i* (4.41)
Vz’* SAB — 0, (442)

where we have set W9, = (W45)* and MB = (Map k)"

5We use Pauli matrices with both indices in the upper or lower position so that they are sym-
metric.Note that (0% 3)* = —o®45.

6Note that V*Py L” cannot be written as a total derivative since Py L* = 0, so no gauge invariant
prepotential exists for vector multiplets as in the N = 1 case (see (5:121,')) This should no come as a
surprise since a prepotential having the interpretation of “superpotential” should be related to the
gravitino mass and it is S4p (quaternionic prepotential) and not the Hodge-Kéhler prepotential Py
which enters in it. Indeed no gauge invariant scalar exists for vector multiplets that could enter in
the spin 3/2 mass term.

12



Note that in the manipulations performed from (4.33) to (4.35) one has to use
the gauged special geometry identities [B4]:

Py\LA = PAL =0 (4.43)
EALA = kXL =0. (4.44)

We also note that M®# can be written in terms of the (traceless part of the)

anticommutator of two covariant derivatives:’

1
Mag = =il UV Ve PAB (4.45)

This is a consequence of the basic relations of gauged quaternionic geometry given

Using the identity (2.11) adapted to the present case:
55V = —12(SMA)* Syp + gy WMAWL , + 2N2 NG (4.46)

one may compute the scalar potential which turns out to be the one given in
eq. (4.15) [34, BL]. Using equations (4.40), (4.41), (4.43) the scalar potential (4.13)
can be also rewritten in the following way:

V = —6S4p(S) 429"V Sap Vs (SAB) 44V, Sap VU (SAB) + gy kKT . (4.47)

Finally we note that the last term in equations (4.33), (4.25) has a similar struc-
ture as the N = 2 central charge [47], but the SU(2) valued prepotential PAP adds
a symmetric part to W48 However unbroken N = 2 supersymmetry is still con-
trolled by a gradient flow equation [20, 25, 24] which is equivalent to k' = 0 and
to extremize in the moduli space P*.® We note in particular that if P* = 0 the
supersymmetry flow has always vanishing potential (no AdS vacua). On the other
hand if k' = 0 the supersymmetry flow is controlled by the “superpotential” P® P?®
whose extrema in the full moduli space (at P® # 0) imply A4 = §¢, = 0. For
abelian gauging k' = k% = 0 and in absence of hypermultiplets, for constant P¥, we
retrieve the situation discussed in the literarature [48, 15, 20, 24.

We note that the supersymmetric flow of the hypermultiplets (at points where
the scalars have vanishing velocity) implies a vanishing value of the Killing vectors:
kYL* = 0. Since the covariant holomorphic section L* = L*(z, z) is complex, this

"Note that in eq. (4.45) the symmetric part of the anticommutator is automatically traceless
u(A, ;B)v P
because Uy Z/{ﬁ hyw =0
8These conditions are generally too restrictive if only N = 1 supersymmetry is preserved. For
instance, in the example of ref. Eﬂ] N2 does not vanish.
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implies that the values ¢* = ¢¢ for which k%L* = 0 are the fixed points® of the
group generated by the two (real) Lie algebra elements k% Im L*, k% Re L*. This
group depends on Im L* and Re LA. If

A ImLARe L* =0 (4.48)

the two-dimensional gauge group is abelian. If either Im L* or Re L* is zero then we
have a one-dimensional gauge group; otherwise it may be any subgroup generated by
the two elements. Of course for abelian isometries f2,5, = 0 and the group is always
a two-dimensional subgroup of the gauge group. It is interesting to observe that in
five dimensions the corresponding section L* is real so that the group generated by
kY L” is always a one-dimensional subgroup of the isometry group. Furthemore we
note that the condition k%L* = 0, taking into account the equation (A-3%),implies
the following consistency condition on the quaternionic prepotentials:

—Xe™? P{ PiL"L” = f%y PX LAL” (4.49)
which in the abelian case reduces to
e PY P IALY = 0. (4.50)

Defining P*(L) = P{L* (and setting A = —1), equation (4:49) can be rewritten in
the suggestive form:

P(L)x B(L)=P(Lx1L), (4.51)

where
LxL=fsL L%, (4.52)

5. Dual quaternionic manifolds and the gauging of their
isometries

A particular interesting case where some “universal gauging” can be studied in a fairly
general way is the special situation when the hypermultiplet manifold of quaternionic
dimension n + 1 is obtained by c-map [45] from a special Kéhler manifold of complex
dimensions n.

These manifolds, called dual quaternionic manifolds in reference [45], have a
“solvable group of motion” whose Solvable Lie Algebra has dimension 2n + 4 [49].
This solvable Lie Algebra is associated to the rank one coset SU(1,n+2)/SU(n+2)®
U(1) and contains, as particular case, the “universal hypermultiplet” parametrizing
SU(1,2)/U(2) [45]. These symmetries are always present even if the special Kéhler
manifold has no isometries at all.

