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1. Introduction

Supersymmetry Ward identities play a crucial role in disentangling general properties

of effective supersymmetric lagrangians arising from some more fundamental theory

at the Planck scale where gravity is strongly coupled.

A particular role is played by supersymmetry relations on the scalar poten-

tial [1, 2] and on supersymmetry preserving vacua which are at the basis for the

discussion. of partial supersymmetry breaking [3]–[7] and of BPS configurations

and non perturbative string or M theory vacua [6, 8, 9, 10, 11]. Some of these

relations where studied long ago, [2], but more recently a more careful analysis of

supersymmetry preserving configurations has played a crucial role in the study of

the so called “attractor mechanism” [12] for charged “black holes” in four and five

dimensions [13] as well as for the study of supergravity flows [14, 15] related to the

so called “renormalization group flow” [16, 17] in the framework of the AdS/CFT

correspondence [18].

Very recently these relations have been applied to a variety of interrelated prob-

lems such as domain walls in five dimensional supergravity [19]–[24], and supergrav-

ity instantons [25] responsible for non perturbative corrections to the hypermultiplet

moduli space in Calabi–Yau compactifications [26].
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In the present note we make some general consideration on scalar potentials,

fermion masses and killing prepotentials in a generic supersymmetric theory encom-

passing any low-energy effective lagrangian of a more fundamental theory which at

low energy incorporates a theory of gravity with N -extended supersymmetry.

Much of the information comes from the analysis of simple terms in the super-

symmetry variation of the effective action, namely terms with one fermion and one

boson (or its first derivative).

It is shown that general formulae for fermion masses and scalar potential ex-

ist which are simply related to the fermion shifts of the supersymmetry transfor-

mation laws; in particular the N = 1 and N = 2 structures of the matter cou-

pled supergravities [27]–[31], can be recovered in a simplified form. To illustrate

the general procedure we limit ourselves to the four-dimensional case, but it is

straightforward to see that our considerations can be extended also to higher di-

mensions.

In the particular case of N = 2 supergravity with arbitrary gauge interactions

turned on an important role is played by gauged quaternionic [32]–[34] and special

geometry [30, 35, 36] which was discussed in full detail some time ago [34, 31]. Here

we are able to find new relations between Killing prepotentials which allow us to

show that some gradient flow relations due to supersymmetry are merely due to

some simple properties of special and quaternionic geometry in presence of gauged

isometries. These relations purely depend on the geometrical data of the theory,

including gauging of isometries of the scalar manifold.1 This note is organized as

follows: in section 2 we set up the formalism and derive some basic relations between

scalar potential, fermionic shifts and fermion mass-matrices.

In section 3 and 4 we specify these relations to N = 1 and N = 2 theories and

recast some results in a model independent set up.

Section 4 is particularly relevant because it deals with N = 2 supergravity with

general interactions of vector multiplets and hypermultiplets turned on [31]. Here

some interesting relations emerge due to the special structure of coupled special and

quaternionic geometries in presence of gauge isometries.

One of the amusing results, already noted in some special cases, is that the (non

derivative) part of the spin 1/2-shifts can be written in terms of the (covariant)

derivative of some scalar functions [20, 24, 25, 38] (the hypermultiplet and vector

multiplet prepotentials) exactly as in the case of charged (abelian) black-hole config-

urations [12], where the “central charge” matrix is here replaced by the SU(2) valued

prepotential matrix.

An appendix with the basic relations of gauged quaternionic geometry is in-

cluded.

1A short account of the geometrical approach to Supergravity in the N = 2 case is given in [31]

(see especially the appendices of the second paper); a more general reference is [37, volume 2].
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2. The formalism: entangling supersymmetry with geometry

We write down the generic form of 4D N -extended supergravity theory up to 4-

fermion terms in the following way:

(detV)−1L = −1
2
R+ i (N̄ΛΣF−Λµν F−Σµν −NΛΣF+Λµν F+Σµν)+ P̂ IAµ P̂ µIA +

+
εµνλσ√−g

(
ψ̄Aµ γσDνψAλ − ψ̄AµγσDνψAλ

)
+ i
1

2

(
λ̄Iγµ∇µλI + λ̄Iγµ∇µλI

)−
− P̂ IAµ λ̄Iγ

νγµψAν − P̂IAµλ̄IγνγµψAν +
+FΛµν NΛΣ

(
LΣABψ̄

µAψνB + LΣI ψ̄
µAγνλIA + L

Σ
IJ λ̄

IγµνλJ + h.c.
)
+

+2S̄ABψ̄µAγ
µνψνB + 2SABψ̄

A
µ γ
µνψBν + iN

A
I λ̄
IγµψµA + iN

I
Aλ̄Iγ

µψAµ +

+MIJ λ̄IλJ +MIJ λ̄
IλJ − V(q) (2.1)

where qu,λI ,ψAµ are the scalar fields, the spin 1/2 fermions, and ψAµ the gravitino

fields. The vector field–strengths FΛ±µν are defined in equation (3.7) below. The labels
of the fields are as follows; we indicate by A,B, . . . the indices of the fundamental

representation of the R-symmetry group SU(N) ⊗U(1), their lower (upper) position
indicating their left (right) chirality. The indices I on the spin 1/2 fermions,besides

to enumerate the fields, are a condensed notation which encompasses various pos-

sibilities; if the fermions belong to vector multiplets we have to set I → IA since

they also transform under R-symmetry; if they refer to fermions of the gravitational

multiplet they are a set of three SU(N) antisymmetric indices: I → [ABC]. In the
case of nH hypermultiplets I → α where α is in the fundamental of Sp(2nH).

The matrices entering the lagrangian are all dependent on the scalar fieds qi.

