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One of the most interesting developments in M-theory [1, 2, 3, 4, 5, 6, 7, 8,
9, 10] model building is that new non-perturbative tools have been developed which
allow the construction of realistic three generation models [11]. In particular the
inclusion of five-brane moduli Zn, (which do not have a weakly coupled string theory
counterpart) besides the metric moduli T, S in the effective action leads to new types
of E8×E8 symmetry breaking patterns as well as to novel gauge and Kähler threshold
corrections. As a result the soft-supersymmetry breaking terms differ substantially
from the weakly coupled string.

The phenomenological implications of the effective action of M-theory with
the standard embedding of the spin connection into the gauge fields have been inves-
tigated in [12, 13, 27, 15, 16]. Some phenomenological implications of non-standard
embeddings in M-theory with and without five-branes have been studied in [17, 18].

In a previous letter, we investigated the supersymmetric particle spectrum in
the interesting case when the auxiliary fields associated with the five-branes dominate
those associated with metric moduli (F Zn � F S, F T ), including the constraint of
radiative electroweak symmetry-breaking [19]. It is the purpose of this letter, to
extend the calculation and take into account cosmological constraints on the relic
abundance of the neutralino assuming it provides the dark matter of the universe in
the region of the parameter space in which it is the lightest supersymmetric particle.
As we shall see in what follows these constraints are quite restrictive.

The soft supersymmetry-breaking terms are determined by the following func-
tions of the effective supergravity theory [11, 18]:

K = −ln(S + S̄)− 3ln(T + T̄ ) + K5 +
3

T + T̄
(1 +

1

3
eO)HpqC

p
OC̄q

O,

fO = S + BOT, fH = S + BHT,

WO = dpqrC
p
OCq

OCr
O (1)

where K is the Kähler potential, WO the observable sector perturbative superpoten-
tial, Cp

O are observable sector matter fields and fO, fH are the gauge kinetic functions
for the observable and hidden sector gauge groups respectively. K5 is the Kähler
potential for the five-brane moduli Zn and Hpq is some T -independent metric. Also

eO = bO
T + T̄

S + S̄
, eH = bH

T + T̄

S + S̄
(2)

and the coefficients bO,H , BO,H are given in terms of the instanton numbers βO,H and
the five brane charges βn by the following expressions

bO = βO +
N∑

n=1

(1− zn)2βn

BO = βO +
N∑

n=1

(1− Zn)2βn

BH = βH +
N∑

n=1

(Zn)2βn
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bH = βH +
N∑

n=1

z2
nβn (3)

and the five-brane moduli are denoted by Zn whose ReZn ≡ zn = xn

πρ
∈ (0, 1) are

the five-brane positions in the normalized orbifold coordinates. Since a Calabi-Yau
manifold is compact, the net magnetic charge due to orbifold planes and 5-branes is
zero. Consequently the following cohomology condition is satisfied

βO +
N∑

n=1

βn + βH = 0 (4)

S, T are the dilaton and Calabi-Yau moduli fields and Cp charged matter fields.
The superpotential and the gauge kinetic functions are exact up to non-perturbative
effects.

Given eqs(1) one can determine [11, 18] the soft supersymmetry breaking terms
for the observable sector gaugino masses M1/2, scalar masses m0 and trilinear scalar
couplings A as functions of the auxiliary fields F S,F T , F n of the moduli S, T fields
and five-brane moduli Zn respectively.

M1/2 =
1

(S + S̄)(1 + BOT+B̄OT̄
S+S̄

)
(F S + F TBO + TF n∂nBO)

m2
0 = V0 + m2

3/2 −
1

(3 + eO)2

[
eO(6 + eO)

|F S|2
(S + S̄)2

+ 3(3 + 2eO)
|F T |2

(T + T̄ )2
− 6eO

(S + S̄)(T + T̄ )
ReF SF̄ T̄

+
(eO

bO

(3 + eO)∂n∂m̄bO − e2
O

b2
O

∂nbO∂m̄bO

)
F nF̄ m̄

− 6eO

bO

∂n̄bO

S + S̄
ReF SF̄ n̄ +

6eO

bO
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,

A = − 1

3 + eO

{F S(3− 2eO)

S + S̄
+

3eOF T

T + T̄

+ F n
(
3
eO

bO
∂nbO − (3 + eO)∂nK5

)}
(5)

where ∂n ≡ ∂
∂Zn

. The bilinear B-parameter associated with a non-perturbatively

generated µ term in the superpotential is given by [18]:

