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Abstract

The strong-strong interactions of two colliding beams are simulated by tracking the motion of a
set of macroparticles. The field generated by each distribution is evaluated using the Fast Mul-
tipole Method (FMM) together with some elements of particle-mesh methods. This technique
allows us to check the exact frequencies of the coherent modes and the frequencies of oscillations
of individual particles in the beam. The agreement between the simulations and analytical cal-
culations is largely improved. Furthermore it is an efficient method to study the coherent modes
in the case of separated beams.
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1 Introduction
Two colliding beams exert a force on each other which is defocusing for beams of

equal polarity as in the case of LHC. Solutions of the linearized Vlasov equation show that
for round beams and in the case of one bunch per beam with equal parameters (intensity,
beam size, betatron tune) two coherent dipole modes of oscillations appear: the σ mode,
whose frequency is equal to the unperturbed betatron tune, and the π-mode with a tune
shift of Y = 1.21, where Y is the Yokoya factor [1], times the beam-beam parameter ξ.

In this paper the transverse coherent motion of two colliding proton beams is stud-
ied by multiparticle tracking. In a self-consistent model of the coherent interaction, the
distributions of both beams evolve as a consequence of the mutual interaction and are
used at the interaction points to calculate the force on the individual particles. A number
of studies have been done for LHC using the so-called “soft Gaussian model” [2]. This
model assumes the force experienced by a particle when traversing the counter rotating
beam as originating from a Gaussian beam distribution with variable barycenters and rms
beam sizes. This allows the use of an analytical expression for the forces. This Gaussian
model cannot take into account the non-Gaussian deformations of the distribution and
as a result underestimates the force and yields a Yokoya factor that is slightly smaller
(Y = 1.1 in our case). This symptom has also been recently discussed by Yokoya [3]. In
the worst case this simplification can inhibit the appearance of coherent effects. Nonethe-
less the use of the analytical expression of the force generated by a Gaussian beam allows
simulations in a reasonable computing time and it is therefore more convenient for studies
with multiple bunches.

It has been predicted [4, 5] that the coherent π-mode may not be Landau damped
for certain strong-strong conditions and therefore an accurate knowledge of the Yokoya
factor is highly desirable.

2 Simulations beyond the soft Gaussian model
To avoid this problem and to increase the accuracy of the simulations, we have to

introduce a field solver for an arbitrary distribution of charges in space. The choice of the
solver is constrained by the problems under investigation:

– Large number of particles in simulation ( 104).
– Separated beams (separation 10 times the beam size or more).

A direct integration of forces (particle-particle methods) is ruled out since the necessary
time grows with the square of the number of particles (O(N2

p )). For the number of particles
used in our simulation this is impossible. Other possible solvers employ so-called particle-
mesh methods and have been shown to give good results [6]. Their advantage is speed
since the number of computations is smaller and depends on the number of grid points
Ng: (O(Ng · lnNg)). A strong disadvantage is that particle-mesh methods have problems
handling non-uniform distributions. For the case of separated beams (as in our case with
the important effect of long range collisions) most of the space is basically empty. Moving
or adaptive grids may be used for that purpose, but may lead to a rather complicated
structure.

Another possibility is to use Fast Multipole Methods (FMM). In this algorithm the
potential or force acting on a particle is divided into two components. The component of
close particles is computed directly and between distant particles the potential is approx-
imated by multipole expansion [7, 8]. This method is therefore well adapted to handle
problems like separated beams. Problems with FMM are close encounters and ”charge-
overloading”, i.e. for the LHC bunches 1011 particles are represented by 104 macroparticles.
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3 Basic HFMM algorithm
For our problem we studied a modified version of FMM, a Hybrid FMM (HFMM)

[9]. It resembles a particle mesh method for the handling of charges and super particles,
however the forces on the superparticles are evaluated using the FMM. Smoothing can help
to avoid charge-overloading. The HFMM is a robust implementation of a Fast-Multipole
Method (FMM) field solver, which is designed to solve the field for an arbitrary collection
of discrete charges. It divides the solution domain into a grid and a halo area. The grid area
is subdivided into a hierarchical tree of square regions. In the first step of the calculation,
the macroparticles inside the grid are assigned to grid points. All macroparticles outside
the grid are treated as discrete, independent superparticles and form the halo. The charge
assignment can be done with a ’nearest-grid-point’ method, i.e. the charge is assigned
to the nearest grid point. This is the simplest method, however the field values are not
continuous and the results are more noisy. Alternatively one can use the cloud-in-cell (CIC)
charge assignment where the charge is shared between the neighbouring grids points. This
method gives continuous field values but requires more book-keeping.