NΛΣ is the kinetic symmetric matrix of the vector field-strengths, with Λ,Σ indices
in the symplectic representation under which they transform; SAB, N

I
A,M

IJ , together

with their hermitian conjugates S̄AB, NAI ,MIJ ,are matrices of order g in the gauge

coupling constant while the scalar potential V(q) is of order g2. Note that S̄AB,M IJ

are the mass matrices of the gravitino and the spin 1/2 fermions. Finally P̂ IA are

the the gauged vielbein 1-forms of the scalar manifold defined as

P̂ IAµ = P
IA
u

(
∂µq

u + gAΛµk
u
Λ

) ≡ P IAu ∇µqu , (2.2)

where P IAi is the ordinary vielbein of the scalar manifold. Also in this case the index

I of the vielbein must be given the same interpretation as explained in the case of

the spin 1/2 fields. Moreover for any boson field v carrying SU(N) indices we have

that lower and upper indices are related by complex conjugation,namely:

(vAB...)
∗ ∼ v̄AB... . (2.3)
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When N > 2, so that the scalar manifold is a coset G/H, the gauged vielbein 1-form

can be rewritten

P̂ IA =
(
L−1 dL

)IA
+ gL−1IΓA

Λ(TΛ)
Γ
ΠL
ΠA (2.4)

due to the general relation

P IAu kuΛ ≡
(
L−1∂uL

)IA
kuΛ = L

−1I
Γ(TΛ)

Γ
ΠL
ΠA , (2.5)

where TΛ are the generators of the gauge group.

We now write down the relevant terms of the supersymmetry transformation

laws of the various fields in order to perform the supersymmetry variation of the

lagrangian; this will allow us to identify the differential equations for the fermionic

shifts and other important relations between geometrical quantities mentioned in the

introduction. We have:

δψAµ = DµεA + · · ·+ SABγµεB (2.6)

δλI = iP̂ IAi εA∇µqi + · · ·+N IAεA (2.7)

δV aµ = −iψAγµεA + h.c. (2.8)

δAΛµ = 2f
Λ[AB]ψAµεB + if

ΛIAλ̄IγµεA + h.c. (2.9)

δquP IAu = λ̄IεA , (2.10)

where fΛ[AB] and fΛIA are symplectic sections on the scalar manifold. We are going

to explore the invariance of (2.1) (up to a total derivative) for terms of the form f εB

where f is a fermion and B is a function of the scalar fields.

We have to look to two kinds of terms:

• terms with one derivative

• terms with no derivatives

In the first case we can choose f ∂ε q and f ε ∂q as independent variations [1]

since all these terms are independent. It is a simple exercise, first carried out in [1],

to see that the terms containing the derivative of the supersymmetry parameter just

fix the couplings 2 S̄ABψ
A

µγ
µνψBν + iN

A
I λ̄
IγµψµA + h.c. of the lagrangian in terms of

the shifts proportional to g of the equations (2.6), (2.7).

The terms with no derivatives of the form f εB instead give rise to two im-

portant relations [1]. The first one is due specifically to the terms ψAγµε
AB(q)

which determine the scalar potential V (q) in terms of the squared modulus of the

shifts (2.6), (2.7); one finds:

δAB V (q) = −12S̄AC SCB +NAI N IB . (2.11)
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The second one is due to terms of the form λεB(q) and their h.c. that give rise

to a formula from which the Goldstone theorem for supergravity can be derived:

∂V

∂qi
P iIA = −4N IB S̄BA + 2MIJ NAJ . (2.12)

Tracing equations (2.11) with respect to A,B and differentiating with respect to

qu, by comparison with equation (2.12), it follows that there must be some relation

between NAI and ∂SAB as well as between MIJ and ∂NJA. We shall refer to these

relations as “gradient flows” for the fermionic shifts. These gradient flows can be

obtained in the simplest way by looking at the terms f ε ∂q of the first item (terms

with one derivative) which have not been yet considered.

Let us first consider the equations derived when considering terms of the form

ψ ε ∂q. There are two independent structures proportional to the currents with δµν

and γµν ,respectively. The δµν current gives the equation:

kuΛ f
Λ [AB] +N

[A
I PB]I iu = 0 , (2.13)

where one has to take into account the contribution coming from the kinetic term

of the scalars due to the definition of P̂ IAu which contributes through δAΛµ given in

equation (2.9). Equation (2.13) relates the Killing vector kuΛ (δq
u = ξΛ kuΛ) to the

spin 1/2 shifts NAI .

The terms proportional to the γµν current yield the gradient flow:

DuS
AB = N

(A
I PB)Iu . (2.14)

Considering next the equation coming from the terms λε∂q we find the gradient

flow of the spin 1/2 shifts:

∇uNAI = guv kvΛ fΛAI + 2PIB u SBA + 2MIJ P
JA
u . (2.15)

Alternatively eqs. (2.13), (2.14) can be cast in the following form:

DuS
AB = PAIu NBI − kuΛ fΛ [AB] (2.16)

which is analogous to eq. (2.15).

We note that the previous results determine the full fermionic mass matrixMIJ

through eq. (2.15).

If there are multiplets with no scalars as it happens in the N = 1 case then the

fermionic mass matrix for the fermions of such multiplets is obtained by looking in

the variation of the lagrangian to extra terms of the form λεF , F being the field-
strength of the vector replacing in this case the ∂q factor: indeed if λ has no scalar

partner it must certainly have a vector partner and the mass matrix of the fermions

can be obtained by the aforementioned variation.
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In a different fashion also behave multiplets where the fermions are the only

partner of scalar fields (Wess-Zumino multiplets in N = 1 and hypermultiplets in

N = 2) because in those cases fΛ[AB] and fΛIA do not exist in the eq. (2.9) and

therefore they do not enter in the determination of∇uNAI . Under these circumstances
∇uNAI andMIJ can be expressed through eqs. (2.15), (2.16) purely in terms of the

gravitino mass matrix SAB and its derivatives [27].

