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Abstract

We develop techniques for the analysis of SO(2N) invariant couplings which

allow a full exhibition of the SU(N) invariant content of the spinor and tensor rep-

resentations. The technique utilizes a basis consisting of a specific set of reducible

SU(N) tensors in terms of which the SO(2N) invariant couplings have a simple

expansion. The technique is specially useful for couplings involving large tensor

representations. We exhibit the technique by performing a complete determina-

tion of the trilinear couplings in the superpotential for the case of SO(10) involv-

ing the 16 plet of matter, i.e., we give a full determination of the 16− 16− 10s,

16− 16− 120a and 16− 16− ¯126s couplings. The possible role of large tensor

representations in the generation of quark lepton textures is discussed. It is shown

that the couplings involving ¯126 dimensional representation generate extra zeros

in the Higgs triplet textures which can lead to an enhancement of the proton decay

lifetime by a factor of 103. These results also have implications for neutrino mass

textures.
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1 Introduction

The group SO(10) is one of the candidates for a theory of grand unification and

has come under increasing scrutiny since the early work of Ref.[1] because of its

desirable features such as the unification of one generation of quarks and leptons

in a single multiplet and a relatively natural way in which the doublet-triplet

splitting can be achieved in the model[2]. On the technical side the introduction

of the oscillator technique[3, 4, 5] in SO(10) analyses has proven useful. However,

SO(10) matter interactions may involve large tensor representations, i.e., 120, ¯126

and 210. Specifically the representations 120 and ¯126 have already surfaced in

the analyses of quark, charged lepton and neutrino mass textures[6, 7, 8, 9, 10].

However, a full analysis of the couplings of such large representations such as

16 − 16 − 120 and 16 − 16 − ¯126 does not exist in the literature in any explicit

form. We develop here a systematic approach that enables one to carry out a full

computation of such couplings with relative ease. We then illustrate our technique

by giving a complete analysis of the trilinear superpotential with the 16 plet of

matter. Since 16× 16 = 10s + 120a + 126s we give an explicit computation of the

16− 16− 10s, 16− 16− 120a, and 16− 16− ¯126s couplings.

Our technique is a natural extension of the work of Refs.[3, 4] which introduced

the oscillator expansion in the analysis of SO(2N) interactions [One may also

use completely group theoretic methods to compute the couplings as done in E6

model building analysis of Ref.[11]. Our technique is field theoretic and more

straightforward.]. We briefly review this analysis first. In the oscillator technique of

Refs.[3] one defines a set of N operators bi (i=1,...,N) obeying the anti-commutation

rules

{bi, b†j} = δij; {bi, bj} = 0 (1)

and represents the set of 2N operators Γµ (µ = 1, 2, .., 2N) by

Γ2i = (bi + b†i ); Γ2i−1 = −i(bi − b†i ) (2)

where Γµ satisfy a rank 2N Clifford algebra {Γµ,Γν} = 2δµν . The group SO(2N)

has a 2N dimensional spinor representation ψ. This representation can be split

into 2N−1 dimensional representation under the action of the chirality operator so

that

ψ± =
1

2
(1± Γ0)ψ, Γ0 = iNΓ1Γ2...Γ2N (3)

where ψ± are each 2N−1 dimensional. In the analysis of SO(2N) interactions one

encounters couplings of the type ψ̃BΓµ..Γσψφµ..σ where B(=
∏

µ=odd Γµ) is an
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SO(2N) charge conjugation matrix. We wish to develop here a simple technique

for the explicit evaluation of the couplings in terms of the physical degrees of

freedom even for the case when the tensor representation that couples has a large

dimensionality.

2 The Basic Theorem

We begin with the observation that the natural basis for the expansion of the

SO(2N) vertex is in terms of a specific set of SU(N) reducible tensors which we

define below. We introduce the notation φci
= φ2i + iφ2i−1 and φc̄i

= φ2i − iφ2i−1

which can be extended immediately to define the quantity φcicj c̄k.. with an arbitrary

number of unbarred and barred indices where each c index can be expanded out

so that φcicj c̄k.. = φ2icj c̄k... + iφ2i−1cj c̄k.., φcicj c̄k.. = φcicj2k... − iφcicj2k−1...,etc. Thus,

for example, the quantity φcicj c̄k...cN
is a sum of 2N terms gotten by expanding all

the c indices. φcicj c̄k...cn is completely anti-symmetric in the interchange of its c

indices whether unbarred or barred. We now make the observation that the object

φcicj c̄k...cn transforms like a reducible representation of SU(N). Thus if we are able

to compute the SO(2N) invariant couplings in terms of these reducible tensors

of SU(N) then there remains only the further step of decomposing the reducible

tensors into their irreducible parts. Finally, one can take the result obtained in

terms of the SU(N) irreducible representations and expand out in terms of the

particles of the model.

