
wing
vel of
called
ively
ardless
s even

ages
bility to
emote
e only

DCE
pecial
) has
ation
ace it
ing

and
RBA
that

bject
sign

ing a
Grady
s the

e been
ause of
CORBA: A PRACTICAL INTRODUCTION

Serguei Kolos1)
CERN, Geneva, Switzerland

Abstract
Common Object Request Broker Architecture (CORBA) is the recent answer
for the need for interoperability in the modern distributed computing
environment. This architecture allows objects to communicate with one
another regardless of their location and implementation. CORBA hides the
differences between the operating systems, programming languages and
address spaces for the objects implementations.
This text will give an overview of the CORBA along with the Java
programming example that illustrates the process of the CORBA based
distributed system development. At the end some examples of how CORBA
is currently being used in HEP experiments will be given.

1. INTRODUCTION

Throughout the history of computing the demand for distributed computation has been gro
permanently. The evolution in this area has been always moving to the direction of increasing le
abstraction for the communication implementation. The first major step on this road was so-
socket[1] interface that unifies the way in which a low-level protocol have been used. It is a relat
simple set of generic procedures that allow bidirectional data exchange between applications reg
of their location. The applications could be executing either on the same or on different computer
if those computers run different operating systems.

The Remote Procedure Call (RPC)[2] layer brings into use the idea of control mess
exchange instead of just data exchange between distributed applications. RPC gives the possi
unify local and remote procedures invocations at the level of programming language code. The r
procedures could be declared and called exactly in the same way as the local ones with th
omission that the invocation errors shall be handled differently.

Another step has been done by the Distributed Computing Environment (DCE)[3] system.
is a product of the Open Software Foundation (OSF)[4] that puts into practice the idea to use a s
language for the declaration of communication interfaces. The Interface Definition Language (IDL
been promoted to provide a service interface description. The IDL declaration is the only inform
required for the development of both a service provider and a service requestor for the interf
describes. The important result of the IDL innovation is the ability to use different programm
languages for the implementation of the applications that are taking part in communications.

Each round in this evolution was another step on the road of unification of the local
distributed computing models. The resent step in this evolution was the introduction of the CO
standard by the Object Management Group (OMG)[5] in 1991. The major innovation of the OMG
quickly made CORBA the leading communication standard was the application of the O
technology to the communication domain. CORBA puts into practice the Object Oriented De
(OOD) methods for software engineering. OOD as a method of modelling a problem by tak
balanced view about objects and the operations performed upon them, was proposed by
Booch[6]. The classical OOD model does not take care of the objects’ implementation. It define
object interfaces and relationships regardless of where the objects are and how they hav
implemented. But for a number of years this model had been rather a theoretical abstraction bec

1. On leave from the Petersburg Nuclear Physics Institute, Gatchina, Russia

ard is a
RBA
riented
ost

lly the

ence
ystem
r some

tities:
lasses’
of the
face,
ndard

n by
ing

pping

r this
inter-
ccess

are
we can
the essential gap between the OOD model and implementation technologies. The CORBA stand
great contribution to the applicability of the OOD technology to a real computing problems. CO
acts as a bridge between the object design methods and objects’ implementation. The Object-O
IDL perfectly maps to the OOD model allowing to express in a formal way any OOD paradigm. M
of the modern OOD tools like Rose[7], StP[8], Together[9], etc. are able to generate automatica
interfaces in OMG Interface Definition Language (IDL)1 from the design artifacts. This IDL definition
is substantial for the implementation of the objects that can be used either locally or remotely.

The next two chapters give the overview of the CORBA standard and the OMG refer
architecture. An example that shows how CORBA can be used for the implementation of the s
has been designed using OOD methods will be shown in the next chapter. At the last chapte
references to the applications of CORBA in HEP experiments are given.

2. CORBA OVERVIEW

CORBA standard is based on the classical object model[10] that defines two kinds of distinct en
classes that support encapsulation, inheritance and polymorphism and objects that are c
instances. The fundamental principle that was recognized by CORBA is the independence
behavior of an object from its implementation. The behavior of an object is defined by it’s inter
where the interface is a set of object method signatures. From this point of view the CORBA sta
can be seen as consisting of two logical levels:

• Interface definition level: Defines syntax and semantics for the objects’ interface descriptio
means of OMG IDL[11]. The way in which IDL interfaces can be mapped to a programm
language is standardized by the CORBA Language Mappings[12]. The Language Ma
specifications provide a link to the next CORBA level.

• Communication media level: Specifies how communications have to be implemented. Fo
purpose the Object Request Broker (ORB) specification is introduced. The ORB acts as an
object communication bus providing a set of interfaces for object creation, registration and a
control.

Fig. 1 The structure of the CORBA standard

Figure 1 shows the structure of the CORBA standard. Different components of the ORB
briefly described in the next paragraphs. Those who are interested in a more detailed description
address to the respective chapters of the [13].

1. Do not confuse it with the DCE IDL. The OMG IDL is essentially different from the DCE’s one.

nent

for a
G IDL

self-
essary
er.

ject
iew of

cause
well

f an

s and

ce. A
- an

cant.
that a

efixed
Thus
a access
2.1 Object Interface Definition

The basis for communication description is formed by the OMG IDL that was the first compo
defined by the CORBA standard. The OMG IDL is widely accepted as thede factostandard for objects’
interface description. It is often used as a general purpose interface description tool even
description of a non distributed objects interfaces. There are two fundamental features of the OM
that make it so popular:

• OMG IDL is able to provide a comprehensive object interface description using intuitive
explained semantics. A service description, has been done on OMG IDL, provides all the nec
information for the independent development of both a service provider and a service consum

• Any IDL construct can be easily mapped to most of the existing programming languages.
These facilities make the OMG IDL extremely useful for the OOD. It is IDL that bridges ob

design and object implementation phases of the software life cycle. This chapter gives an overv
the IDL and explains what the CORBA Language Mappings are.

2.1.1 OMG Interface Definition Language

As it was already mentioned an IDL declaration looks very self-explained and understandable be
the OMG IDL uses the same grammar and lexical rules as C++. Most of the IDL’s keywords are
known for the software developers and ordinarily it takes them just a few hours to learn IDL.

The key concept of an IDL declaration is an interface. Interface declaration consists o
interface header and interface body. Interface header consists of the optional keyword ‘abstract’, the
interface name and optional inheritance specification. An interface body contains attribute
operations declarations. Figure 2 shows an example of the IDL interfaces declaration.