3. The N = 1 case

In order to apply our formulae to the N = 1 case we recall that the scalar manifold is

in this case a Kähler-Hodge manifold [32] and that the R- symmetry reduces simply

to U(1). It is convenient in this case to use as “vielbeins” the differential of the

complex coordinates dzi, dz̄i
?
where zi(x) are the complex scalar fields parametrizing

the Kähler-Hodge manifold of (complex) dimension nC . Therefore in the present

case we have to set qu → (zi, z̄i?). The spin 1/2 fermions are either in chiral or
in vector multiplets. So the index I runs over the number nV + nC of vector and

chiral multiplets, I = 1, . . . , nV + nC . It is convenient to assign the index Λ, the

same as for the vectors, to the fermions of the vector multiplets and we will denote

them as λΛ, Λ = 1, . . . , nV ; the fermions of the chiral multiplets will instead be

denoted by χi, χi
?
in the case of left-handed or right-handed spinors, respectively.

Since the gravitino and the gaugino fermions have no SU(N) indices their chirality

will be denoted by a lower or an upper dot for left-handed or right handed fermions

respectively, namely (ψ•, ψ•); (λΛ• , λ
•Λ). Moreover we have two metrics, namely the

Kähler metric gij? of the scalar manifold and the metric NΛΣ of the vector kinetic
term with symplectic indices Λ,Σ. Using these conventions we have the following

supersymmetry transformation laws for the fields [27, 29]:

δψ•µ = Dµε• + · · ·+ iL(z, z̄)γµε• (3.1)

δχi = i∇µziγµε• + · · ·+N iε• (3.2)

δλΛ• = F (−)Λµν γµνε• + · · ·+ iDΛε• (3.3)

δV aµ = −iψ•γµε• + h.c. (3.4)

δAΛµ = i
1

2
λ̄Λ• γµε

• + h.c. (3.5)

δzi = χ̄iε• , (3.6)

where we have defined

F (∓)Λµν =
1

2

(FΛµν ∓ i ? FΛµν)

?FΛµν ≡ 1
2
εµνρσFρσΛ

?FΛ(±)µν = ∓iFΛ(±)µν (3.7)

and the dots mean 3-fermion terms (irrelevant for our purposes).
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The N = 1 supergravity lagrangian invariant under the transformations (3.1)–

(3.6)(up to 4-fermion terms) is:

(detV)−1L = −1
2
R+ i (NΛΣF−Λµν F−Σµν −NΛΣF+Λµν F+Σµν)+ gij?∇µzi∇µzj? +

+
εµνλσ√−g

(
ψ̄•µγσ∇νψ•λ − ψ̄•µγσ∇νψ•λ

)−
−1
8

(NΛΣλ̄•Λγµ∇µλΣ• −N ΛΣλ̄Λ• γµ∇µλ•Σ)−
−i1
2
gij?
(
χ̄iγµ∇µχj? + χ̄j?γµ∇µχi

)
+

+gij?
(
ψ̄•νγ

νγµχi∇µzj̄ + ψ̄•νγνγµχj̄∇µzi
)
−

−2 i ImNΛΣ
(F−Λµν λ̄Σ• γµψ•ν + F+Λµν λ̄•Σγµψν•)+

+
i

4

(
∂iN ΛΣF−Λµν χ̄iγµνλΣ• − (∂i?NΛΣF+Λµν χ̄i

?

γµνλ•Σ
)
+

+2Lψ̄•µγ
µνψ•ν + 2L̄ψ̄•µγ

µνψ•ν + igij?
(
N
j̄
χ̄iγµψ•µ +N

iχ̄j
?

γµψ•µ
)
+

+
1

2
PΛ
(
λ̄•Λγµψ•µ − λ̄Λ• γµψ•|µ

)
+Mijχ̄

iχj +Mi?j?χ̄
i?χj

?

+ (3.8)

+MΛΣλ̄
Λ
• λ
Σ
• +MΛΣλ̄

Λ•λΣ• +MΛiλ̄
Λ
•χ
i +MΛi?λ̄

Λ•χi
? − V(z, z̄)

and the kinetic matrix NΛΣ turns out to be a holomorphic function of zi: NΛΣ =
N ΛΣ(zi)→ NΛΣ = NΛΣ(z̄i?). Note that since the scalar manifold is a Kähler-Hodge
manifold all the fields and the bosonic sections have a definite U(1) weight p under

U(1). We have

p(V aµ ) = p(AΛ) = p(zi) = p(gij?) = p(NΛΣ) = p(DΛ) = p(PΛ) = p(V) = 0
p(ψ•) = p(χi

?

) = p(λΛ• ) = p(ε•) =
1

2

p(ψ•) = p(χi) = p(λΛ•) = p(ε•) = −1
2

p(L) = p(Mij) = p(MΛΣ) = 1

p(L̄) = p(Mi?j?) = p(MΛΣ) = −1 . (3.9)

Accordingly, when a covariant derivative acts on a field Φ of weight p it is also

U(1) covariant (besides possibly Lorentz, gauge and scalar manifold coordinate sym-

metries) according to the following definitions:

∇iΦ = (∂i + 1
2
p∂iK)Φ ; ∇i∗Φ = (∂i∗ − 1

2
p∂i∗K)Φ , (3.10)

where K(z, z̄) is the Kähler potential.
A covariantly holomorphic section of is defined by the equation: ∇i∗Φ = 0.
Supersymmetry implies that all the quantities entering the transformation laws

and the lagrangian can be expressed in terms of the following geometric quantities:

the covariantly holomorphic gravitino mass-matrix L(z, z̄), the Killing vector real

prepotential PΛ(z, z̄) the Kähler potential and the holomorphic matrix NΛΣ(z).

7



J
H
E
P
0
5
(
2
0
0
1
)
0
3
4

Indeed we have the following relations:2

L(z, z̄) = W (z)e
1
2
K(z,z̄) (3.11)

∇i?L(z, z̄) = 0 (3.12)

N i = 2igij
?∇j?L̄ (3.13)

DΛ = 2 Im(NΛΣ)−1PΣ (3.14)

Mij = ∇i∇jL (3.15)

MΛΣ =
1

8
N i∂iNΛΣ (3.16)

MΛi = −i1
4
ImNΛΣ∂iDΣ − 1

2
kj
?