The result essential to our analysis is the theorem that the quantity ΓµΓνΓλ..Γσ

φµνλ..σ can be expanded in the following form

ΓµΓνΓλ..Γσφµνλ..σ = b†ib
†
jb
†
k..b

†
nφcicjck...cn + (bib

†
jb
†
k..b

†
nφc̄icjck...cn + perms)

+(bibjb
†
k..b

†
nφc̄ic̄jck..cn + perms) + .... + (bibjbk..bn−1b

†
nφc̄ic̄j c̄k..c̄n−1cn + perms) +

+bibjbk.....bnφc̄ic̄j c̄k...c̄n (4)

Eq.(4) is the basic result we need in the analysis of the SO(2N) invariant couplings.

It is found convenient to arrange the right hand side of Eq.(4) in a normal ordered

form by which we mean that all the b’s are either to the right or to the left and all

the b†’s are either to the left or to the right using strictly the anti-commutation

relations on the b’s and b†’s of Eq.(1). When a pair of b† and b have a summed index

such as b†nbn we will move them together either to the left or to the right. After

normal ordering one decomposes φcicj c̄k..cn into its SU(5) irreducible components.
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The final step consists of carrying out the process of removing all the b and b†

using the anti-commutation relation Eq.(1) along with the condition bi|0 >= 0

which allows us to compute the couplings in the SU(N) invariant decomposition.

3 The 120 plet and the ¯126 plet tensor couplings

The above procedure makes it straightforward to analyze the SO(2N) invariant

couplings involving large tensor representations. As an illustration of our tech-

nique we give a complete determination of the superpotential at the trilinear level

involving two spinor representations which consists of the couplings 16× 16× 10,

16× 16× 120 and 16× 16× ¯126. We begin by computing the 16× 16× 10 cou-

pling which is given by

fabψ̃aBΓµψbφµ (5)

where a, b are the generation indices. Following the procedure of sec.2 we decom-

pose the vertex so that

Γµφµ = biφc̄i
+ b†iφci

(6)

In Eq.(6) the tensors are already in their irreducible form and one can identify

φci
with the 5 plet of Higgs and φc̄i

with the 5̄ plet of Higgs. To normalize the

tensors we define H1i = 1√
2
φc̄i

, H i
2 = 1√

2
φci

, so that the kinetic energy −∂αφµ∂
αφ†µ

of the tensor φµ takes the form −∂αH1i∂
αH†

1i −∂αH
i
2∂

αH i†
2 . For the computation

of the superpotential we need to expand the 16 plet spinor representation ψ+ in

its oscillator modes

|ψ+ >= |0 > M0 +
1

2
b†ib

†
j |0 > M ij +

1

24
εijklmb†ib

†
jb
†
kb
†
l |0 > M ′

m (7)

so that ψ+ contains 1M + 10M + 5̄M in its SU(5) decomposition. Using the above

we compute the 16− 16− 10 couplings and find

W (10) = (2
√

2i)f
(+)
ab (M ij

a M
′
ibH1j −M0aM

′
ibH

i
2 +

1

8
εijklmM

ij
a M

kl
b H

m
2 ) (8)

where f
(±)
ab are defined by

f
(±)
ab =

1

2
(fab ± fba) (9)

and f
(±)
ab are symmetric (antisymmetric) under the interchange of generation in-

dices a and b. As expected the 16-16-10 couplings given by Eq.(8) are correctly

symmetric in the generation indices. We note that the couplings have the SU(5)

invariant structure consisting of 1M− 5̄M−5H , 10M− 5̄M− 5̄H and 10M−10M−5H .
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Next we discuss the 16-16-120 coupling which is given by

1

3!
fabψ̃aBΓµΓνΓλψbφµνλ (10)