1: abstract interface container {
2: long size();
3: };
4:
5: interface iterator: container {
6: any next();
7: }
8:
9: interface list: container {
10: void add(in any elem);
11: iterator create_iterator();
12: };

Fig. 2 IDL interfaces declaration

An interface can be derived from another interface, which is then called a base interfa
derived interface can declare it’s own attributes and operations. Multiple inheritance is allowed
interface may be derived from any number of base interfaces. The order of derivation is not signifi

Data can be defined only as attributes of the interfaces. The attribute declaration means
respective accessor an mutuator methods will be available for this attribute. If an attributed is pr
with the read-only keyword only the accessor method will be available for the specific attribute.
the attribute construct does not declare a storage for the data value but instead just defines a dat
interface. The IDL declarations shown in Table 1 are equivalent.

Table 1 Two alternative ways of interface description

1: interface person {
2:
3: attribute octet age;
4:
5: read-only attribute string name;
6: };

1: interface person {
2: void set_age(in octet ag);
3: octet get_age();
4:
5: string get_name();
6: };

s and
nits in

n and
The OMG IDL specification define a number of basic types that can be used for the attribute
method parameters declarations. These types covers all the possible basic computational u
programming languages. They are shown in Table 2.

These basic types can be used to construct complex ones by utilizing the structure, unio
sequence patterns. Figure 3 shows an example of the complex types definition.

1: enum PrimitiveKind{
2: pk_unknown, pk_char, pk_octet, pk_short, pk_ushort,
3: pk_long, pk_ulong, pk_float, pk_double, pk_boolean, pk_string,
4: };
5:
6: union DataEntry switch(PrimitiveKind){
7: case pk_char: char de_char;
8: case pk_octet: octet de_uchar;
9: case pk_short: short de_short;
10: case pk_ushort: unsigned short de_ushort;
11: case pk_long: long de_long;
12: case pk_ulong: unsigned long de_ulong;
13: case pk_float: float de_float;
14: case pk_double: double de_double;
15: case pk_boolean: boolean de_bool;
16: case pk_string: string de_string;
17: };
18:
19: struct NamedDataEntry{
20: string name;
21: DataEntry entry;
22: };
23:
24: typedef sequence<DataEntry> Data;
25:
26: typedef sequence<NamedDataEntry> NamedData;

Fig. 3 OMG IDL complex types

There are some other constructs in IDL that have not been mentioned yet. They areexceptions
that are used to indicate the exceptional conditions of the methods execution, theonewaykeyword used
to declare the asynchronous style of the method invocation, themodule that is the namespace

Table 2 Basic OMG IDL types

OMG IDL type Matched by

char, wchar simple and wide character literals

octet unsigned 1-byte value

short, unsigned short signed and unsigned 2-byte values

long, unsigned long signed and unsigned 4-byte values

long long, unsigned long long signed and unsigned 8-byte values

float, double simple and double precision floating point values

string, wstring sequences of simple and wide character literals

enum set of user defined values

er IDL

OD
give
rface

their
ction
to the
d by

of the
ion
but is

source
ble 3

++,
s with
as an
la2
object
r that
declaration that prevents the names declared in the scope of this module from clashes with oth
declarations, etc. For the complete specification of the IDL syntax and semantics see [11].

OMG IDL is a permanently evolving standard that tracks the major innovations in the O
world while keeping the backward compatibility with the previous versions of the specification. It
us a good reason to be optimistic for the future of the OMG IDL as a basic method of objects’ inte
description.

2.1.2 Languages Mappings

IDL is purely declarative language. It is used to declare interfaces and can not be used for
implementation. IDL is used to express the OOD patterns in a formal way but it is still an abstra
that requires another type of formal definition that specifies how IDL interfaces can be mapped
‘real world’ of software implementation. Such specification is provided by the CORBA standar
means of Language Mappings for several programming languages.

A Language Mapping defines a programming language counterpart for each construct
OMG IDL. This definition allows to generate programming code from the IDL declarat
automatically. This programming code is an interface declaration that is equivalent to the IDL one
expressed by means of a programming language.

For various languages these mappings are essentially different. For exampleinterfacedeclaration
corresponds toclassin C++, interfacein Java andstructurein C language. All the conformity between
the IDL and a programming language are formally described by the standard in such a way that
code compatibility between different ORBs will very probably be possible in the nearest future. Ta
shows the Java mappings for the IDL types accordingly to the OMG specification[14].

Currently, the CORBA standard defines mappings for the following languages: C, C
Smalltalk, COBOL, Ada, Java and Lisp. Several independent companies develop their own ORB
the mappings to languages that are not part of the CORBA standard. For example Xerox[15] h
ORB called Inter Language Unification (ILU)[16] with mappings to the Python and Modu
languages. There are no limitations for the use of such language mappings for the CORBA
development. The CORBA client implemented in Lisp can call the methods of a CORBA serve

Table 3 Java mappings for OMG IDL types

OMG IDL type Java mapping types

short, long, long long short, int, long

unsigned short, unsigned long, unsigned
long long

unsigned short, unsigned int, unsigned long

float, double float, double

char, boolean, octet char, boolean, byte

any org.omg.CORBA.Any class

string, wstring string

struct, union, enum, exception class

sequence<type> type[]

interface interface

module package

non-
tions.

om the
piler.

ming
e that
ction

client-
ient.
ct

ile and

tation
t a

ore
uitable
or the

is not
object.
have been written in any of the ‘standard’ languages and vice versa. The only trouble with a
standard mappings is a possible source code incompatibility between different ORB implementa

2.2 Object Request Broker architecture

As it was already mentioned a programming language code can be automatically generated fr
IDL declaration. This task is done by a special application called an IDL translator or an IDL com
The IDL compiler takes an IDL statements as input and produces a code for a specific program
language according to the OMG language mapping specification. Thus the IDL compiler is a glu
links together two CORBA levels: an abstract interface definition and a concrete ORB conne
implementation.

2.2.1 Stubs and Skeletons

The target code generated by the IDL translator appears in pairs: client-side and server-side. The
side mapping is calledstubor proxy - it is a mechanism that creates and issues requests from a cl
The server-side code is calledskeleton- it is a mechanism that delivers requests to CORBA Obje
implementations. Such code is statically bound with the respective server or client code at comp
link time. Figure 4 shows the workflow for CORBA application development.

Fig. 4 Workflow for CORBA application development

Before compilation the skeleton code needs to be fleshed out with the actual implemen
code for each method. Stubs are basically complete. Thestubmethods can be used directly to reques
service described by the IDL.