Λ gij? (3.17)

V = 4
(
−3LL̄+ gij

?∇i L∇j?L̄ + 1
16
ImNΛΣDΛDΣ

)
, (3.18)

where the Killing vector is defined in terms of the real prepotential PΛ as follows:

kiΛ = ig
ij?∂j?PΛ . (3.19)

Note that eqs. (3.14) and (3.17) imply:

MΛiD
Λ = −i1

4
∂i(ImNΛΣDΛDΣ) . (3.20)

In Kähler geometry kiΛ = kiΛ(z) is holomorphic and satisfies the following relations:

∇ikjΛ = 0 (3.21)

∇ikj?Λ = ∇j?kiΛ . (3.22)

Finally the gradient flows are:

∇iN j = 2 δji
∇iN̄ j?gkj? = 2Mik

∇iL = 1
2
gij?N̄

j?

∇i?L = 0 . (3.23)

4. The N = 2 case

For the N = 2 supergravity the scalar manifold is a product manifold [30, 34, 45]

M(scalar) =M(vec) ⊗M(hyper) (4.1)

since we have two kinds of matter multiplets, the vector multiplets and the hypermul-

tiplets. The geometry ofM(vec) is described by the Special K ähler geometry [30, 35,

36, 43] while the geometry ofM(hyper) is described by Quaternionic geometry [39]–
2For constant scalar background unbroken supersymmetry requires ∇i L = 0, i.e. the “norm”

‖L‖2 = L L̄ to be extremized on the Kähler-Hodge manifold. This is the N = 1 example of
“attractor equation” [9, 12].

8
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[42], [32, 30, 34, 44]. A full account of Special K ähler geometry is given in refs. [31].

As far as Quaternionic geometry is concerned, we have set an appendix to the present

paper since the account given in the reference [31] and also in [32, 34] do not comprise

several new important identities that we present in the appendix.

With respect to the general case we now have

Λ = 1, . . . , nV ; A,B = 1, 2 ; i = 1, . . . , 4nH + 2nV ; I = 1, . . . nH + nV .

(4.2)

We will use the same notations and conventions as in ref. [31] where the complete

theory of the N = 2 supergravity has been fully worked out in a geometrical setting.

Let us now shortly describe how our general framework particularizes to the

present case.

As in the case of N = 1 we denote the complex scalars parametrizing M(vec)

by zi, z̄ ī, while the scalars parametrizingM(hyper) will be denoted by qu. As already

noted in the previous section, when the index I runs over the vector multiplets it

must be substituted by IB in all the formulae relevant to the vector multiplet, since

the fermions λIA are in the fundamental of the R-symmetry group U(2). Furthermore

if we use coordinate indices as in the N = 1 case so that the vielbeins ofM(vec) are

simply dzi, dz̄ ī we have to perform the following substitutions:

P IAu dqu → P I BAi dzi = −εABdzi
P I

?A
i dqu → P I

?BA
i? dz̄i

?

= −εABdz̄i? (4.3)

In particular, the general objects fΛ[AB], fΛIA introduced in equation (2.9) be-

come in our case:

fΛ[AB] = εABL
Λ
; fΛAI → fΛAIB = δ

A
B∇i?L̄Λ , (4.4)

where LΛ(z, z̄) and its “magnetic” counterpart MΛ(z, z̄) = NΛΣ LΣ actually form a
2nV dimensional covariantly holomorphic section V = (L

Λ, MΛ) of a flat symplectic

bundle.

When the index I runs over the hypermultiplets we will rename them as follows:

(I, J)→ (α, β) and since there are no vectors in the hypermultiplets we have fΛAα = 0

The vielbeins of the quaternionic manifold M(hyper) will be denoted by UαA ≡
UαAu dqu where α = 1, . . . , 2nH is an index labelling the fundamental representation

of Sp(2nH). The inverse matrix vielbein is UuαA. We raise and lower the indices
α, β, . . . and A,B, . . . with the symplectic matrices Cαβ and εAB according to the

following conventions

εAB εBC = −δAC ; εAB = −εBA
Cαβ Cβγ = − δαγ ; Cαβ = −Cβα . (4.5)

For any SU(2) vector PA we have:

εAB P
B = PA ; εAB PB = −PA (4.6)
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and equivalently for Sp(2n) vectors Pα:

Cαβ P
β = Pα ; C

αβ Pβ = −P α . (4.7)

Since we have a product manifold the generic Killing vector kiΛ splits into

kiΛ → (kiΛ, kīΛ); kuΛ (4.8)

and they can be determined in terms of the prepotentials of special Kähler and

Quaternionic geometry as follows:

kiΛ(z) = ig
ij?∂j̄ PΛ(z, z̄)

2kuΛΩ
x
uv = −∇v P xΛ(q) , (4.9)

where Ωxuv are the SU(2)-valued components of the quaternionic curvature strictly

related to the three complex structures existing on a quaternionic manifold. Note

that as a consequence of quaternionic geometry (see appendix) the quaternionic

prepotentials satisfy the following “harmonic” equation:3.

∇u∇uP xΛ = −4nH P xΛ . (4.10)

For the purpose of making the paper self contained we report now the lagrangian

and the transformation laws of the N = 2 lagrangian as given in reference [31].We

limit ourselves to report the lagrangian up to 4-fermion terms and the supersymmetry

transformation laws up to 3-fermion terms since this is sufficient for our treatment.

We have:

N=2 Supergravity lagrangian.

(detV )−1 L = −1
2
R + gij?∇µzi∇µz̄j? + huv∇µqu∇µqv +

+
εµνλσ√−g

(
ψ̄Aµ γσρAνλ − ψ̄AµγσρAνλ

)−
− i
2
gij?
(
λ̄iAγµ∇µλj?A + λ̄j

?