9The same is true for the special Kéhler manifolds in the case of non abelian isometries.
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In Calabi-Yau compactifications for type-IIB strings down to D = 4, n = hy;
and the solvable algebra of rank one is related to 2h; 1 + 2 shift- symmetries of the
RR-scalars, one shift symmetry of the NS-axion (dual to b,,) making the 2h;; + 3
nilpotent part of the group. The remaining Cartan generator is related to the scale
symmetry of the dilaton. The maximal abelian ideal has dimension k4 ; +2 (of which
hi1+ 1 are RR abelian shifts).

In the case of the universal hypermultiplet the nilpotent subalgebra is three-
dimensional, it is the Heisenberg algebra considerd in reference [46], where also the
discrete remnant, after brane instanton corrections to Hypergeometry, was consid-
ered.

For a “dual quaternionic manifold” one can then always gauge the solvable group
(non-abelian gauging) or restrict to the abelian gauging of its “maximal abelian ideal”
of dimension n + 2. To achieve this gauging one must at least have 2n + 3 vector
multiplets (n + 1 in the abelian case).!”

It is interesting that all the existing examples of gauging are particular cases of
this general framework.

The gauging of the two shift-symmetries of the universal multiplet was considered
in references [10, 6, 7] and correspond to the n = 0 case; it is obtained by turning on
the H-fluxes of the two field-strengths of the N.S and RR two-forms on a Calabi-Yau
threefold. This case requires hy; > 2.

Another case considered in the literature is the case when the maximal compact
subgroup of the isometry group is gauged. In order this to be the case we may
consider dual quaternionic spaces which are coset spaces, in which case also the
special Kahler manifold is a coset. The most general abelian compact gauging is
obtained by gauging the Cartan subalgebra of the maximal compact subgroup. For
the unitary series this has dimension n + 2 and for n = 0 reduces to the gauging of
U(1)? of the universal multiplet considered in reference [50].

For the G5/ SO(4) manifold dual to SU(1,1)/ U(1) special Kahler manifold, the

gauging of the isometries was considered in reference [51].
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A. Glossary of quaternionic geometry

Both a quaternionic or a hyper-Kéhler manifold M®¥P¢") are 4n-dimensional real
manifolds endowed with a metric h:

ds® = hyy(q)dg" ® dq” ; u,v=1,...,4ny (A.1)
and three complex structures
(J*) : T(HM) — T(HM) (x=1,2,3) (A.2)
that satisfy the quaternionic algebra
JPJY = =61 4 €Y7 J7 (A.3)
and respect to which the metric is hermitian:
VX, Y e THM : h(J*X,J*Y)=h(X,Y) (r=1,2,3). (A.4)
From eqgs. (A.3), (A.4) it follows that one can introduce a triplet of 2-forms
K* = Ky,dq" A dq"; Ky = huw(J7)y (A.5)

that provides the generalization of the concept of Kéahler form occurring in the com-
plex case. The triplet K* is named the hyper-Kdhler form. It is an SU(2) Lie-algebra
valued 2-form in the same way as the Kéhler form is a U(1) Lie-algebra valued 2-
form. In N = 1 supersymmetry there is a single complex structure and the scalar
manifold has a Kahler structure implying that the Kahler 2-form is closed. If super-
symmetry is local the Kéhler 2-form can be identified with the curvature of the U(1)
line-bundle and in this case the manifold is called a Hodge-Kéahler manifold, while
for rigid supersymmetry the line bundle is flat. Similar steps can be also taken here
and lead to two possibilities: either hyper-Kahler or Quaternionic manifolds.

Let us introduce a principal SU(2)-bundle over M"¥P¢") . Let w® denote a connec-
tion on such a bundle. To obtain either a hyper-Kéhler or a Quaternionic manifold
we must impose the condition that the hyper-Kahler 2-form K? is covariantly closed
with respect to the connection w®:

VK® = dK* + e w? NK* = 0. (A.6)

The only difference between the two kinds of geometries resides in the structure of
the SU(2)-bundle.

A hyper-Kéahler manifold is a 4n-dimensional manifold with the structure de-
scribed above and such that the SU(2)-bundle is flat.

Defining the SU(2)-curvature by:

1
0 = dw® + aexyzwy A w? (A.7)
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in the hyper-Kahler case we have:
Q*=0. (A.8)

Viceversa a Quaternionic manifold is a 4n-dimensional manifold with the structure
described above and such that the curvature of the SU(2)-bundle is proportional to
the hyper-Kahler 2-form. Hence, in the quaternionic case we can write:

0" = AK” (A.9)

where A is a non vanishing real number which, as we shall see, sets the scale of the
manifold M (hwper)

As a consequence of the above structure the Quaternionic manifold has a holon-
omy group of the following type:

Hol(MP)) = SU(2) ® H  (quaternionic)
H C Sp(2ng, R) (A.10)
Introducing flat indices {A, B,C = 1,2} {a, 3,7 = 1,...,2n} that run, respectively,

in the fundamental representations of SU(2) and Sp(2m,R), we can find a vielbein
1-form