When astub’s method is called by a client application it marshals a request to the ORB C
doing a conversion of a request from the programming language representation to one that is s
for transmission over the connection to the target object. Then the ORB Core is responsible f
request transportation to the server that holds the target object and passing this request to theskeleton
code. Theskeletonunmarshals the request doing a conversion to a programming language, that
necessarily the same as for the client application, and dispatches the request to the appropriate
Dispatching through stubs and skeletons are often calledstatic invocation. It is shown in Figure 5.

an be
Bs. In

amic

tation

rfaces
. The
tween

f the
list of
onfirm to
an be
Fig. 5 Static method invocation

It is necessary to mention that the ORB Core that does the request transportation c
represented in practice by the combination of the two Core components belonging to different OR
other words a server and a client application can be implemented using different ORBs.

2.2.2 Dynamic Invocation

In addition to static invocation via stubs and skeletons, CORBA supports two interfaces for dyn
invocation:

• Dynamic Invocation Interface (DII)[17] supports dynamic client request invocation.

• Dynamic Skeleton Interface (DSI)[18] provides dynamic request dispatching to the implemen
objects.

DII and DSI can be viewed as a generic stub and generic skeleton respectively. These inte
are provided by the ORB and are independent from IDL interfaces of the objects being invoked
main purpose of these generic interfaces is to support the implementation of the bridges be
CORBA and non-CORBA communication systems.

Using DII a client application can invoke requests without having compile-time knowledge o
object’s interfaces. A request consists of an object reference, an operation name and a
parameters. Each parameter has a name and a value. Parameters’ order is essential and must c
the order in which they are defined for the interface. Figure 6 shows how the generic bridge c
implemented using DII.

Fig. 6 The DII based bridge between an ORB and a non-CORBA system

ing
RBA

ure is

as a
of the

el of
port in

chines

UDP,
arent
nism

ORB

created,
object
OA

opriate
d the
od on

pter
early
main
trivial
The counterpart for the DII is DSI. DSI allows servers to be implemented without hav
skeletons for the objects compiled statically into the program. This concept was introduced in CO
2.0 as a possible mean of interoperability implementation. The DSI based bridge architect
presented in Figure 7.

Fig. 7 The DSI based bridge between an ORB and a non-CORBA system

2.2.3 ORB Core

The main component of an Object Request Broker is called the ORB Core. It serves
communication bus for the request transportation. The ORB Core assures the transparency
following communication aspects:

• Object location: Mutual location of the server and client objects is transparent on the lev
implementation code. The objects can be parts of one program instance, sharing runtime sup
one memory image; they can be parts running in different program instances on different ma
connected either with a local or global network.

• Communication protocol: The ORB has to use the same communication protocol (e.g. TCP/IP,
RPC over TCP/IP, etc.) on both client and server ends of connection. But it is completely transp
for the programming objects which communication mechanism is actually used. This mecha
can be swapped with another one without affecting the objects’ implementation.

2.2.4 Object Adapter

The Object Adapter provides an intermediate layer between the object implementation and the
Core. The OA is responsible for the following operations:

• Object reference handling: Object references are created in servers. Once they have been
they may be exported to clients. From this model’s perspective, object references encapsulate
identity information and information required by the ORB to identify and locate the server and
with which the object is associated.

• Object request transportation: When a client issues a request, the ORB first locates an appr
server and then locates the appropriate OA within that server. Once the ORB has foun
appropriate OA, it delivers the request to that OA. Then the OA invokes the appropriate meth
the request’s target object.

The first specification for the object adapter provided by OMG was the Basic Object Ada
(BOA). But very soon it was found that some important BOA operations that had not been cl
defined by the standard were implemented very differently by various ORB vendors. The
differences have been the object registration and object activation operations which result in non
portability problems between different ORBs.

ation
e been

able

.

by the
rticular
ns by
s. The

object

, the
the

tation.
terface

ty as
. It
RBA
xible
RBA-

and
ther
nts of

eed to
f the
OMG recognized these problems and a new Portable Object Adapter (POA)[19] specific
was established in the recent CORBA versions. POA addresses the following issues that hav
missed or not fully addressed by the BOA specification:

• Object portability: Allow programmers to construct object implementations that are port
between different ORB products.

• Object persistence: Provide support for objects whose lifetimes span multiple server lifetimes

• Object activation: Provide support for transparent activation of objects.

2.2.5 ORB Interface

The ORB Interface[20] defines the application program interface for the operations implemented
ORB. These operations are the same among all CORBA brokers and do not depend on the pa
object adapter used. The main responsibility of the ORB Interface is to provide a portable mea
which service implementation objects can be accessed by clients willing to utilize these service
ORB Interface defines such access mechanism by the means of object reference handling. An
reference may be translated into a string by the operationobject_to_string. The string value may be
stored or communicated in whatever ways strings may be manipulated. Subsequently
string_to_object operation will accept a string produced by object_to_string and returns
corresponding object reference. The string format must be recognized by any ORB implemen
Figure 8 shows how a client application can establish a connection to a servant using the ORB In
methods described above.

Fig. 8 CORBA objects connectivity Sequence diagram (UML notation)

2.3 Interoperability

The original request for interoperability was issued by the OMG in 1993. It defined interoperabili
an ability of a client on ORB ‘A’ to invoke an OMG IDL defined operation on an object on ORB ‘B’
is assumed that CORBA brokers ‘A’ and ‘B’ have been developed independently. In the recent CO
specifications the idea of interoperability is defined as “Interoperability is a comprehensive fle
approach to support network of objects implemented and managed by multiple heterogeneous CO
compliant ORBs”[21].

The interoperability architecture defines two concepts to achieve interoperability: mediate
immediate bridging of ORBs. Let us assume that any ORB implementation or any o
communication standard forms its own domain of communication. For the mediate bridges, eleme
one domain are transformed from the format internal to this domain to another format that is agr
be common for all domains participating in interactions. For immediate bridging, elements o

f the

diated
hat is
essage
easy

nged
rt. The
lt one.
d are

m for
wn the

OP

tware
d more

ity to
ovides
dress
ation
mmon
hown

lopers
nd they

ibuted

ed to
are
interaction are transformed directly from the internal format of one domain to the internal format o
other.

The Generic Inter-ORB Protocol (GIOP)[22] can be seen as the common basis for the me
bridging approach implementation. The protocol specification is the common agreed format t
recognized by any interoperable ORB. GIOP specifies a standard transfer syntax and a set of m
formats for communications between ORBs. The GIOP protocol is simple, scalable and relatively
to implement.