A γ
µ∇µλiA

)
− i (ζ̄αγµ∇µζα + ζ̄αγµ∇µζα)+

+i
(N̄ΛΣF−Λµν F−Σµν −NΛΣF+Λµν F+Σµν)+

{
− gij?∇µz̄j?ψ̄µAλiA −

−2UAαu ∇µquψ̄µAζα + gij?∇µz̄j
?

λ̄iAγµνψAν + 2UαAu ∇µquζ̄αγµνψAν +
+h.c.

}
+
{
F−Λµν ImNΛΣ

[
4LΣψ̄AµψBνεAB − 4if̄Σi? λ̄i

?

Aγ
νψµBε

AB

+
1

2
∇ifΣj λ̄iAγµνλjBεAB − LΣζ̄αγµνζβCαβ

]
+ h.c.

}
+

+g
[
2SABψ̄

A
µ γ
µνψBν + igij?W

iABλ̄j
?

A γµψ
µ
B + 2iN

A
α ζ̄
αγµψ

µ
A +

+Mαβ ζ̄αζβ +Mα
iB ζ̄αλ

iB +Mij ABλ̄
iAλjB + h.c.

]
− V(z, z̄, q) , (4.11)

3Here and in the following we have set λ = 1 where λ is the scale (defined in the appendix) of

M(hyper). This is required by four dimensional supersymmetry of the lagrangian (see [34, 31])

10



J
H
E
P
0
5
(
2
0
0
1
)
0
3
4

where we have set F±Λµν = 1
2
(FΛµν ± i

2
εµνρσFΛρσ), FΛµν being the field-strengths of the

vectors AΛµ . Furthermore L
Λ(z, z̄) are the covariantly holomorphic sections of the

special Geometry, fΛi ≡ ∇iLΛ and the kinetic matrix NΛΣ is constructed in terms of
LΛ and its magnetic dual according to reference [31]. The normalization of the kinetic

term for the quaternions depends on the scale λ of the quaternionic manifold for

which we have chosen the value λ = −1,(see footnote 3). Finally the mass matrices
of the spin 1/2 fermions Mαβ , MAB ij, Mα

iA (and their hermitian conjugates) and

the scalar potential V they are given by:4

Mαβ = −UαAu UβBv εAB∇[ukv]Λ LΛ (4.12)

Mα
iB = −4UαBu kuΛ fΛi (4.13)

MAB ik = εAB gl?[if
Λ
k]k
l?

Λ −
1

2
iPΛAB∇ifΛk (4.14)

V(z, z̄, q) = g2
[(
gij?k

i
Λk
j?

Σ + 4huvk
u
Λk
v
Σ

)
L̄ΛLΣ + gij

?

fΛi f
Σ
j?PxΛPxΣ − 3L̄ΛLΣPxΛPxΣ

]
.

(4.15)

The supersymmetry transformation laws leaving invariant (4.11) are:

Supergravity transformation rules of the (left-handed) Fermi fields:

δψAµ = Dµ εA +
(
igSABηµν + εABT

−
µν

)
γνεB (4.16)

δλiA = i∇µ ziγµεA +G−iµνγµνεBεAB + gW iABεB (4.17)

δζα = iUBβu ∇µquγµεAεAB Cαβ + gNAα εA (4.18)

where T−µν = 2i ImNΛΣLΣFΛ−µν and Gi−µν = −gij?f̄Γj? ImNΓΛFΛ−µν .
Supergravity transformation rules of the Bose fields:

δ V aµ = −i ψ̄Aµ γa εA − i ψ̄Aµ γa εA (4.19)

δ AΛµ = 2L̄
Λψ̄AµεBε

AB + 2LΛψ̄Aµ ε
BεAB +

+i fΛi λ̄
iAγµε

B εAB + i f̄
Λ
i? λ̄

i?

AγµεB ε
AB (4.20)

δ zi = λ̄iAεA (4.21)

δ zi
?

= λ̄i
?

Aε
A (4.22)

δ qu = UuαA
(
ζ̄αεA + CαβεAB ζ̄βεB

)
. (4.23)

The gauge shifts for the three kinds of fermions, gravitinos ψAµ,(A=1,2), gauginos

λiA (i = 1, . . . nV ) and hyperinos ζ
α, (α = 1, . . . , nH) appearing both in the lagrangian

and in the supersymmetry transformation laws are given by [31]:

SAB = i
1

2
PAB Λ L

Λ ≡ i1
2
PAB ≡ i1

2
P xσxAB (4.24)

W iAB = iPABΛ gij
?

fΛj? + ε
ABkiΛL

Λ ≡ i∇iPAB + εABki (4.25)

NAα = 2UAαu kuΛLΛ ≡ 2UAαu ku , (4.26)
4There are misprints in the equation (4.14) as given in reference [31] which have been corrected.

11



J
H
E
P
0
5
(
2
0
0
1
)
0
3
4

where:5

PABΛL
Λ = P xΛL

Λ σxAB ≡ P x σxAB , (x = 1, 2, 3) (4.27)

(PΛABL
Λ)? = −PABΛ L̄Λ = −P xΛL̄ΛσxAB ≡ −P xσxAB (4.28)

and we have further defined

kiΛL̄
Λ = ki (4.29)

kuΛL̄
Λ = ku (4.30)

PABΛ L
Λ = PAB (4.31)

PABΛ gij
?

fΛj? = ∇j?L̄ΛPABΛ gij
?

= ∇iPAB . (4.32)

Taking into account the definitions (4.29), (4.30) we see that the δλiA and δχα shifts

are all covariant derivatives of the quaternionic and Kähler prepotentials:6

W i AB = i(∇iPAB + εAB∇iPΛL̄Λ) (4.33)

NAα = −
1

3
UAαu Ωxuv∇vP x = 2UAαu kuΛ . (4.34)

The gradient flow equations (2.15)and (2.16) adapted to the present case are:

∇kW iAB = 2 δik S
AB − εAB gij? kkΛ fΛj? (4.35)

∇k?W iAB = −gij?MAB
k?j? +

1

2
εABgij

? (
fΛj?kΛk? + fΛk?kΛj?