We expand the vertex using Eq.(4) and find

ΓµΓνΓλφµνλ = bibjbkφc̄ic̄j c̄k
+ b†ib

†
jb
†
kφcicjck

+ 3(b†ibjbkφcic̄j c̄k
+ b†ib

†
jbkφcicj c̄k

)

+(3biφc̄ncnc̄i
+ 3b†iφc̄ncnci

) (11)

The 120 plet of SO(10) has the SU(5) decomposition 120 = 5 + 5̄ + 10 + 1̄0 +

45 + 4̄5. Eq.(11) can be decomposed in terms of these irreducible SU(5) tensors

as explained in the appendix. A straightforward computation using Eq.(11)2 and

the normalization of Eq.(23) in the appendix gives

W (120) = i
2√
3
f

(−)
ab (2M0aMibh

i +M ij
a M0bhij +MiaMjbh

ij

−M ij
a Mibhj +MiaM

jk
b hi

jk −
1

4
εijklmM

ij
a M

mn
b hkl

n ) (12)

The front factor f
(−)
ab in Eq.(12) exhibits correctly the anti-symmetry in the gen-

eration indices. Further, the couplings have the 1M − 5̄M − 5H , 1M − 10M − 1̄0H ,

5̄M − 5̄M − 10H , 10M − 5̄M − 5̄H , 5̄M − 10M − 4̄5H and 10M − 10M − 45H SU(5)

invariant structures.

We now turn to the most difficult of the three cases, i.e., the 16− 16− ¯126

coupling which is given by

1

5!
fabψ̃aBΓµΓνΓλΓρΓσψb∆µνλρσ (13)

where ∆µνλρσ is 252 dimensional and can be decomposed so that ∆µνλρσ=φ̄µνλρσ+

φµνλρσ, where[7]

(
φ̄µνλρσ

φµνλρσ

)
=

1

2
(δµαδνβδργδλδδσθ ± i

5!
εµνρλσαβγδθ)∆αβγδθ (14)

and where the φ̄µνλρσ is the ¯126 plet and φµνλρσ is the 126 plet representation. It is

only the ¯126 that couples in Eq.(13) with the 16 plet spinors. However, for the re-

duction of the SO(10) vertex it is more convenient initially to work with the full 252

dimensional tensor and in the final computation only the ¯126 couplings will survive.

We begin by expanding ΓµΓνΓλΓρΓσ∆µνλρσ using Eq.(4) following steps similar

2The symmetrical arrangement in the first brace of Eq.(11) is necessary for achieving an
automatic anti-symmetry in the generation indices for the SU(5) 10M − 10M − 45H coupling.
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to the previous case using normal ordering and further decomposing the tensors

into their irreducible components. The ¯126 and the 126 dimensional representa-

tions break into the SU(5) irreducible parts as ¯126 = 1 + 5 + 1̄0 + 15 + 4̄5 + 50

and 126 = 1 + 5̄ + 10 + 1̄5 + 45 + 5̄0. The details of the decomposition are given

in the appendix. Using Eq.(25) in the appendix a straightforward analysis gives

W ( ¯126) = if
(+)
ab

√
2√
15

[−√2M0aM0bh−
√

3M0aM
′
ibh

i +M0aM
ij
b hij

− 1

8
√

3
M ij

a M
kl
b h

mεijklm − hij
SM

′
iaM

′
jb +M ij

a M
′
bkh

k
ij ] (15)

where we have expressed the result in terms of fields hi, hij etc with normalizations

given by Eq.(27). As in the 10 plet tensor case the couplings are symmetric under

the interchange of generation indices. Further, the 16− 16− ¯126 coupling has

the SU(5) structure consisting of 1M − 1M − 1H , 1M − 5̄M − 5H , 1M − 10M − 1̄0H ,

10M − 10M − 5H , 5̄M − 5̄M − 15H and 10M − 5̄M − 4̄5H . A similar analysis can be

carried out for the tensor couplings involving 1̄6− 16 which includes 1̄6− 16− 45

and 1̄6− 16− 210 couplings. These will be discussed elsewhere.

4 Large representations, textures and proton life-

time

Proton decay is an important signal for grand unification and detailed analyses for

the proton lifetime exist in SU(5) models[12, 13, 14] and in SO(10) models[15, 16].