The Internet Inter-ORB Protocol (IIOP)[22] specifies how the GIOP messages are excha
through TCP/IPC connections. IIOP can be seen as a mapping of GIOP for a specific transpo
IIOP is the standard protocol that is supported by almost any of the current ORBs as the defau
Thus, practically, most of the existing CORBA brokers are interoperable on the level of IIOP an
able to communicate with one another.

An example of an immediate bridge is a bridge between a CORBA and non-CORBA syste
which there is no common intermediate message exchange format. The Figures 6 and 7 sho
examples of such an approach.

An ORB is considered to be fully interoperability-compliant when it supports both the II
protocol and standard CORBA interfaces such as ORB Interface, DSI and DII.

3. OBJECT MANAGEMENT ARCHITECTURE

While the modern computing paradigm tends to the distributed computing, the distributed sof
products becomes more and more complex and the software life circle issues becomes more an
important. The critical parameters for the modern software are: the time to develop it, the abil
maintain and enhance it and the time it takes to learn to use it. The Object Management Group pr
a reference architecture that is called Object Management Architecture (OMA)[23] in order to ad
these issues. The OMA defines a common framework that is intended to simplify the inform
systems development and support via the definition of the joint public services based on the co
standard. The communications heart of the OMA is Object Request Broker component. As it is s
on Figure 9 the ORB joins three main OMA components:

• Applications Objects: These are the CORBA objects implemented by independent deve
intended to fulfill their specific needs. These objects can be reused by the other developers a
might become a candidates for the OMG standardization.

• Object Services: The Object Services standardize the life cycle management of the distr
objects. They will be explained in more details in the following section.

• Common Facilities: They provides a set of generic application functions that can be configur
the requirements of a specific configuration. The facilities already formalized by the OMG
Internationalization, Time and Mobile Agent [24].

Fig. 9 Object Management Architecture

eation,
Object
tasks.
roved
ed as
by the
often
e an

at is
ces. It
quely

lative
each

e same
o bind

ontext,
a name
tration
object
tended

rvice.
3.1 OMG Services

The Object Services cover different aspects of the object management including the objects cr
control access to objects, objects relocations and the objects relationship maintenance. The
Service components provide the generic environment in which single objects can perform their
Standardization of Object Services leads to consistency over different applications and imp
productivity for the developer. Specifications for the Object Services that have been adopt
standards by the OMG are contained in [25]. There are sixteen service specifications provided
OMG at the moment. The first service for which the definition has been provided and the most
used one is the Naming Service that will be explained in a more details below in order to giv
impression of a CORBA Service essence to the reader.

3.1.1 Naming Service

The Naming Service[26] specification defines a federated (hierarchical) naming service th
commonly used to allow to use a human-readable format for the programming objects referen
does this by providing the name-to-object associations from which any object can be uni
identified by the associated name.

A name-to-object association is called a name binding. A name binding is always defined re
to a naming context. A naming context is an object that contains a set of name bindings in which
name is unique. Different names can be bound to an object in the same or different contexts at th
time. To resolve a name is to determine the object associated with the name in a given context. T
a name is to create a name binding in a given context. A name is always resolved relative to a c
there are no absolute names. Because a context is like any other object, it can also be bound to
in a naming context. Figure 10 shows how the Naming Service can be used for the objects regis
and access control. One can notice that this figure is very similar to the Figure 8 that shows how
connection can be established via the ORB Interface facility. The Naming Service methods are in
to be used instead of thestring_to_object andobject_to_string pair.

Fig. 10 Naming Service Sequence diagram (UML notation)

The CosNaming Module is a collection of interfaces that together define the naming se
This module is described in OMG IDL and contains two interfaces:

• The NamingContext interface - allows objects bindings and names resolution;

• The BindingIterator interface - allows to iterate through the bindings.

opment
ware

ose is
specify

s Java
ject

sed

C++

o this
ored in
its for
ne of
e event
vides

from

on a
ht be to
ecting
oint

tion we

e and
the

isplay
pared.

RBA
achine

e by
ory and
nown

fact is a
ity and
mation
4. DEVELOPING A DISTRIBUTED APPLICATION WITH CORBA

In this chapter a comprehensive example of CORBA based distributed system design and devel
will be given. For the design and implementation described in this chapter the following soft
development tools have been used:

• Rational Rose[7] framework has been used for the diagram drawing and classes definition. R
an analysis and design framework that enables business analysts and software developers to
business models and software applications graphically.

• Two ORBs have been used for the development: the JavaIDL[27] that is a Sun Microsystem
ORB included to the JDK 1.2[28] and ORBacus 3.1.3[29] that is a C++/Java ORB of Ob
Oriented Concept[30].

• The idltojava[31] compiler version 1.2 that is the IDL compiler of Sun Microsystems has been u
to generate Javastub code.

• The idl compiler that is the part of ORBacus 3.1.3 distribution has been used to generate
skeleton code.

4.1 Problem definition and proposed solution

High energy physics experiments investigate reactions between colliding elementary particles. T
purpose data on the particles leaving the collision point are recorded in large detectors and st
digital form. The set of data recorded per collision is called an event. The events are the basic un
further investigations, which are done by powerful pattern recognition and analysis programs. O
the approaches used for the physical data estimation is a visual analysis of single events. For th
visualization a special class of application called Event Display is used. An Event Display pro
independent method for the estimation of the information relevance by visualizing the event taken
the event storage system.

One of the important issues for the Event Display is the possibility to run it remotely, i.e.
computer that does not have direct access to the event storage system. The possible solution mig
run the Event Display application on the machine that holds the event storage system while redir
it’s output to the user’s machine via the standard X server display redirection facility. The critical p
here is the network performance that sometimes is not enough to use this approach. As a solu
propose to separate out Event Display into two subtasks:

• Event Painter task that is the application that retrieves event information from the data storag
paints the event image in memory, but does not display it. This application is running on
machine with a direct data storage access. This Event Painter is in fact the classical Event D
application with the only difference that the Painter does not display the event image it has pre

• Event Visualizer is the task that retrieves the image from the Event Painter task via a CO
interface and display this image on a user machine. This application is running on a remote m
that can not access the event storage system directly.