Finally, multipole expansions of the field are computed for every point, i.e. for each
grid point as well as for every halo particle, and the program derives the resulting forces
on the particles of the counterrotating beam. In the case of a CIC charge assignment,
appropriate interpolation between the fields calculated for the grid points have to be
applied. The grid size and shape does not have to follow any special geometry and can
be chosen freely to achieve the desired speed and precision, depending on the problems
under investigation. Unlike other Poisson solvers, the grid points with no charges assigned
are left out of the computation and the number of computations scales roughly with the
number of particles. More details of the method used in this report are found in [9].
This method is already implemented in the ACCSIM program [10] to study space charge
problems.

In this work we have implemented the HFMM in our beam-beam simulation program
to evaluate the force on a test particle generated by an arbitrary charge distribution.
This will be applied to study the strong-strong collision of two bunches colliding at one
interaction point (IP). We will study the coherent modes that are excited in the collision
of two equal round bunches similar to those of LHC, when colliding head-on or separated
by a constant offset at one interaction point (long range interactions). This will enable
us to obtain the correct Yokoya factor by multiparticle tracking and in a later stage to
study in detail the modes excited by long range interactions. Finally, it should allow us
to study the possible emittance growth of collisions of partially overlapping bunches [11].

4 Tracking with HFMM.
We simulate the collision of two strong proton beams. Our variables are: horizontal

position x, vertical position y, horizontal angle vx = x′, and vertical angle vy = y′. The
prime denotes the derivative with respect to longitudinal position s, e.g. x′ is the slope of
the horizontal trajectory.

Each of the beams has one bunch that is represented by a set of Np macroparticles,
whose trajectories are followed over n turns, assuming linear betatron motion without
coupling and a beam-beam collision at one interaction point (IP). At the IP every parti-
cle in the bunch experiences a deflection by the field of the counter-rotating beam that
depends on its position.

The deflection applied to a single particle in one of the beams is calculated using
the HFMM.
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The linear map from one IP to the next is

(
x(n + 1)
vx(n + 1)

)
=

(
cos (2πQx) sin (2πQx)
− sin (2πQx) cos (2πQx)

)(
x(n)

vx(n) + ∆vx(n)

)
(1)

An equivalent map is applied in the vertical plane, (y, vy).
The horizontal deflection experienced at the interaction point is:

∆vx(n) =
rpN

∗

γ
Ex(x, y) (2)

where Ex(x, y) is the horizontal force evaluated with the HFMM technique at the particle
position (x, y). The number of particles in the opposing beam is N∗.

For the simulation of parasitic (long range) collisions, the same model is employed.
The two beams collide with a horizontal separation Lx (in units of σx). For a low β
insertions we have about 90◦ phase advance between the IP and the long range collision
region. Since in the LHC the betatron phase advance between long range collisions on one
side of the interaction region is very small, we can lump all npar parasitic collisions into
a single one, to reduce the computing time. This overestimates the effect slightly because
the bunches oscillate with different phases with respect to each other.

Because a static dipole kick would change the closed orbit of the bunch, the static
kick from the long range collision must be subtracted [12]. The beam-beam long range
kick used in our simulation code is then

∆vx(n) = npar ·
2rpN

∗
p

γ
(Ex(x + Lxσx, y)−Dx(Lxσx, 0)).