Bµ =
F S(eO − 3)

(3 + eO)(S + S̄)
− 3(eO + 1)F T

(T + T̄ )(3 + eO)

+
1

3 + eO

[
(3 + eO)F n∂nK5 − 2F n eO

bO
∂nbO

]
−m3/2

(6)
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From now on we assume that only one five-brane contributes to supersymmetry-
breaking 3. Then the auxiliary fields are given by [18, 22]

F 1 =
√

3m3/2C(∂1∂1̄K5)
−1/2 sin θ1

F S =
√

3m3/2C(S + S̄) sin θ cos θ1

F T = m3/2C(T + T̄ ) cos θ cos θ1 (7)

The goldstino angles are denoted by θ, θ1, m3/2 is the gravitino mass and C2 =

1 + V0

3m2
3/2

with V0 the tree level vacuum energy density. The five-brane dominated

supersymmetry-breaking scenario corresponds to θ1 = π
2
, i.e F T , F S = 0, and we take

the five brane which contributes to supersymmetry breaking to be located at z1 = 1/2
in the orbifold interval. We also set C = 1 in the above expressions assuming zero
cosmological constant.

The resulting supersymmetric particle spectrum for a single five-brane present
with z1 = 1

2
has been investigated in [19]. Our parameters are, eO, ∂1∂1̄K5, ∂1K5,

m3/2, sign µ (which is not determined by the radiative electroweak symmetry breaking
constraint), where µ is the Higgs mixing parameter in the low energy superpotential.

The ratio of the two Higgs vacuum expectation values tanβ =
<H0

2>

<H0
1>

is also a free

parameter if we leave B to be determined by the minimization of the one-loop Higgs
effective potential. If B instead is given by (6), one determines the value of tanβ.
For this purpose we take µ independent of T and S because of our lack of knowledge
of µ in M-theory. We treat eO as a free parameter as the problem of stabilizing
the dilaton and other moduli has not yet been solved, although there has been an
interesting work in this area [23].

The instanton numbers are model dependent. In this paper we choose to work
with the interesting example [18] with βO = −2 and β1 = 1 which implies bO = −7/4.
This implies that bH = 5/4 and allow us to study the region of parameter space with
−1 < eO ≤ 0, which is not accessible in strongly coupled M-theory scenarios with
standard embedding. We also choose ∂1K5 = ∂1∂1̄K5 = 1. In an earlier paper [19]
we have investigated deviations from these values and have verified the robustness of
our results.

We use the following experimental bounds from unsuccessful searches at LEP
and Tevatron for supersymmetric particles [20]. We require the lightest chargino
Mχ+

1
≥ 90 GeV, and the lightest Higgs, mh0 ≥ 83 GeV. A lower limit on the mass

of the lightest stop mt̃2 > 86 GeV, from t̃2 → cχ0
1 decay in D0 is imposed. The stau

mass eigenstate (τ̃ ) should be heavier than 81 GeV from LEP2 results.
The soft masses start running from a mass R−1

11 ∼ 7.5×1015 GeV with R11 the
extra M-theory dimension. Then using (5),(6) as boundary conditions for the soft
terms, one evolves the renormalization group equations down to the weak scale and
determines the sparticle spectrum compatible with the constraints of correct elec-
troweak symmetry breaking and the above experimental constraints on the sparticle
spectrum.

3We assume negligible CP -violating phases in the soft terms.
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Electroweak symmetry breaking is characterized by the extrema equations

1

2
M2

Z =
m̄2

H1
− m̄2

H2
tan2 β

tan2 β − 1
− µ2

−Bµ =
1

2
(m̄2

H1
+ m̄2

H2
+ 2µ2) sin 2β (8)

where

m̄2
H1,H2

≡ m2
H1,H2

+
∂∆V

∂v2
1,2

(9)

and ∆V = (64π2)−1STrM4[ln(M2/Q2)− 3
2
] is the one loop contribution to the Higgs

effective potential. We include contributions only from the third generation of parti-
cles and sparticles.

Since µ2 � M2
Z for most of the allowed region of the parameter space [24],

the following approximate relationships hold at the electroweak scale for the masses
of neutralinos and charginos, which of course depend on the details of electroweak
symmetry breaking.

mχ±1
∼ mχ0

2
∼ 2mχ0

1

mχ0
3,4
∼ mχ±2

∼ |µ| (10)

In (10) mχ±1,2
are the chargino mass eigenstates and mχ0

i
, i = 1 . . . 4 are the four

neutralino mass eigenstates with i = 1 denoting the lightest neutralino. The former
arise after diagonalization of the mass matrix.