The Event Visualizer identifies an event it is willing to present. This identification can be don
passing the run and event numbers to the Event Painter. The Painter prepares an image in mem
passes it back in the machine independent format. For this simple example one of the well k
graphics formats can be used here, for example JPEG, GIF, PNG, etc. The most suitable one in
GIF format because it supports a suitable data compression without major loss of the image qual
can be easily displayed by the standard means of Java language. Figure 11 shows the infor
exchange between these tasks.

t that
Event
, etc.
at, for

itable
s that
guage
sed in
rfaces.

ualizer
ferent
ns of

r the

that is
must

t has no
lists of
for the
This
he
peration
be
Fig. 11 Event Display Collaboration diagram (UML notation)

In reality the complexity of the modern detectors and events has increased so significan
simple non-interactive event image is not always suitable for the visual analysis. The modern
Display is an interactive tool that can perform different image transformations like zoom, rotation
upon a user request. For such facility it is necessary to use another image description form
example XML[32].

Use of CORBA for this system implementation offers the important advantage: the most su
programming languages can be chosen for the Painter and Visualizer implementation. It seem
visualization task can be better implemented on Java but the Painter may require a different lan
that is defined by the event storage system API. Most of the event storages that are widely u
physics experiments are not accessible from Java and provides ordinarily a Fortran or C/C++ inte
So that it worth using a C++ for the Event Painter implementation.

Another significant advantage of the proposed approach is independence of the Event Vis
from the physical nature of events and detector geometry. Different experiments require dif
visualization technics for the experimental data representation. Therefor different implementatio
the Event Painter must be provided but the same Event Visualizer can be used for all of them.

The definition of the CORBA interface for the Event Painter task and implementations fo
both event analysis and event visualization tasks are discussed below.

4.2 Events access use cases

As it was discussed in the previous section the Event Painter interface is able to draw an event
identified by the run and event numbers supplied by the Event Visualizer. But the Event Visualizer
have a way to find these numbers because it can not retrieve them from data storage itself since i
access to it. The simplest way is to add to the Event Painter interface the methods that return the
run and event numbers. Thus the first operation to be done by the Event Visualizer is a request
list of valid run numbers. Then for any run number it asks for a list of valid event numbers.
operation can result in theBadRunNumberexception if the wrong run number has been provided. In t
opposite case the event drawing operation can be requested. The possible exceptions for this o
are: BadRunNumberand BadEventNumber. Upon a successful completion the event image can
displayed. Figure 12 shows the use cases described above.

Image as a result of
draw_event method

 : Event
Visualizer

 : Event
Painter

1: draw_event(run_id, event_id)

ble of
ve been
s of the
ossible

cify a
is

e class
Fig. 12 Event Display Use-Case diagram (UML notation)

4.3 Classes definition

The next step towards the implementation is the definition of the classes that should be capa
handling the use cases described above. The interface called Painter and four data types ha
defined for this purpose. The Painter interface declares the methods which cover all the aspect
interface required by the Event Visualizer task. The data types support the return values and p
exceptions for the Painter’s methods. These classes are shown on the Figure 13.

Fig. 13 Event Display Class diagram (UML notation)

The Identitiesis a type name for the sequence of the long integer values. It is used to spe
result for theget_runsandget_eventsmethods. TheImagetype is defined as a sequence of bytes and
intended to be a return type of thedraw_eventmethod. TheBadEventNumberandBadRunNumberare
utilized to indicate the exceptional conditions for the Painter’s methods execution.BadEventNumber
can be raised by thedraw_eventmethod andBadRunNumberby both get_eventsand draw_events
methods. All this information has been attached to the respective classes with the help of the Ros
diagram editor. This information is required to support the automatic IDL file generation.

4.4 OMG IDL declaration

Figure 14 shows the IDL declaration generated by Rose from the class diagram shown earlier.

1: module Event {
2: typedef sequence<octet> Image;
3: typedef sequence<long> Identities;
4:
5: exception BadRunNumber {};
6: exception BadEventNumber {};

Event Visualizer
Display ImageBadEventNumber

Get list of Runs Draw Event

BadRunNumber

Get list of Events

Painter

get_runs()
get_events()
draw_event()

<<Interface>> BadEventNumber
<<CORBAException>>

BadRunNumber
<<CORBAException>>

Image
<<CORBATypedef>>

Indentities
<<CORBATypedef>>

ualizer

. The
the IDL

e an
shows

placed
7:
8: interface Painter {
9: Identities get_runs();
10: Identities get_events(in long run_id) raises (BadRunNumber);
11: Image draw_event(in long run, in long event, in long width, in long

height) raises (BadRunNumber, BadEventNumber);
12: };
13: };

Fig. 14 Event Display interface (IDL)

It is necessary to run a specific IDL compiler to produce astubandskeletoncode from this IDL
declaration. Since it was decided to use different languages for the Event Painter and Event Vis
implementation different IDL compilers have to be used. Theidltojavaof Sun provides a Javastubsfor
the Event Visualizer andidl compiler by OOC has been used to generate a C++skeletonfor the Event
Painter.

4.5 Event Painter implementation

4.5.1 Event Painter interface implementation

Figure 15 shows how to declare the C++ implementation class for the Event Painter interface
Event_Painter_skel class that is a descendant of the Event_Painter_impl has been generated by
compiler.

1: class Event_Painter_impl: public Event_Painter_skel
2: {
3: public:
4:
5: virtual Event_Identities* get_runs() {};
6: virtual Event_Identities* get_events(CORBA_Long run_number) {};
7: virtual Event_Image* draw_event(CORBA_Long run,
8: CORBA_Long event,
9: CORBA_Long width,
10: CORBA_Long height);
11: };

Fig. 15 Declaration of the class that implements Event Painter (C++ language)

The virtual methods declared in theEvent_Painter_implclass are inherited from the
Event_Painter_skelclass where they are defined as pure virtual methods. In order to provid
implementation for the Event Painter it is necessary to implement all these methods. Figure 16
how this implementation can be done. The functionsnext_runin line 8 and thenext_eventin line 21
represent a virtual API to the event storage system. For the actual implementation they shall be re
with the adequate real data storage API calls.

1: Event_Identities * Event_Painter_impl::get_runs()
2: {
3: // create the result sequence
4: Event_Identities list = new Event_Identities;
5:
6: // retrieve run numbers from the event storage system
7: unsigned long run_number;
8: while((run_number = next_run())!= -1)
9: list.add(run_number);
10:
11: return list;
12: };
13:
14: Event_Identities * Event_Painter_impl::get_events(CORBA_Long run_number)
15: {
16: // create the result sequence

done -
shows
17: Event_Identities list = new Event_Identities;
18:
19: // retrieve event numbers from the event storage system
20: unsigned long event_number;
21: while((event_number = next_event(run_number))!= -1)
22: list.add(event_number);
23:
24: return list;
25: };
26:
27: Event_Image * Event_Painter_impl::draw_event(
28: CORBA_Long run, CORBA_Long event, CORBA_Long width, CORBA_Long height
29:)
30: {
31: unsigned char * image_bytes;
32: unsigned long image_size;
33: // prepare the image in memory
34:
35: // create a bytes sequence to pass back to the Visualizer
36: Event_Image * image = new Event_Image(image_size, image_size, image_bytes,

true);
37: return image;
38: }

Fig. 16 Event Painter interface implementation (C++ language)

4.5.2 Event Painter task implementation

Since we have implemented the Event Painter interface there is only one thing that remains to be
the EventPainter_impl class instance has to be created and registered with the ORB. Figure 17
how this can be done.