In this section we discuss the possibility that couplings in the superpotential that

involve large representations can drastically change the Higgs triplet textures and

affect proton decay in a very significant manner. These results are of signifi-

cance in view of the recent data from SuperKamiokande which has significantly

improved the limit on the proton decay mode p→ ν +K+. Thus the most recent

limit from SuperKamiokande gives τ/B(p → ν̄ + K+) > 1.9 × 1033 yr[17]. At

the same time there is a new lattice gauge evaluation of the three quark matrix

elements α and β of the nucleon wave function[18] (where α and β are defined

by[19] εabc < 0|εαβd
α
aRu

β
bRu

γ
cL|p >=αuγ

L and εabc < 0|εαβd
α
aLu

β
bLu

γ
cL|p >=βuγ

L). Pre-

vious evaluations of these quantities have varied over a wide range from β =

0.003GeV 3[20] to β = 0.03GeV 3[19, 21] while recent p decay analyses have often

used the lattice gauge evaluation of Gavela et.al.[22] which gives β = (5.6± 0.5)×
10−3GeV 3. The more recent evaluation of Ref.[18] gives α = −0.015(1)GeV 3 and
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β = 0.014(1)GeV 3 which is a factor of about two and a half times larger than the

evaluation of Ref.[22]. The new experimental limit on the proton decay lifetime[17]

combined with the new lattice gauge evaluations have begun to constrain the SUSY

GUT models prompting some reanalyses[23, 24]. In this context the enhancement

of the proton lifetime by textures is of interest. To make this idea more concrete

we define textures in the low energy theory in the quark lepton sector of the theory

just below the GUT scale as follows

WY = −MHH1tH2t + (lAEech1 + qADdch1 + h2u
cAUq)

+(qBElH1t + εabcH1tad
c
bB

Duc
c +H2tau

c
aB

Uec + εabcH
a
2tubC

Udc) (16)

where AE, AD and AU are the textures in the Higgs doublet sector and BE , BD,

BU and CU are the textures in the Higgs triplet sector. A classification of the

possible textures in the Higgs doublet sector is given in Refs.[25, 26]. For our

purpose here we adopt the textures in the Higgs doublet sector in the form

AE =




0 f 0
f −3e 0
0 0 d


 , AD =




0 feiφ 0
fe−iφ e 0

0 0 d


 , AU =




0 c 0
c 0 b
0 b a


 (17)

As is well known[25] the appearance of -3 vs 1 in the 22 element of AE vs AD is

one of the important ingredients in achieving the desired quark and lepton mass

hierarchy and may provide an insight into the nature of the fundamental coupling.

Now the textures in the Higgs triplet sector are generally different than those in

the Higgs doublet sector and they are sensitively dependent on the nature of GUT

and Planck scale physics[27]. The current experimental constraints on the proton

lifetime leads us to conjecture that the Higgs triplet sector contains additional

texture zeros over and above the texture zeros that appear in the Higgs doublet

sector and the coupling of the ¯126 tensor field plays an important role in this

regard. In the following we shall assume CP invariance and set the phases to zero

in Eq.(17). Since in this case the textures of Eq.(17) are symmetric it is only

the 10 plet and the ¯126 plet of Higgs couplings that enter in the analysis and the

120 plet couplings do not. To exhibit the above phenomenon more concretely we

consider on phenomenological grounds a superpotential in the Yukawa sector of

the following type

WY = f
(0)
ij (Y,M)ψiψjφ

(0)
¯126 + f

(d)
12 (Y,M)ψ1ψ2φ

(1)
10 + f

(u)
12 (Y,M)ψ1ψ2φ

(2)
10

+f
(d)
22 (Y,M)ψ2ψ2φ

(1)
¯126 + f

(u)
23 (Y,M)ψ2ψ3φ

(2)
¯126 + f

(d)
33 (Y,M)ψ3ψ3φ

(1)
10

+f
(u)
33 (Y,M)ψ3ψ3φ

(2)
¯126 (18)
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where M is a superheavy scale and f
(d)
ij (Y,M) and f