Mch =


 M2

√
2mW sin β

mW cos β −µ


 (11)

where M2 denotes the weak gaugino mass and M1 will denote the U(1)Y gaugino
(Bino) mass. The stau mass matrix is given by the expression

M2
τ =


 M2

11 mτ̃ (Aτ + µ tanβ)
mτ̃ (Aτ + µ tanβ) M2

22


 (12)

where M11 = m2
L + m2

τ − 1
2
(2M2

W − M2
Z) cos 2β and M22 = m2

E + m2
τ + (M2

W −
M2

Z) cos 2β. where m2
L, m2

E refer to scalar soft masses for lepton doublet, singlet
respectively.

As has been first noted in [18], in the case when only the five-branes contribute
to supersymmetry-breaking the ratio of scalar masses to gaugino mass, m0/|M1/2| > 1
for eO > −0.65. This is quite interesting since scalar masses larger than gaugino
masses are not easy to obtain in the weakly-coupled heterotic string or M-theory
compactification with standard embedding. As we shall see cosmological constraints
become important in this region of the parameter space. In the case of non-standard
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embeddings without five-branes there is small region of the parameter space where is
possible to have m0/|M1/2| > 1.

Assuming R-parity conservation the LSP is stable, and consequently if it is
neutral can provide a good dark matter candidate. We assume that the dark matter
is in the form of neutralinos. The lightest neutralino is a linear combination of the
superpartners of the photon, Z0 and neutral-Higgs bosons,

χ0
1 = N11B̃ + N12W̃

3 + N13H̃
0
1 + N14H̃

0
2 (13)

The neutralino 4× 4 mass matrix can be written as


M1 0 −MZA11 MZA21

0 M2 MZA12 −MZA22

−MZA11 MZA12 0 µ
MZA21 −MZA22 µ 0




with 
 A11 A12

A21 A22


 =


 sin θW cos β cos θW cos β

sin θW sin β cos θW sin β




When the observational data on temperature fluctuations, type Ia supernovae,
and gravitational lensing are combined with popular cosmological models, the dark
matter relic abundance (ΩLSP ) typically satisfies [26]

0.1 ≤ ΩLSP h2 ≤ 0.4 (14)

where h is the reduced Hubble constant.
We calculated the relic abundance of the lightest neutralino in the scenarios we

have considered using standard techniques [25]. When these results are confronted
with the (model-dependent) bounds (14) derived from the observational data fur-
ther constraints on the parameters m3/2, tanβ, µ, eO are obtained and these give new
constraints on the sparticle spectrum.

In figs.(1,2,3) we display the relic abundance of the lightest neutralino versus
tan β for different values of the gravitino mass and the parameter eO. We see that
ΩLSP h2 ≤ 0.4 puts m3/2 dependent lower bounds on the values of tan β. Let us start
the discussion with the case e0 = −0.6, µ < 0, fig.(1). In this case the upper limit
on the relic abundance provides the following lower bounds on tanβ. For instance,
for m3/2 = 170GeV tanβ > 5 while for m3/2 = 230GeV tanβ > 20. Values of the
gravitino mass m3/2 < 170GeV come into contradiction with the lower experimental
bounds on the lightest Higgs mass and lightest chargino mass imposed from unsuc-
cessful searches for supersymmetric particles in accelerator experiments. The lower
limit on the relic abundance (ΩLSP h2 > 0.1) imposes further constraints on the grav-
itino mass for tan β ≥ 26. In particularfor tanβ = 26, m3/2 ≥ 182GeV which results
in: mχ+

1
≥ 102GeV, mh0 ≥ 115GeV . Similarly for tanβ = 28, m3/2 ≥ 210GeV and
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tanβ mmax
3/2 mh0 m+

χ1
mχ0

1
mt̃2 mτ̃2

22 380GeV 118.5 GeV 99 GeV 54 GeV 155 GeV 310 GeV

28 381GeV 118 GeV 99 GeV 54 GeV 154 GeV 284 GeV

30 400GeV 119 GeV 104 GeV 56 GeV 164 GeV 288 GeV

32 495GeV 122 GeV 131 GeV 70 GeV 216 GeV 347 GeV

34 750GeV 129 GeV 201 GeV 106 GeV 371 GeV 513. GeV

Table 1: Upper bounds on sparticle masses resulting from Eq. (14) for eO = −0.4, µ <
0 for various values of tanβ.

mχ+
1
≥ 119.5GeV. In this case the lightest Higgs mass mh0 ≥ 117.6GeV. The allowed

values of m3/2 as a function of tanβ, compatible with (14), and for eO = −0.6, µ < 0
are shown in fig.4. Also shown in Figs.5,4 are upper bounds on the lightest chargino,
lightest Higgs and lightest neutralino masses respectively, compatible with the upper
cosmological limit on the relic abundance for both signs of µ. The resulting model
can be tested at accelerator experiments.