U = U (q)dg" (A11)

such that
huv = Z/{fQUE’g(CQBGAB s (A12)

where Cop = —Cp, and eqp = —e€pa are, respectively, the flat Sp(2n) and Sp(2) ~
SU(2) invariant metrics. The vielbein U“* is covariantly closed with respect to the
SU(2)-connection w?* and to some Sp(2m, R)-Lie Algebra valued connection A% =

APe,
VUAY = dUA> + %wxafB ANUg +
+AP AU Cy, =0, (A.13)

where (0%)48 = e48(0%),° and (0%) 4P are the standard Pauli matrices. Further-

more U4 satisfies the reality condition:
Z/{Aa = (UAO‘)* = EAB(CO[QUBB. (A.14)

More specifically we can write a stronger version of eq. (A.12) [32]:

(ULUBP + UAUPPYC g = hype®® . (A.15)
The inverse vielbein U}, is defined by

Uus U = sv. (A.16)
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Flattening a pair of indices of the Riemann tensor R"*,, we obtain

R™, USUIP = Qfs(am)ABCo‘ﬁ + R A (A.17)

ts
where R?” is the field strength of the Sp(2ny) connection:
dA®P + A A NPT 5 = R = R dgt A dg® (A.18)

and

A
R = €A UUBP —U2UBP) + U UP e s gCPTP7 Qs (A.19)

where €,5,, is a completely symmetric tensor. The previous equations imply that
the Quaternionic manifold is an Einstein space with Ricci tensor given by!!

Ruo = A2 + 157 ) o (A.20)

Note that if the manifold is hyper-Kéhler, that is if equation (A.9) holds, then A =0
and the manifold is Ricci flat. Eq. (A.19) is the explicit statement that the Levi
Civita connection associated with the metric A has a holonomy group contained in
SU(2) ® Sp(2ng). Consider now egs. (A.3), (A.J) and (AY). We easily deduce the
following relation:

R KE KY = —6"Y iy + €Y K2, (A.21)

that holds true both in the hyper-Kahler and in the Quaternionic case. In the latter
case, using eq. (A.9), equation (A.21)) can be rewritten as follows:

REEQE QY = —A26"Y Ry + AEVEQZ (A.22)
In the quaternionic case we can write:
Aems = S UiaUps = —idCop(02) AB - (A.23)

Alternatively eq. (A.23) can be rewritten in an intrinsic form as

Q" = i \Cop(0y) AU NUP (A.24)
whence we also get: _
%Q“(ax)AB = N4 AUB (A.25)

There exist quaternionic manifolds which are homogeneous symmetric manifolds (a
list of homogeneous symmetric quaternionic spaces are given in [31]).

1 Our convention for the Riemann tensor are as follows: R* = dl' +T% ATY = RY..dq" A dg°

where I is the Levi-Civita connection 1-form. Therefore the Ricci tensor is R,s = Ry, 0;,
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In full analogy with the case of Kahler manifolds, to each Killing vector we can
associate a triplet P5(q) of O-form prepotentials. Indeed we can set:

ik, = —VP§ = —(dP} + €WV P3) , (A.26)

where V denotes the SU(2)- covariant exterior derivative and iy, denotes the con-
traction of a form with the vector k. Using components the previous equation takes

the form:
2O = V,PE. (A.27)
Formula (A.27) can be inverted to give the Killing vector in terms of the prepo-
tential: 1
huhf = — 0V P (A.28)

The three-holomorphic Poisson bracket is defined as follows:

{Pr, Ps}® = i, ik K° — A ™ P PS, (A.29)
where 1
and leads to the poissonian realization of the Lie algebra
{Pa,Pe}” = s PR (A.31)
which in components reads:
T u 1.0 A Yz PY Pz 1 A T
)\qu kA kE - 5 9 PA PZ - 5 AD PA . (A32)
From the Killing equation
Viuky + Vyky, =0 (A.33)

using

[V, Vil kwr = —2R o kin (A.34)

uvw

and the value of the Ricci tensor (A.20) one easily finds that k, is an eigenfunction

of the (covariant) laplacian:
VoV, — 2M2+ng)k, =0. (A.35)

Furthermore by double differentiation of P{!Z, using the identity:

i 1
USUPY = —QiP — ~e'Ph,, A.36
au— v 2)\ uv 26 ( )
we find that also the prepotential is an eigenfunction of the covariant laplacian:

V,V'PI — dnygAPY =0, (A.37)
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As a check, inserting equation (A.28) into (A.35) and commuting the covariant

derivative with the laplacian using the rule:
[V, V] PT = 2e™2Q7 PY (A.38)

we find that (A.35) and (A.37) are indeed consistent.

Finally we note that since V,k, = V|, k,) is a 2-form we can expand it on a basis
of 2-forms given by Q4P and L{[fjA Z/{UB}B e4p which is part of the symplectic curvature
2-form given in equation (A.19).

Indeed one can write:

1 1
Viko = 30 P° — SUS U eap Mg, (A.39)

where M,z is the hyperino mass matrix defined as the complex conjugate of eq.
(4.12). Equation (A.39) can be easily proved to hold by inverting the 2-form
UﬁA UﬁB eap on the r.h.s. of (A73Y9) and antisymmetrizing either in the SU(2) indices
or in the symplectic indices.
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