)
(4.36)

∇uW j?

AB = −
1

2
gij

?Mα
i(B UA)αu (4.37)

∇iNαA =
1

2
Mα
iA (4.38)

UuBα∇uNAβ = 4Cαβ SAB + εABMαβ (4.39)

∇uSAB = −1
2
Uαu(ANαB) (4.40)

∇iSAB = 1
2
W j?

(AB) gij? (4.41)

∇i? SAB = 0 , (4.42)

where we have set W j?

AB ≡ (W iAB)? andMAB
k?j? ≡ (MAB kj)

?.

5We use Pauli matrices with both indices in the upper or lower position so that they are sym-

metric.Note that (σxAB)
? = −σxAB.

6Note that ∇iPΛL̄Λ cannot be written as a total derivative since PΛL̄Λ = 0, so no gauge invariant
prepotential exists for vector multiplets as in the N = 1 case (see (3.14)). This should no come as a

surprise since a prepotential having the interpretation of “superpotential” should be related to the

gravitino mass and it is SAB (quaternionic prepotential) and not the Hodge-Kähler prepotential PΛ
which enters in it. Indeed no gauge invariant scalar exists for vector multiplets that could enter in

the spin 3/2 mass term.
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Note that in the manipulations performed from (4.33) to (4.35) one has to use

the gauged special geometry identities [34]:

PΛL
Λ = PΛL̄

Λ = 0 (4.43)

kiΛL
Λ = ki?Λ L̄

Λ = 0 . (4.44)

We also note that Mαβ can be written in terms of the (traceless part of the)

anticommutator of two covariant derivatives:7

Mαβ = −i1
6
UuA(αUvβ)B∇(u∇v)PAB . (4.45)

This is a consequence of the basic relations of gauged quaternionic geometry given

in appendix. Equation (4.45) is analogous to what happened for chiral multiplet in

the N = 1 case, see equation (3.15). We also note that equation (4.39) is equivalent

to equation (A.39) of the appendix where we put λ = −1.
Using the identity (2.11) adapted to the present case:

δABV = −12(SMA)? SMB + gij?W
iMAW j?

MB + 2N
A
α N

α
B (4.46)

one may compute the scalar potential which turns out to be the one given in

eq. (4.15) [34, 31]. Using equations (4.40), (4.41), (4.42) the scalar potential (4.15)

can be also rewritten in the following way:

V = −6SAB(SAB)?+2gij?∇iSAB∇j?(SAB)?+4∇uSAB∇u(SAB)?+gij?kikj? . (4.47)

Finally we note that the last term in equations (4.33), (4.25) has a similar struc-

ture as the N = 2 central charge [47], but the SU(2) valued prepotential PAB adds

a symmetric part to W i AB. However unbroken N = 2 supersymmetry is still con-

trolled by a gradient flow equation [20, 25, 24] which is equivalent to ki = 0 and

to extremize in the moduli space P x.8 We note in particular that if P x = 0 the

supersymmetry flow has always vanishing potential (no AdS vacua). On the other

hand if ki = 0 the supersymmetry flow is controlled by the “superpotential” P x P x

whose extrema in the full moduli space (at P x 6= 0) imply δλiA= δζα = 0. For

abelian gauging ki = kiΛ = 0 and in absence of hypermultiplets, for constant P
x
Λ, we

retrieve the situation discussed in the literarature [48, 15, 20, 24].

We note that the supersymmetric flow of the hypermultiplets (at points where

the scalars have vanishing velocity) implies a vanishing value of the Killing vectors:

kuΛL
Λ = 0. Since the covariant holomorphic section LΛ = LΛ(z, z̄) is complex, this

7Note that in eq. (4.45) the symmetric part of the anticommutator is automatically traceless

because Uu(Aα UB)vβ huv = 0
8These conditions are generally too restrictive if only N = 1 supersymmetry is preserved. For

instance, in the example of ref. [4] NAα does not vanish.
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implies that the values qu = qu0 for which k
u
ΛL
Λ = 0 are the fixed points9 of the

group generated by the two (real) Lie algebra elements kuΛ ImL
Λ, kuΛReL

Λ. This

group depends on ImLΛ and ReLΛ. If

f∆ΛΣ ImL
ΛReLΣ = 0 (4.48)

the two-dimensional gauge group is abelian. If either ImLΛ or ReLΛ is zero then we

have a one-dimensional gauge group; otherwise it may be any subgroup generated by

the two elements. Of course for abelian isometries f∆ΛΣ = 0 and the group is always

a two-dimensional subgroup of the gauge group. It is interesting to observe that in

five dimensions the corresponding section LΛ is real so that the group generated by

kuΛL
Λ is always a one-dimensional subgroup of the isometry group. Furthemore we

note that the condition kuΛL
Λ = 0, taking into account the equation (A.32),implies

the following consistency condition on the quaternionic prepotentials:

−λ εxyz P yΛ P zΣ LΛL̄Σ = f∆ΛΣ P
x
∆ L

ΛL̄Σ (4.49)

which in the abelian case reduces to

εxyz P yΛ P
z
Σ L

ΛL̄Σ = 0 . (4.50)

Defining P x(L) = P xΛL
Λ (and setting λ = −1), equation (4.49) can be rewritten in

the suggestive form: −→
P (L)×−→P (L̄) = −→P (L× L̄) , (4.51)

where

L× L̄ ≡ f∆ΛΣL
ΛL̄Σ . (4.52)

5. Dual quaternionic manifolds and the gauging of their

isometries

A particular interesting case where some “universal gauging” can be studied in a fairly

general way is the special situation when the hypermultiplet manifold of quaternionic

dimension n+1 is obtained by c-map [45] from a special Kähler manifold of complex

dimensions n.

These manifolds, called dual quaternionic manifolds in reference [45], have a

“solvable group of motion” whose Solvable Lie Algebra has dimension 2n + 4 [49].