The cosmological constraints become even more important when eO → 0. In
figs. 2 and 3 we plot the relic abundance of the lightest neutralino versus tanβ for
different values of the gravitino mass for eO = −0.4. The lower experimental bounds
(from unsuccessful searches in accelerator experiments) on the lightest chargino mass
and on the lightest Higgs mass now require that m3/2 ≥ 380GeV . For µ < 0 we see
that ΩLSP h2 ≤ 0.4 requires tanβ ≥ 22 for any allowed value of the gravitino mass
and for 22 ≤ tan β ≤ 30, the relic abundance of the lightest neutralino is in the
range:0.05 ≤ ΩLSP h2 ≤ 0.33. The upper bounds on the gravitino, lightest chargino,
lightest Higgs, lightest stop and lightest stau masses as a function of tan β compatible
with the upper limit on the relic abundance are summarised in Table 1.

In fig. (6) we plot the relic abundance of the lightest neutralino versus
eO for tan β = 15, 26 respectively and fixed Bino mass at the unification scale
M1(MU) = 126GeV. This choice corresponds to a lightest neutralino mass of ∼ 54GeV
corresponding to a lightest chargino mass of about 100 GeV, the current experimental
lower bound. From fig.6 we observe that for eO ≥ −0.55, tanβ = 15, ΩLSP h2 > 0.4
and for eO > −0.5 is greater than 1. On the other hand for eO → −1 the cosmologi-
cal constraints are more easily satisfied although for eO too close to -1 ΩLSP h2 > 0.1
becomes more difficult to satisfy. Also for eO < −0.8 the lightest stau becomes the
lightest supersymmetric particle. For tanβ = 26, we have that for eO ≥ −0.45,
ΩLSP h2 > 0.4.

Assuming that the neutralinos provide the cold dark matter in our Galaxy
we calculated its direct detection rates for various nuclei. For an LSP moving with
velocity vz with respect to the detector nuclei the detection rate for a target with
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mass m is given by [25]

R =
ρ0.3

χ0
1

mχ0
1

m

Amp

∫
f(v)|vz|σ(|v|)d3v, (15)

where ρ0.3
χ0

1
denotes the local LSP mass density normalized to the standard value of

0.3GeVcm−3, f(v) a Maxwell velocity distribution and σ denotes the neutralino-
nucleous elastic cross section.

For e0 = −0.6 the cross sections of neutralinos with nucleon result in large
total detection rates in the cosmologically interesting region for large values of tanβ.
In particular, for 73Ge,208 Pb,131 Xe detectors, detection rates of the neutralinos are
in the range of order 10−3 − O(1)events/Kg/day for µ < 0. The larger total event
rates occur for tan β ≥ 24. The results for µ > 0 are similar. This illustrates the
fact that ΩLSP h2 ∼ 10−37cm2

<σanniv>
and the neutralino annihilation cross section is roughly

proportional to the neutralino scattering cross section. Thus as the LSP abundance
decreases, its scattering cross section generally increases. For ΩLSP h2 ∼ 0.1 this
results in an increased event rate. For values of eO > −0.6 the total detection rates
are smaller. This behaviour of the detection rates can be understood by investigating
the neutralino-nucleon scalar (spin-independent) cross section, which in this model is
the dominant contribution to the total neutralino-nucleous elastic cross section.

The scalar nucleon-LSP cross section is given by [12, 29]

σ
(nucleon)
scalar =

8G2
F

π
M2

W m2
red

[
G1(h0)Ih0

m2
h0

+
G2(H)IH

m2
H

+ · · ·
]2

(16)

where

G1(h0) = (−N11 tan θW + N21)(N31 sin α + N41 cos α)

G2(H) = (−N11 tan θW + N21)(−N31 cos α + N41 sin α) (17)

and
Ih0,H =

∑
q

lh0,H
q mq < N |q̄q|N > (18)

and

lh0
q =

cos α

sin β
lHq =

sin α

sin β
for q = u, c, t

lh0
q = − sin α

cos β
lHq =

cos α

cos β
for q = d, s, b (19)

where the two first terms inside the brackets refer to the diagrams with h0 and H-
exchanges in the t-channel and the the ellipsis refers to the graphs with squark-
exchanges in the s- and u-channels [12]. In equation (16) mred is the neutralino-
nucleon reduced mass, h0, H denote the lightest Higgs and CP-even heavier Higgs
respectively and α is the Higgs mixing angle 4.