1: int main(int argc, char* argv[], char*[])
2: {
3: try
4: {
5: // Create ORB and BOA
6: CORBA_ORB_var orb = CORBA_ORB_init(argc, argv);
7: CORBA_BOA_var boa = orb -> BOA_init(argc, argv);
8:
9: // Create implementation object
10: Event_Painter_var p = new Event_Painter_impl();
11:
12: // Print stringified object reference to the standard output
13: CORBA_String_var s = orb -> object_to_string(p);
14: cout << s << endl << flush;
15:
16: // Run implementation
17: boa -> impl_is_ready(CORBA_ImplementationDef::_nil());
18: }
19: catch(CORBA_SystemException& ex)
20: {
21: OBPrintException(ex);
22: return 1;
23: }
24: return 0;
25: }
26:

Fig. 17 Event Painter task implementation

f
scribed
ervant

stream

. The
own in

of the
The ORB initialization is done in line 6. TheCORBA_ORB_initmethod creates an instance o
the CORBA_ORB class that encapsulates all the methods of the ORB Interface that has been de
in section 2.2.5. In the next line the instance of the Basic Object Adapter is created. The s
registration with the BOA instance is done implicitly during the construction of theEvent_Painter_impl
object. The BOA instance is used later in line 17 to callimpl_is_readymethod that is responsible for the
acceptance of the external requests. The ORB instance is used to call theobject_to_stringmethod to
convert the Event Painter object reference to string. This string is printed to the standard output
and is intended to be used by the Event Visualizer for the access to the Event Painter.

4.6 Event Visualizer implementation

In order to deal with the interface defined for the Event Painter no additional code is required
simple Java client application that uses directly the classes generated by the IDL compiler is sh
Figure 18. This code contains just the essential information and does not show all the aspects
Java interface creation.

1: public class EventVisualizer extends JFrame{
2: static org.omg.CORBA.ORB orb;
3: static JLabel label;
4:
5: public EventVisualizer () {
6: // create all the necessary graphical components here
7:
8: // this Jlabel will be used to display event image
9: getContentPane().add(label = new JLabel());
10: }
11:
12: public static void main(String args[]){
13: // create and show application’s main frame
14: EventVisualizer client = new EventVisualizer();
15: client.show();
16:
17: // initialize ORB
18: orb = org.omg.CORBA.ORB.init((String[])null, null);
19: // convert parameter string to the Event Painter reference
20: org.omg.CORBA.Object obj = orb.string_to_object(args[0]);
21: Event.Painter ed = Event.PainterHelper.narrow(obj);
22:
23: // try to draw an event
24: try{
25: // call event_draw method for the event ‘m’ of the run ‘n’
26: byte[] data = ed.draw_event(run_id, event_id, frame.getWidth(),

frame.getHeight());
27: // display image (GIF and JPEG images can be displayed)
28: label.setIcon(new ImageIcon(data));
29: }
30: // catch bad run number exception
31: catch(Event.BadRunNumber ex){
32: System.err.println("Bad Run number is used.");
33: }
34: // catch bad event number exception
35: catch(Event.BadEventNumber ex){
36: System.err.println("Bad Event number is used.");
37: }
38: }
39: }
40:

Fig. 18 Event Visualizer implementation (Java)

RB
e

object
it is

of

bility to
re 17

at the

to let

n the
the

ithout
ed in
some

rface

nt all
umber in
the
very

h the
of the
The call to theinit method of the org.omg.CORBA.ORB class in line 18 returns the O
instance that can be used to call thestring_to_objectmethod. This method takes the first command lin
argument passed to the Visualizer application and tries to convert it to the Event Painter
reference. Thestring_to_objectmethod always returns a reference to a generic CORBA object so
necessary to cast this reference to a specific type that isEvent.Painterin this case. It is done in line 21
via the narrow method. Then assuming that we know the run (run_id variable) and event (event_id
variable) numbers we can display the event. In order to perform this thedraw_eventmethod is called in
line 26. If the run and event number are valid the event image can be displayed by callingsetIcon
method of thejavax.swing.JLabelclass as it is done in line 28. For simplicity the requests for the list
runs and list of events are not shown here, but they should be done in the same way as thedraw_event
request and valid run and event numbers shall be presented to a user in order to give him a possi
chose which ones he is interesting in. For example the Visualizer application shown on the Figu
uses thejavax.swing.JTree class to represent this information.

4.7 Running applications

The Event Painter can be started by issuing the following command in the Unix shell (assuming th
executable name isevent_painter):

prompt> event_painter > Reference.file

This command starts the Painter application that prints theEvent_Painter_implobjects reference to the
‘Reference.file’ file. This reference shall be used as a parameter for the Event Visualizer in order
him access the Painter object.

prompt> java EventVisualizer ‘cat Reference.file‘

The Visualizer application can be started on any machine - it is not necessary to run it o
same one on which the Painter is working. The only thing to worry about is the availability of
Reference.file file on that machine.

There is another way to establish connection between Event Visualizer and Event Painter w
using intermediate file for the object reference storage. The CORBA Naming Service describ
section 3.1.1 can be used to publish the Event Painter’s object reference by associating it with
well known name. The Event Visualizer has to call the resolve method of Naming Service inte
with this name as parameter in order to get the Painter reference.

The Figure 19 shows how Event Visualizer application looks like. It uses a tree to represe
the possible run numbers and events that belong to these runs. When the user selects an event n
the tree thedraw_eventmethod of the Event Painter is called and the image on the right side of
window is updated. The image shown by the Event Visualizer on the Figure 19 it created by the
simple Event Painter application. It does not paint a real event. It simply draws an image wit
indication of the requested event and run numbers in order to illustrates the capacity for work
proposed approach.

buted
llent
ia the
vent
nother
system
ping

is a
ndard
es as it

ple to
nguage
e. But
has
Java
d a

t is
er pure
cally
another
the

been
which
Fig. 19 Event Visualizer main window

4.8 Remarks about Java RMI

The Event Display example has been shown might be implemented with another distri
technology, for example with Java Remote Method Invocation (RMI)[33]. The Java RMI is an exce
communication technology in the Java language domain. Other languages can involved only v
Java Native Interface (JNI)[34] that is currently available for C and C++ only. For example the E
Painter task might be implemented in Java using JNI for the data storage access. But JNI is a
technology to be learned and another layer to be added to an application increasing the overall
complexity. It worth thinking about using a CORBA broker with the natural C++ language map
instead of calling the necessary C++ methods via the JNI.