where Dx(Lxσx, 0)) = −1/Lxσx · (1.0− exp (−L2
x

2.0
)) is the (constant) dipole kick generated

by a Gaussian distribution at a distance x = Lxσx. This assumes that a closed orbit
exists [11] and the bunches oscillate coherently around this orbit. At the LHC, there are
about npar = 16 parasitic encounters on each side of an IP, with a minimum transverse
separation of Lx = 7.5 (in units of σx). The fractional part of the horizontal and vertical
tunes are 0.31 and 0.32, and unlike LEP [13], the results are not strongly affected by
dynamic beta effects. In Figs.1 and 2 we show comparisons between the beam-beam kicks
calculated with the HFMM and those obtained from an analytical expression, both for
the case of round, exactly Gaussian beams. In the Fig.1 we test the different methods
for the charge assignment for a grid spacing of 0.25σ with a grid of 81x81, where 81 is
the number of grid points in each plane. Thus the grid for the head-on collisions covers
the amplitudes between -10σ to +10σ. While the ’nearest-grid-point’ assignment gives
visibly discontinuous values, the force evaluated with the CIC assignment is continuous
and therefore preferable.

In the Fig.2 we have used a different grid spacing of 0.10σ with a grid of 201x201
to test the obtained accuracy. The effect of the discontinuous values in the ’nearest-grid-
point’ assignment is now smaller and barely visible as one could expect. The grid size for
the simulation is a compromise between precision and computing speed. A grid spacing
of 0.1 σ or below gives good results. For most simulations we have therefore chosen such
a spacing and the Cloud-in-Cell (CIC) charge assignment.
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Figure 1: Beam-beam kick as calculated with HFMM (points) and from analytical expres-
sion (solid line) for round beams with Gaussian distribution. Left figure with 0.25σ grid
(81x81) and ’nearest-grid-point’ assignment. Right figure with ’cloud-in cell’ (CIC) as-
signment.
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Figure 2: Beam-beam kick as calculated with HFMM (points) and from analytical expres-
sion (solid line) for round beams with Gaussian distribution. Left figure with 0.10σ grid
(201x201) and ’nearest-grid-point’ assignment. Right figure with ’cloud-in cell’ (CIC) as-
signment.

5 Simulation results
In this section we shall give quantitative results on the coherent modes for head on

as well as some first results with long range interactions. Since the symmetry of beam
parameters plays an important role for the coherent motion, we study the relevance of
intensity differences as well as tune and beam size asymmetries. They are expected to
make it more difficult to maintain a coherent motion and will eventually help to avoid it.

5.1 Head-on collisions with equal betatron tunes and intensity
First let us consider the strong-strong case and head-on collisions of two round

bunches, using the previous maps. The statistical variation in the initial distribution of
particles is sufficiently large to excite the coherent modes. We start with equally strong
beams, i.e. the intensity ratio RI between the weaker and stronger beam is 1.0. If we
perform a harmonic analysis of the motion of the barycentre of one bunch, we find two
coherent modes. One is located at the unperturbed tune Q, the other has a lower frequency.
In Fig. 3 we plot the amplitude frequency spectrum. The horizontal axis gives the tune
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shift from the unperturbed tune Q in units of ξ (i.e.: w = ν−Q
ξ

; for the round beam case

ξx = ξy = ξ = 0.0034, Qx = 0.31, Qy = 0.32). For the other beam and the other plane a
similar picture is obtained. Analysing the spectra of the distance between the centroids,

Fourier spectrum of head-on coherent modes
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Figure 3: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104

macroparticles) for round beams. The grid covers from −10σ to 10σ, the rest of the par-
ticles being treated as halo particles. The horizontal axis gives the tune shift from the
unperturbed tune Q in units of ξ, i.e. w = ν−Q

ξ
. The vertical axis is the corresponding

amplitude. The π- and σ- oscillation modes are clearly visible.

i.e. the expressions < x(1) > − < x(2) > and < y(1) > − < y(2) >, the coherent mode
at the unperturbed frequency disappears. On the other hand, when we analyse the sum
of the centroids (< x(1) > + < x(2) >, < y(1) > + < y(2) >) the lower mode frequency
disappears. We can thus identify the mode at the unperturbed frequency as the so-called
σ-mode, for which the centroids of the bunches oscillate in phase with equal frequencies
and amplitudes. The lower frequency mode is called π-mode and in this mode the centroids
oscillate also with equal frequencies and amplitudes but in opposite phase. The motion
of the bunch centroids is a superposition of these two modes.