(u)
ij (Y,M) are functions of a set

of scalar fields Y which develop VEVs and the appropriate factors of < Y nφ > /Mn

generate the right sizes. The model of Eq.(18) is of the generic type discussed

in refs.[7, 10]. We do not go into detail here regarding the symmetry breaking

mechanism, the doublet-triplet splitting and the mass generation for the pseudo-

goldstone bosons. All of these topics have been dealt with at some length in the

previous literature[2, 7, 8, 9]. Further, while models with large representations

are not asymptotically free and lead rapidly to non-perturbative physics above

the unification scale, the effective theories below the unification scale gotten by

integration over the heavy modes are nonetheless perfectly normal and thus such

theories are acceptable unified theories. For our purpose here we assume a pattern

of VEV formation for the neutral components of the Higgs so that < φ
(0)
¯126 >

develops a VEV along the SU(5) singlet direction (this corresponds to h in Eq.(15)

developing a VEV), < φ
(1)
10 > develops a VEV in the 5̄ plet of SU(5) direction (this

corresponds to H1 developing a VEV in Eq.(8)), < φ
(2)
10 > develops a VEV in the

5 plet direction (this corresponds to H2 developing a VEV in Eq.(8)), < φ
(1)
¯126 >

develops a VEV in the direction of 4̄5 plet of Higgs (this corresponds to hk
ij in

Eq.(15) developing a VEV), and < φ
(2)
¯126 > develops a VEV in the direction of 5

plet of Higgs (this correspons to hi in Eq.(15) developing a VEV). It is the VEV

of the 45 plet that leads to -3 and 1 factors in AE vs AD. The superpotential of

Eq.(18) with the above VEV alignments then leads automatically to the textures

in the Higgs doublet sector of Eq.(17). One may now compute the textures in the

Higgs triplet sector that result from superpotential of Eq.(18). One finds

BE =




0 f 0
f 0 0
0 0 d


 , BU =




0 c 0
c 0 0
0 0 0


 (19)

and BD = BE and CU = BU . We note the existence of the additional zeros in

BE and BD relative to AE and AD and in BU and CU relative to AU . We shall

show shortly that the existence of the additional zeros in BE , BD,BU and CU

increases in a very significant manner the proton decay lifetime. Before we discuss

this enhancement in greater detail, we wish to discuss the origin of the additional

zeros. It is easy to see that a coupling of the matter sector with the ¯126 of Higgs

which contributes a non-vanishing element in the Higgs doublet sector produces a

vanishing contribution in the lepton and baryon number violating dimension five

operator or equivalently generates a corresponding zero in the texture in the Higgs

triplet sector. The reason for this is rather straightforward. While one also needs
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a 126 plet of Higgs to cancel the D term generated by the VEV of the ¯126 of Higgs,

the 126 plet of Higgs has no coupling with the ordinary 16 plet of matter. Since

the only bilinear with the ¯126 in the superpotential is of the form 126× ¯126 (i.e.,

one cannot write a (126)2 term in the superpotential) one finds that no lepton

and baryon number violating dimension five operators arise as a consequence of

integrating out the 126 and ¯126 of Higgs which effectively corresponds to a texture

zero in the Higgs triplet sector. Of course, the extra zeros in the Higgs triplet

sector could also arise from accidental cancellations. However, the group theoretic

origin is more appealing.

The extra zeros in the textures in the Higgs triplet sector lead to a substantial

enhancement of the proton decay lifetime. To see their effect we begin by inte-

grating out the Higgs triplet field in Eq.(16) which generates lepton and baryon

number violating dimension five operators with the chiral structure LLLL and

RRRR. Of these the LLLL operator involves the textures BE and CU while the

RRRR operator involves the textures BD and BU . Since the number of extra

zeros in BE and BD are the same and the same holds for BU and CU , it suffices

to discuss only one of these operators, and in the following we focus on the LLLL

dimension five operator. Here the texture zero in the 22 element of BE suppresses

the ν̄µK
+ decay mode of the proton by a factor md/ms making the ν̄τK

+ the dom-

inant mode. Since the decay channel ν̄µK
+ is highly suppressed (while the decay

channel ν̄eK
+ which is normally suppressed remains suppressed) we estimate that

there is an over all suppression in all the neutrino decay channels from the extra

zero in BE to be about a factor of about 2. The texture zeros in CU lead roughly

to a replacement of mc by
√
mumc and thus lead to a suppression of the proton

decay lifetime roughly by mu/mc. A similar suppression holds for decays via the

RRRR dimension five operator. Including the suppression from both BE and CU

and using mc = 1.35 GeV and the up quark mass in the range 1-5 MeV, one finds

that the texture zeros can lead to an enhancement of the proton decay lifetime

in the ν̄K+ mode by a factor of (1.5 ± 1) × 103 over the minimal SU(5) model.