What else should be taken into account while choosing the implementation technology
legacy issue: it is not certain in 10 years we will still use Java. CORBA in contrary to Java is a sta
that does not relay to a particular programming language and is able to assimilate a new languag
has been done already with Java.

Nevertheless Java RMI fits perfectly to the modern object design patterns. It is more sim
learn and to use because the role of the Interface Definition Language is played by the Java la
itself. The only serious drawback is the number of operating systems for which Java is availabl
this limitation was partly resolved recently by the common efforts of Sun and OMG. Sun
implemented the RMI interface over the IIOP protocol[35] and OMG defines the mappings from
language to the OMG IDL[36]. It is possible now to connect a client implemented with RMI an
server developed with CORBA and vice versa.

5. APPLICATIONS OF CORBA IN THE HEP ENVIRONMENT

Ordinarily, CORBA brokers are not used for the implementation of the on-line software tha
responsible for the fast physical data transportation. The reason is the overhead of the ORB ov
network protocol communication (UDP or TCP/IP). This overhead is introduced by automati
generated stub and skeleton code that is executed for each remote method invocation and by
level of the communication protocol (generally IIOP) that is used by most of the ORBs for
interoperability reasons.

But for the control systems and off-line data access the CORBA implementations have
started to be used recently. Here there are a few references to the large HEP experiments in
CORBA brokers have been used.

“full
LAS
oject
ing and
on top
as a
. The
9].

abase
extor-94
 in [41].

tra-
luon

l and
nline
custom
d the
tforms

PARC
cation

e CP
Object
y. The
ters of

nt data
ed and

being

bers,
of the

uage
ORBA
bility
IDL

other

dibly
ding
uages
ndard
werful
5.1 ATLAS[37] Trigger/DAQ prototype -1 at CERN (Geneva)

The goal of the TDAQ Prototype -1 project[38] is to produce a prototype system representing a
slice” of a DAQ suitable for evaluating candidate technologies and architectures for the final AT
DAQ system on the LHC accelerator at CERN. The back-end DAQ component of the pr
encompasses the software to configure, control and monitor the DAQ but excludes the process
transportation of physics data. All the communications in back-end subsystem are implemented
of Inter Language Unification (ILU) system. ILU is implemented by Xerox and can be thought of
CORBA ORB system (though with omissions from and extensions to the CORBA specification)
detailed description of how CORBA is used for the ATLAS TDAQ prototype -1 can be found in [3

5.2 Textor[40] plasma-physics experiment at Plasmaphysics Institute (Julich)

In this experiment CORBA has been used to implement an interface to the distributed dat
providing data access over Internet. This database contains the measurements data for the T
experiment and the current system is using the Objectivity database. More details can be found

5.3 PHENIX[42] on-line control system (Brookhaven National Laboratory)

The PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) will study the dynamics of ul
relativistic heavy ion collisions and search for exotic states of matter, most notably the Quark G
Plasma (QGP). The PHENIX online control system is responsible for the configuration, contro
monitoring of the PHENIX detector data acquisition system and ancillary control hardware. The o
system consists of a large number of embedded commercial and custom processors as well as
software processes which are involved in the collection, monitoring and control of the detector an
event data. These processing elements are distributed over a diverse set of computing pla
including VME based Power PC controllers, Pentium based NT systems, and SUN Solaris S
processors. The IONA Technologies Orbix CORBA broker has been used as the communi
mechanism for the PHENIX online system [43].

5.4 BaBar configuration databases (Stanford Linear Accelerator Center)

The BaBar[44] experiment at the Stanford Linear Accelerator Center is designed to study th
violation in decays of B mesons produced in electron-positron interactions. BaBar has chosen an
Oriented Database Management System, Objectivity/DB, as the underlying storage technolog
online system has also adopted Objectivity to store the ambient data and the configuring parame
various hardware and software components of the detector. To provide access to the ambie
before and after they are stored in the database a CORBA interface has been develop
implemented[45]. It allows Java based browsers to analyze and display the data while they are
accumulated.

6. CONCLUSION

The OMG was founded in 1989 by 11 companies. Now it is composed of more then 900 mem
among of which there are most of the leading software development companies. The first version
CORBA standard (1.0) was issued in 1991. It included mostly the IDL definition and C lang
mapping. After that a new revision of the standard appeared almost each year. Based on the C
users’ feedback all these revisions included important improvements like the interopera
architecture and Java mapping in the CORBA 2.0, POA specification in the CORBA 2.2, Java to
mapping in the CORBA 2.3. OMG has invested essential efforts to the integration with the
communication standards like COM/OLE and Java RMI.

All these efforts, have been invested by the OMG to the CORBA standard, result in an incre
large number of ORB implementations. There are many good quality ORBs available now inclu
free and commercial ones with a very wide range of operating systems and programming lang
supported. The 10 years of CORBA evolution give an impressive example of a good quality sta
development and maintenance. At the moment the CORBA standard is recognized as a very po

at it

uality
these
/corba/

ose/

m/

rsoft,

/cgi-

rg/

al/

gy/

/cgi-

/cgi-

-bin/

bin/

cgi-

/cgi-

gy/

mal/

mal/

al/
and useful object communication model by the programming community and it looks very likely th
will carry on this leading role in the software communication domain.

In the future plans of the OMG the most important issues are the Internet integration, the q
of service control support and CORBA component model development. More information about
categories can be found at the OMG announces Web page (http://sisyphus.omg.org/technology
corba3releaseinfo.htm).