4We determine the Higgs mixing angle numerically by diagonalizing the one-loop CP-even Higgs
mass matrix.
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Of particular interest is the tan β dependence of the scalar neutralino-nucleon
cross section σnucleon

scalar . For high values of tanβ the corresponding cross section generi-
cally increases (see Figs.7, 8). The calculated cross section for high tanβ reaches the
sensitivity of current dark matter experiments for the nucleon-neutralino scalar cross

section in the range 1 × 10−9nb(2.6 × 10−15GeV −2) ≤ σ
(nucleon)
scalar ≤ 3 × 10−8nb(7.7 ×

10−14GeV −2) [29]. The larger the value of the eO parameter the smaller the cross-
section for fixed tanβ, signµ and fixed bino mass. Also the cross section decreases
for increasing values of the gravitino mass for fixed eO and signµ as is evident from
figs.(7, 8). The two upper curves in graphs 7 and 8 are cross-sections for an LSP
mass about 54GeV. The corresponding spin-dependent cross sections [12] are much
smaller by two to three orders of magnitude.

Recently, large detection rates have been obtained in type I string theories
formulated as orientifold compactifications of type IIB string theory [27, 28]. In par-
ticular, in the mirage unification scenario large detection rates have been obtained.
This scenario, differs from the ones studied in this paper in the following respects:First
in the mirage unification scenario the lightest neutralino has a large Higgsino compo-
nent while in the 5-brane dominated limit it is almost a Bino. Thus in the first case
besides a large scalar cross-section the LSP has also a rather large spin-dependent
couplings with the nuclei.

Second, in the type I model, the nucleon-neutralino cross section is large and
consequently the detection rates are large when tanβ is small, i.e. tan β ≤ 8. Also
in this case the high neutralino-nucleon cross sections correspond to relatively low
relic neutralino densities, i.e. ΩLSP h2 ≤ 0.1 and therefore another form of dark
matter might be needed to close the Universe. As we saw in the current model large
cross-sections occur in the high tanβ region. Thus the two models lead to different
predictions.

As well as predictions for direct detection for the lightest neutralino χ0
1 we

have obtained bounds on the value of tan β from the cosmological constraints on the
relic abundance. We have also calculated the maximum lightest chargino mass and
the lightest maximum Higgs mass as a function of tan β for various values of the ratio
of the scalar masses to gaugino masses. The resulting sparticle spectra should be
tested in accelerator experiments in Tevatron and LHC.
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Figure 1: Relic abundance of the LSP versus tan β for various values of the gravitino
mass and eO = −0.6, µ < 0. We also exhibit the upper and lower cosmological bounds
on the LSP relic abundance
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Figure 2: Relic abundance of LSP vs tan β for eO = −0.4, ∂1K5 = ∂1∂1̄K5 = 1, m3/2 =
380GeV, 450GeV, 480GeV, µ < 0.
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Figure 3: Relic abundance of LSP vs tan β for eO = −0.4, ∂1K5 = ∂1∂1̄K5 = 1, m3/2 =
380GeV, 420GeV, 450GeV, 480GeV µ > 0.
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Figure 4: Maximum gravitino, lightest chargino and lightest Higgs masses (imposed
by Ωh2 ≤ 0.4) versus tan β for eO = −0.6, µ < 0.
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Figure 5: Maximum gravitino, lightest chargino and lightest Higgs masses (imposed
by Ωh2 ≤ 0.4) versus tan β for eO = −0.6, µ > 0.
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Figure 6: Relic abundance of LSP vs eO for tanβ = 15, 26, ∂1K5 = ∂1∂1̄K5 =
1, |M1(MU)| = 126GeV, µ < 0.
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Figure 7: Proton-scalar LSP cross section versus tanβ for fixed eo = −0.6, µ <
0, m3/2 = 170(uppercurve), 200GeV (lowercurve).
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Figure 8: Proton-LSP cross section versus tan β for eo = −0.4, µ < 0, m3/2 =
380GeV (upper curve), 450GeV (lower curve).
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