Such lifetimes fall in the interesting range for the next generation of proton decay

experiments. The texture effects are generic and similar effects are expected in

other decay modes as well. The superpotential of Eq.(18) also generates a Dirac

neutrino mass matrix which is given by

MνLR =




0 c 0
c 0 −3b
0 −3b −3a


h2 (20)
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However, a full analysis of neutrino masses requires a model for the Majorana mass

matrixMMaj to generate a see-saw mechanism[28] so thatMνLL = −MT
νLRM

−1
MajMνLR

where the mass scale associated with MMaj is much larger than the mass scale

that appears in MνLR. MMaj depends on f
(0)
ij in Eq.(18) which are in general addi-

tional arbitrary parameters. [For a sample of recent analyses on neutrino masses in

SO(10) see Ref.[10, 29] and for a review and a classification of models of neutrino

masses see Ref.[30]]. The appearance of MMaj in the analysis of neutrino masses

with additional arbitrary parameters and a scale much larger than the mass scale

that appears in MνLR implies that there is not a rigid relationship between proton

decay and neutrino masses in SO(10). Nonetheless, it is interesting to investigate

the correlation that exists between these two important phenomena in specific

models. A more extensive analysis of this topic involving the detailed coupling

structure of Eqs.(8), (12) and (15) as well as other texture possibilities in the

Higgs doublet sector[26] will be discussed elsewhere.

In conclusion, we have developed a technique which allows the explicit compu-

tation of the SO(2N) invariant couplings in terms of SU(N) invariant couplings.

The technique is specially useful in the analysis of couplings involving large tensor

representations. We have illustrated the technique by carrying out a complete

analysis of the SO(10) invariant superpotential at the trilinear level involving in-

teractions of matter with Higgs which consists of the 16a16b10H , 16a16b120H , and

the 16a16b
¯126H couplings. The technique can be used with relative ease to com-

pute other couplings involving large tensor representations such as 1̄6− 16− 210.

We note that the decomposition of SO(10) into multiplets of SU(5) is merely a

convenient device for expanding the SO(10) interaction in a compact form and

does not necessarily imply a preference for the symmetry breaking pattern. In-

deed one can compute the SO(10) interactions using the technique used here and

then use any symmetry breaking scheme one wishes to get to the low energy the-

ory. We also discussed in this paper the phenomena that the coupling of the ¯126

with matter leads to extra zeros in the Higgs triplet sector and the existence of

such zeros can enhance the proton decay lifetime by as much as 103. Thus ¯126

couplings might help relieve the constraint on SUSY GUT models because of the

recent SuperKamiokande data and improved lattice gauge calculations of α and β.

The coupling involving large tensor representation given in sec.3 also have impli-

cations for neutrino mass textures. Finally, the technique discussed here is easily

extendible to models with SO(2N+1) invariance. [Note added: The enhancement
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of the proton lifetime by a factor of O(103) discussed here may be needed to

overcome the light sparticle spectrum (see e.g., U. Chattopadhyay and P. Nath,

hep-ph/01021577) implied by the Brookhaven g-2 experiment, H.N. Brown et.al,

hep-ex/0102017.]
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Appendix: Details of 120 plet and ¯126 plet couplings and normalizations

We discuss now the details of the 120 plet and ¯126 plet couplings. For the tensors

that appears in the 120 plet coupling, can be decomposed in their irreducible forms

by the decomposition

φcicj c̄k
= f ij

k +
1

4
(δi

kf
j − δj

kf
i), φcic̄j c̄k

= f i
jk +

1

4
(δi

jfk − δi
kfj)

φcicjck
= εijklmflm, φc̄ic̄j c̄k

= εijklmf
lm, φc̄ncnci

= f i, φc̄ncnc̄i
= fi (21)

where f ij
k and f i

jk are traceless and are the 45 plet and the 4̄5 plet representations

of SU(5). The irreducible tensors f i, f ij etc are not yet properly normalized. To

normalize them we make the following redefinition of fields

f i =
4√
3
hi, f ij =

1√
3
hij, f ij

k =
2√
3
hij

k

fi =
4√
3
hi, fij =

1√
3
hij , f i

jk =
2√
3
hi

jk (22)