Between the π- and the σ-mode in Fig. 3 we find the incoherent continuum. A single
particle crossing the opposing beam at a distance from its axis feels a defocusing force
(or focusing force in the case of oppositely charged beams like LEP), which leads to a
change in its tune. For particles near the centre of the counter rotating beam this tune
shift is equal to −ξ. For particles further away the defocusing force is smaller (due to
the non-linearity of the beam-beam force) and vanishes asymptotically. This creates an
incoherent tune spread which extends from 0 to −ξ.

In our simulations we find the π-mode at a tune shift of exactly 1.21 in units of ξ (and
ξ = 0.0034). The π-mode is thus shifted outside of the continuum. The shift calculated
with HFMM is therefore in excellent agreement with the theoretical prediction.

5.2 Head-on collisions with equal betatron tunes and different intensity
It has been predicted [4] that for intensity ratios of 0.6 or lower, the π-mode merges

with the continuum. In the soft Gaussian model this prediction cannot be tested exactly
since the π-mode tune shift is underestimated [2, 3]. In this section we can now make a
more precise quantitative comparison. Fig. 4 clearly confirms this prediction: the π-mode
merges into the incoherent spectrum at Alexahin’s ratio of 0.6 and is Landau damped.
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Fourier spectrum of head-on coherent modes
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Figure 4: Frequency spectrum of the bunch centroid motion (over 217 turns, N = 104

macroparticles) for round beams and intensity ratio RI = 0.65 (left) and 0.55 (right).

In the LHC the expected bunch to bunch intensity difference may be as large as ± 20%.
Although this alone will not be sufficient to recover Landau damping, together with other
uncertainties (see e.g. section 5.4) and suggested remedies (see next section) it should
simplify the damping of the modes.

5.3 Head-on collisions with different betatron tunes
The first proposed remedy to avoid coherent beam-beam modes was to decouple

the two beams by using different fractional tunes for their tunes [14]. This is possible
in the LHC since we have two separate rings. Possible unwanted side effects of such a
scheme were discussed in [15]. The sensitivity to the expected small tune differences is
demonstrated here quantitatively. While the fractional part of beam 1 is kept at 0.310, the
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Figure 5: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104

macroparticles) for round beams and different fractional tunes of the second beam: 0.312
(left) and 0.313 (right). The tune of the first beam is kept at 0.310.

tune of the second beam is slightly varied. For a tune difference between the two beams
of more than approximately ≈ 0.7 ξ the π-mode disappears into the continuum as shown
in Fig.5.
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5.4 Head-on collisions with different beam sizes
Similar to an intensity imbalance, different beam sizes of the two beams can lead to

loss of coherence and damped coherent modes. In Fig.6 we show the spectra for beam size
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Figure 6: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104

macroparticles) for round beams and size ratios σ(2)/σ(1) of 0.90 (left) and 0.70 (right).

ratios of 0.90 and 0.70. Since the beam size (of the second beam) is now smaller, the tune
shift is slightly larger than in the original case. While for a ratio of 0.90 the π-mode is
still very visible, it has merged with the incoherent spectrum for 0.70. The mechanism is
the same as for a beam intensity imbalance. At this point one can speculate whether the
size imbalance can be compensated by an intensity imbalance, adjusted to give the same
beam-beam tune shift parameter ξ. The result of such a simulation is shown in Fig.7 with

Fourier spectrum of head-on coherent modes
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Figure 7: Frequency spectrum of the bunch centroid motion (for 217 turns, N = 104

macroparticles) for round beams and size ratios σ(2)/σ(1) = 0.70 and intensity ratio
RI = 0.5.

the beam radius of the second beam reduced to 0.7, but with a smaller beam intensity
(50%). The beam-beam parameter is therefore the same. We observe a clear coherent mode
again. This observation however is non trivial. When the beams have different sizes and
geometrical distributions, the fields seen by the two beams are rather different, although
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the tune shift parameter for the small amplitude particles is the same. The reason is
that the larger beam experiences a very non-linear force for particles at much smaller
amplitudes than the smaller beam. Particles at larger amplitudes must therefore behave
rather differently. For the single particle behaviour, i.e. population of beam tails and life
time, this is known to be of extreme importance [16, 17]. For a coherent oscillation it is
mainly the oscillation frequency that must be the same and it is known that for the head-
on collisions studied in this example, it is mainly the core of the beam contributing to the
coherent oscillation and the tune shift. The core particles experience always an almost
linear force proportional to the beam-beam parameter and this explains the observation.