This solvable Lie Algebra is associated to the rank one coset SU(1, n+2)/ SU(n+2)⊗
U(1) and contains, as particular case, the “universal hypermultiplet” parametrizing

SU(1, 2)/U(2) [45]. These symmetries are always present even if the special Kähler

manifold has no isometries at all.

9The same is true for the special Kähler manifolds in the case of non abelian isometries.
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In Calabi-Yau compactifications for type-IIB strings down to D = 4, n = h1,1
and the solvable algebra of rank one is related to 2h1,1 + 2 shift- symmetries of the

RR-scalars, one shift symmetry of the NS-axion (dual to bµν) making the 2h1,1 + 3

nilpotent part of the group. The remaining Cartan generator is related to the scale

symmetry of the dilaton. The maximal abelian ideal has dimension h1,1+2 (of which

h1,1 + 1 are RR abelian shifts).

In the case of the universal hypermultiplet the nilpotent subalgebra is three-

dimensional, it is the Heisenberg algebra considerd in reference [46], where also the

discrete remnant, after brane instanton corrections to Hypergeometry, was consid-

ered.

For a “dual quaternionic manifold” one can then always gauge the solvable group

(non-abelian gauging) or restrict to the abelian gauging of its “maximal abelian ideal”

of dimension n + 2. To achieve this gauging one must at least have 2n + 3 vector

multiplets (n+ 1 in the abelian case).10

It is interesting that all the existing examples of gauging are particular cases of

this general framework.

The gauging of the two shift-symmetries of the universal multiplet was considered

in references [10, 6, 7] and correspond to the n = 0 case; it is obtained by turning on

the H-fluxes of the two field-strengths of the NS and RR two-forms on a Calabi-Yau

threefold. This case requires h2,1 ≥ 2.
Another case considered in the literature is the case when the maximal compact

subgroup of the isometry group is gauged. In order this to be the case we may

consider dual quaternionic spaces which are coset spaces, in which case also the

special Kähler manifold is a coset. The most general abelian compact gauging is

obtained by gauging the Cartan subalgebra of the maximal compact subgroup. For

the unitary series this has dimension n+ 2 and for n = 0 reduces to the gauging of

U(1)2 of the universal multiplet considered in reference [50].

For the G2/ SO(4) manifold dual to SU(1, 1)/U(1) special Kähler manifold, the

gauging of the isometries was considered in reference [51].
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A. Glossary of quaternionic geometry

Both a quaternionic or a hyper-Kähler manifold M(hyper) are 4n-dimensional real

manifolds endowed with a metric h:

ds2 = huv(q)dq
u ⊗ dqv ; u, v = 1, . . . , 4nH (A.1)

and three complex structures

(Jx) : T (HM) −→ T (HM) (x = 1, 2, 3) (A.2)

that satisfy the quaternionic algebra

JxJy = −δxy 1+ εxyzJz (A.3)

and respect to which the metric is hermitian:

∀X,Y ∈ THM : h (JxX, JxY) = h (X,Y) (x = 1, 2, 3) . (A.4)

From eqs. (A.3), (A.4) it follows that one can introduce a triplet of 2-forms

Kx = Kxuvdq
u ∧ dqv;Kxuv = huw(Jx)wv (A.5)

that provides the generalization of the concept of Kähler form occurring in the com-

plex case. The triplet Kx is named the hyper-Kähler form. It is an SU(2) Lie-algebra

valued 2-form in the same way as the Kähler form is a U(1) Lie-algebra valued 2-

form. In N = 1 supersymmetry there is a single complex structure and the scalar

manifold has a Kähler structure implying that the Kähler 2-form is closed. If super-

symmetry is local the Kähler 2-form can be identified with the curvature of the U(1)

line-bundle and in this case the manifold is called a Hodge-Kähler manifold, while

for rigid supersymmetry the line bundle is flat. Similar steps can be also taken here

and lead to two possibilities: either hyper-Kähler or Quaternionic manifolds.

Let us introduce a principal SU(2)-bundle overM(hyper). Let ωx denote a connec-

tion on such a bundle. To obtain either a hyper-Kähler or a Quaternionic manifold

we must impose the condition that the hyper-Kähler 2-form Kx is covariantly closed

with respect to the connection ωx:

∇Kx ≡ dKx + εxyzωy ∧Kz = 0 . (A.6)

The only difference between the two kinds of geometries resides in the structure of

the SU(2)-bundle.

A hyper-Kähler manifold is a 4n-dimensional manifold with the structure de-

scribed above and such that the SU(2)-bundle is flat.

Defining the SU(2)-curvature by:

Ωx ≡ dωx +
1

2
εxyzωy ∧ ωz (A.7)
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in the hyper-Kähler case we have:

Ωx = 0 . (A.8)

Viceversa a Quaternionic manifold is a 4n-dimensional manifold with the structure

described above and such that the curvature of the SU(2)-bundle is proportional to

the hyper-Kähler 2-form. Hence, in the quaternionic case we can write:

Ωx = λKx (A.9)

where λ is a non vanishing real number which, as we shall see, sets the scale of the

manifoldM(hyper).