In terms of the redefined fields the kinetic energy term for the 120 multiplet which

is given by −∂αφµνλ ∂
αφ†µνλ takes on the form

L
(120)
kin = −(

1

2
∂αh

ij∂αhij† +
1

2
∂αhij∂

αh†ij +
1

2
∂αh

ij
k ∂

αhij†
k

+
1

2
∂αh

i
jk∂

αhi†
jk + ∂αh

i∂αhi† + ∂αhi∂
αh†i ) (23)

where the factors of 1/2 are to account for (ij) permutations.
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Next we discuss details of the ¯126 plet couplings. Here the reducible tensors

that enter in the expansion of the vertex are ∆cicjckclc̄m, ∆cicjck c̄lc̄m etc. These can

be decomposed into their irreducible parts as follows

∆cicjckclc̄m = f ijkl
m +

1

2
(δi

mf
jkl − δj

mf
ikl + δk

mf
ijl − δl

mf
ijk)

∆cicjck c̄lc̄m = f ijk
lm +

1

2
(δi

lf
jk
m − δj

l f
ik
m + δk

l f
ij
m − δi

mf
jk
l + δj

mf
ik
l − δk

mf
ij
l )

+
1

12
(δi

lδ
j
mf

k − δj
l δ

i
mf

k − δi
lδ

k
mf

j + δk
l δ

i
mf

j + δj
l δ

k
mf

i − δk
l δ

j
mf

i)

∆cicj c̄k c̄lc̄m = f ij
klm +

1

2
(δi

kf
j
lm − δi

lf
j
km + δi

mf
j
kl − δj

kf
i
lm + δj

l f
i
km − δj

mf
i
kl)

+
1

12
(δi

kδ
j
l fm − δi

kδ
j
mfl − δi

lδ
j
kfm + δi

lδ
j
mfl + δi

mδ
j
kfl − δi

mδ
j
l fk)

∆cic̄j c̄k c̄lc̄m = f i
jklm +

1

2
(δi

jfklm − δi
kfjlm + δi

lfjkm − δi
mfjkl)

∆cicjckclcm = εijklmf, ∆c̄ic̄j c̄kc̄lc̄m = εijklmf̄ (24)

In terms of the irreducible tensors the vertex that enters in Eq.(13) can be decom-

posed as follows

ΓµΓνΓλΓρΓσ∆µνλρσ = (εijklmbibjbkblbmf + εijklmb†ib
†
jb
†
kb
†
l b
†
mf̄) +

+(15b†if
i − 20b†ib

†
nbnf

i + 5b†ib
†
nbnb

†
mbmf

i + 15bifi − 20b†nbnbifi + 5b†nbnb
†
mbmbifi)

+10(b†ib
†
jb
†
kf

ijk − b†ib
†
jb
†
kb
†
nbnf

ijk + bibjbkfijk − b†nbnbibjbkfijk)

+(60b†ib
†
jbkf

ij
k − 30b†ib

†
jbkb

†
nbnf

ij
k + 60b†ibjbkf

i
jk − 30b†nbnb

†
ibjbkf

i
jk)

+(5b†ib
†
jb
†
kb
†
l bmf

ijkl
m + 5b†ibjbkblbmf

i
jklm) + (10b†ib

†
jb
†
kblbmf

ijk
lm + 10b†ib

†
jbkblbmf

ij
klm)(25)

The fields that appear above are not yet properly normalized. To normalize the

fields we carry out a field redefinition so that

f =
2√
15
h, f i =

4
√

2√
5
hi, f ijk =

√
2√
15
εijklmhlm

f i
jklm =

√
2√
15
εjklmnh

(S)ni, f i
jk =

2
√

2√
15
hi

jk, f ijk
lm =

2√
15
hijk

lm , (26)

The kinetic energy for the ¯126 plet field −∂αφµνλρσ∂
αφ†µνλρσ in terms of the nor-

malized fields is then given by

L
( ¯126)
kin = −(∂αh∂

αh† + ∂αh
i∂αhi† +

1

2
∂αhij∂

αh†ij +
1

2
∂αh

(S)ij∂αh(S)ij†

+
1

2
∂αh

i
jk∂

αhi†
jk +

1

3!2
∂αh

ijk
lm ∂

αhijk†
lm ) (27)

where the numerical factors are to account for the permutations.
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