7. REFERENCES

[1] Unix Network Programming: Networking APIs: Sockets and Xti, W. Richard Stevens.
[2] Power Programming with RPC, John Bloomer, published by O’Reilly, 1992.
[3] Distributed Computing Environment homepage http://www.osf.org/dce/
[4] Open Software Foundation homepage http://www.osf.org/
[5] The Object Management Group official home page is http://www.omg.org/
[6] Object-oriented Analysis and Design with Applications, Grady Booch.
[7] Rose is a visual modeling tool of Rational Software, http://www.rational.com/products/r

index.jtmpl.
[8] Software trough Pictures is a visual modeling framework of Aonix, http://www.aonix.co

content/products.html#stp
[9] Together is a Java, full UML modeler for Simultaneous Design-and-Code Editing of Togethe

http://www.togethersoft.com/together/matrix.html
[10] Advanced C++ Programming Styles and Idioms, James O. Coplien.
[11] CORBA/IIOP 2.3.1 Specification, chapter 3-IDL Syntax and Semantics, http://cgi.omg.org
bin/doc?formal/99-07-07
[12] CORBA Language Mapping Specifications Available Electronically, http://www.omg.o
technology/documents/formal/corba_language_mapping_specifica.htm
[13] CORBA/IIOP 2.3.1 Specification, http://www.omg.org/technology/documents/form
corba_2.htm
[14] OMG IDL to Java Language Mapping, Formal/99-07-53, http://www.omg.org/technolo
documents/formal/omg_idl_to_java_language_mapping.htm
[15] The Document company XEROX, http://www.parc.xerox.com/parc-go.html
[16] Inter-Language Unification, ftp://ftp.parc.xerox.com/pub/ilu/ilu.html
[17] CORBA/IIOP 2.3.1 Specification, chapter 7-Dynamic Invocation Interface, http://cgi.omg.org
bin/doc?formal/99-07-11
[18] CORBA/IIOP 2.3.1 Specification, chapter 8-Dynamic Skeleton Interface, http://cgi.omg.org
bin/doc?formal/99-07-12
[19] CORBA/IIOP 2.3.1 Specification, chapter 11-Portable Object Adapter, http://cgi.omg.org/cgi
doc?formal/99-07-15
[20] CORBA/IIOP 2.3.1 Specification, chapter 4-ORB Interface, http://cgi.omg.org/cgi-
doc?formal/99-07-08
[21] CORBA/IIOP 2.3.1 Specification, chapter 12 - Interoperability Overview, http://cgi.omg.org/
bin/doc?formal/99-07-16
[22] CORBA/IIOP 2.3.1 Specification, chapter 15 General Inter-ORB Protocol, http://cgi.omg.org
bin/doc?formal/99-10-11
[23] The complete Discussion of the OMA, formal/00-06-41, http://www.omg.org/technolo
documents/formal/object_management_architecture.htm
[24] CORBA Common Facilities Specifications, http://www.omg.org/technology/documents/for
corba_common_facilities_specific.htm
[25] CORBA Services, OMG formal documents, http://www.omg.org/technology/documents/for
corba_services_available_electro.htm
[26] Naming Service, version 1.0, http://www.omg.org/technology/documents/form
naming_service.htm

ocs/

les,

al/

1th

ster,

ngs,

ers,

, 11th
[27] The Java IDL tutorial, http://java.sun.com/docs/books/tutorial/idl/index.html
[28] Java 2 SDK, Standard Edition Documentation, http://www.javasoft.com/products/jdk/1.2/d
index.html
[29] ORBacus for C++ and Java, http://www.ooc.com/products/orbacus.html
[30] Object Oriented Concepts, Inc., Canada, http://www.ooc.com/
[31] A freely distributed tool for converting IDL interface definitions to Java stub and skeleton fi
available at http://java.sun.com/products/jdk/1.2/docs/guide/idl/index.html
[32] Extensible Markup Language (XML) 1.0, http://www.w3.org/TR/1998/REC-xml-19980210
[33] Java Remote Method Invocation, http://java.sun.com/products/jdk/rmi/index.html
[34] Java Native Interface, http://java.sun.com/j2se/1.3/docs/guide/jni/index.html
[35] RMI over IIOP 1.0.1, http://www.javasoft.com/products/rmi-iiop/index.html
[36] Java Language Mapping to OMG IDL, http://www.omg.org/technology/documents/form
java_language_mapping_to_omg_idl.htm
[37] ATLAS homepage http://atlasinfo.cern.ch:80/Atlas/Welcome.html
[38] ATLAS Trigger/DAQ Prototype-1 homepage http://atddoc.cern.ch/Atlas/
[39] Applications of Corba in the Atlas prototype DAQ, S. Kolos, R. Jones. L.Mapelli, Y. Ryabov, 1
IEEE NPSS Real Time Conference Proceedings, 1999, pp 469-474
[40] Textor-94 experiment homepage is http://www.fz-juelich.de/ipp
[41] Objectivity / Corba distributed database performance on gigabit SUN-Ultra-10 clu
L.Gommans and others, 11th IEEE NPSS Real Time Conference Proceedings, 1999, 442-445
[42] Overview of PHENIX Online System, C.Witzig, 10th IEEE Real Time Conference Proceedi
1998, pp 541-543
[43] Use of CORBA in the PHENIX Distributed Online Computing System, E.Desmond and oth
11th IEEE NPSS Real Time Conference Proceedings, 1999, pp 487-491
[44] BaBar homepage http://www.slac.stanford.edu/BFROOT/
[45] Ambient and Configuration Databases for the BaBar Online System, G. Zioulas and others
IEEE NPSS Real Time Conference Proceedings, 1999, pp 548-550

	CORBA: A PRACTICAL INTRODUCTION
	1. Introduction
	2. CORBA Overview
	2.1 Object Interface Definition
	2.1.1 OMG Interface Definition Language
	2.1.2 Languages Mappings

	2.2 Object Request Broker architecture
	2.2.1 Stubs and Skeletons
	2.2.2 Dynamic Invocation
	2.2.3 ORB Core
	2.2.4 Object Adapter
	2.2.5 ORB Interface

	2.3 Interoperability

	3. Object Management Architecture
	3.1 OMG Services
	3.1.1 Naming Service

	4. Developing A distributed application with CORBA
	4.1 Problem definition and proposed solution
	4.2 Events access use cases
	4.3 Classes definition
	4.4 OMG IDL declaration
	4.5 Event Painter implementation
	4.5.1 Event Painter interface implementation
	4.5.2 Event Painter task implementation

	4.6 Event Visualizer implementation
	4.7 Running applications
	4.8 Remarks about Java RMI

	5. Applications of CORBA in the HEP environment
	5.1 ATLAS[37] Trigger/DAQ prototype -1 at CERN (Geneva)
	5.2 Textor[40] plasma-physics experiment at Plasmaphysics Institute (Julich)
	5.3 PHENIX[42] on-line control system (Brookhaven National Laboratory)
	5.4 BaBar configuration databases (Stanford Linear Accelerator Center)

	6. Conclusion
	7. References