As a consequence of the above structure the Quaternionic manifold has a holon-

omy group of the following type:

Hol(M(hyper)) = SU(2)⊗H (quaternionic)

H ⊂ Sp(2nH ,R) (A.10)

Introducing flat indices {A,B,C = 1, 2} {α, β, γ = 1, . . . , 2n} that run, respectively,
in the fundamental representations of SU(2) and Sp(2m,R), we can find a vielbein

1-form

UAα = UAαu (q)dqu (A.11)

such that

huv = UAαu UBβv CαβεAB , (A.12)

where Cαβ = −Cβα and εAB = −εBA are, respectively, the flat Sp(2n) and Sp(2) ∼
SU(2) invariant metrics. The vielbein UAα is covariantly closed with respect to the
SU(2)-connection ωz and to some Sp(2m,R)-Lie Algebra valued connection ∆αβ =

∆βα:

∇UAα ≡ dUAα + i

2
ωxσABx ∧ UαB +

+∆αβ ∧ UAγCβγ = 0 , (A.13)

where (σx)AB = εAB(σx) CA and (σx) BA are the standard Pauli matrices. Further-

more UAα satisfies the reality condition:
UAα ≡ (UAα)∗ = εABCαβUBβ . (A.14)

More specifically we can write a stronger version of eq. (A.12) [32]:

(UAαu UBβv + UAαv UBβu )Cαβ = huvεAB . (A.15)

The inverse vielbein UuAα is defined by
UuAαUAαv = δuv . (A.16)
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Flattening a pair of indices of the Riemann tensor Ruvts we obtain

RuvtsUαAu UβBv = −
i

2
Ωxts(σx)

ABCαβ + Rαβts ε
AB , (A.17)

where Rαβts is the field strength of the Sp(2nH) connection:

d∆αβ +∆αγ ∧∆δβCγδ ≡ Rαβ = Rαβts dqt ∧ dqs (A.18)

and

R
αβ
uv =

λ

2
εAB(UAαu UBβv − UAαv UBβu ) + UAγu UBδv εABC

αρ
C
βσΩγδρσ , (A.19)

where Ωγδρσ is a completely symmetric tensor. The previous equations imply that

the Quaternionic manifold is an Einstein space with Ricci tensor given by11

Ruv = λ(2 + nH)huv . (A.20)

Note that if the manifold is hyper-Kähler, that is if equation (A.9) holds, then λ = 0

and the manifold is Ricci flat. Eq. (A.19) is the explicit statement that the Levi

Civita connection associated with the metric h has a holonomy group contained in

SU(2)⊗ Sp(2nH). Consider now eqs. (A.3), (A.5) and (A.9). We easily deduce the
following relation:

hstKxusK
y
tw = −δxyhuw + εxyzKzuw (A.21)

that holds true both in the hyper-Kähler and in the Quaternionic case. In the latter

case, using eq. (A.9), equation (A.21) can be rewritten as follows:

hstΩxusΩ
y
tw = −λ2δxyhuw + λεxyzΩzuw . (A.22)

In the quaternionic case we can write:

ΩxAα,Bβ ≡ ΩxuvUuAαUvBβ = −iλCαβ(σx)AB . (A.23)

Alternatively eq. (A.23) can be rewritten in an intrinsic form as

Ωx = iλCαβ(σx)ABUαA ∧ UβB (A.24)

whence we also get:
i

2
Ωx(σx)

AB = λUAα ∧ UBα . (A.25)

There exist quaternionic manifolds which are homogeneous symmetric manifolds (a

list of homogeneous symmetric quaternionic spaces are given in [31]).

11Our convention for the Riemann tensor are as follows: Ruv ≡ dΓuv + Γuw ∧ Γwv = Ruvrsdqr ∧ dqs
where Γ is the Levi-Civita connection 1-form. Therefore the Ricci tensor is Rvs = R

u
vrsδ

r
u
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In full analogy with the case of Kähler manifolds, to each Killing vector we can

associate a triplet PxΛ(q) of 0-form prepotentials. Indeed we can set:

ikΛΩ
x = −∇PxΛ ≡ −(dPxΛ + εxyzωyPzΛ) , (A.26)

where ∇ denotes the SU(2)- covariant exterior derivative and ikΛ denotes the con-
traction of a form with the vector kΛ. Using components the previous equation takes

the form:

2kvΛΩ
x
uv = ∇uP xΛ . (A.27)

Formula (A.27) can be inverted to give the Killing vector in terms of the prepo-

tential:

huwk
w
Λ = −

1

6λ2
Ωxuv∇vP xΛ . (A.28)

The three-holomorphic Poisson bracket is defined as follows:

{PΛ,PΣ}x ≡ ikΛikΣKx − λ εxyz PyΛ PzΣ , (A.29)

where
1

2
ikΛikΣK

x ≡ λΩxuv k
u
Λ k
v
Σ (A.30)

and leads to the poissonian realization of the Lie algebra

{PΛ,PΣ}x = f∆ΛΣPx∆ (A.31)

which in components reads:

λΩxuv k
u
Λ k
v
Σ −

λ

2
εxyz PyΛ PzΣ =

1

2
f∆ΛΣPx∆ . (A.32)

From the Killing equation

∇ukv + ∇vku = 0 (A.33)

using

[∇u,∇v] kwΛ = −2R l
uvw klΛ (A.34)

and the value of the Ricci tensor (A.20) one easily finds that ku is an eigenfunction

of the (covariant) laplacian:

∇v∇vku − 2λ(2 + nH)ku = 0 . (A.35)

Furthermore by double differentiation of PABΛ , using the identity:

UAαuUBαv =
i

2λ
ΩABuv −

1

2
εABhuv (A.36)

we find that also the prepotential is an eigenfunction of the covariant laplacian:

∇v∇vP xΛ − 4nHλP xΛ = 0 . (A.37)
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As a check, inserting equation (A.28) into (A.35) and commuting the covariant

derivative with the laplacian using the rule:

[∇u,∇v]P x = 2εxyzΩzuvP y (A.38)

we find that (A.35) and (A.37) are indeed consistent.

Finally we note that since ∇ukv ≡ ∇[ukv] is a 2-form we can expand it on a basis
of 2-forms given by ΩABuv and UαA[u UβBv] εAB which is part of the symplectic curvature
2-form given in equation (A.19).

Indeed one can write:

∇ukv = 1

4λ
ΩxuvP

x − 1
2
UαA[u UβBv] εABMαβ , (A.39)

where Mαβ is the hyperino mass matrix defined as the complex conjugate of eq.

(4.12). Equation (A.39) can be easily proved to hold by inverting the 2-form

UαA[u UβBv] εAB on the r.h.s. of (A.39) and antisymmetrizing either in the SU(2) indices
or in the symplectic indices.
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