Similar observations have been made in simulations of asymmetric colliders such as
PEP-II [20] where the energy transparency condition was studied, i.e. where the energy
asymmetry was compensated by an asymmetry of the beam currents. However the shape
and dimension of the charge distribution were the same for the two beams in these studies.

5.5 Coherent modes from long range collisions
Since the transverse distance between two bunches at the parasitic collision is larger

than the rms beam size, the effects will be similar to the coherent interaction of rigid,
point-like bunches. The contribution of parasitic crossings to the tune shift of coherent
oscillation modes is then expected to be

∆νπ = 2× (incoherent tune shift) ∝ 1/L2
x (3)

∆νσ = 0. (4)

Moreover, the incoherent tune shift for beam separations larger than ≈ 1.5 σ has different
signs for the two planes. Both, the coherent and incoherent tune shift depend on the
separation and for sufficiently large separation they scale with the inverse of the separation
squared.

Most important however, the width of the incoherent spectrum (tune spread) of
long range collisions alone depends on the separation and in the LHC is much smaller
than the tune spread from head on collisions [18, 19]. The distance of the π-mode from the
edge of the incoherent spectrum is therefore rather different from the head-on case and
one must expect a different behaviour. In particular the necessary measures to merge the
coherent modes with the incoherent spectrum must be at least quantitatively different.
In this report we have a first look at the dynamics of long range collisions separately to
demonstrate the differences. For an evaluation of the necessary operational parameters
both, head-on as well as long range collisions must be considered together like it was done
with the Gaussian approximation [2]. A more complete study should also include multiple
bunches and interaction points and wil be treated at a later stage [21].

5.6 Simulation of long range collisions
The simulation of coherent modes from separated beams is a good example where

the HFMM can be used to great advantage. In a conventional particle-mesh method, most
grid points between and around the beams are empty and with a typical separation around
10 σ the necessary computing time becomes unacceptable. With the HFMM we have the
options to either treat the opposing beam as a halo or to choose the grid large enough to
cover both beams. Although at first sight the second option looks like a conventional grid
method, the advantage is clear: the fields are calculated with the FMM field solver only
at the grid points with charges and the saving in computing time is large. Treating the
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opposing beam as a real halo object usually requires more time than covering the whole
area. In Fig.8 we show the horizontal spectrum for long range collisions with a horizontal
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Figure 8: Spectrum of the horizontal centroid motion for long range collisions with hori-
zontal separation Lx = 10.0 (in units of σx) and no head-on collision (215 turns, N = 104

macroparticles). For the left figure the grid did not cover both separated beams, i.e. the
particles in the second beam were treated as halo particles. In the right figure the grid
covered both beams.

separation Lx = 10.0 (in units of σx). For one of the figures (left) the particles in the
opposing beam were treated as halo particles, i.e. were not covered by the grid. In the
right figure the grid was extended to 15σ, i.e. included both beams. Both methods give
the same results, however the computing speed is very different. The treatment as real
halo is very time consuming and we usually preferred to cover both beams with the initial
grid. The real difference to a particle-mesh code then comes from the fact that only grid
points with particles are treated, thus the number of computations scales like O(Np). The
computing speed difference is about a factor 2.5 between the two options, therefore in all
simulations we choose the procedure to cover the whole area with a grid, including both
beams.

Like in the case of head-on coherent modes we identify the σ- and π-mode easily by
analysing the sum and the difference of the barycentres separately.

5.7 Long range collisions with equal tunes
Fig. 9 shows the horizontal and vertical spectrum of centroid oscillations of one

bunch subject to long range collisions with a horizontal separation of Lx = 10.0 (in units
of σx). The horizontal axis gives the tune shift from the unperturbed tune Q in units of
ξ: w = ν−Q

ξ
. In the horizontal plane, the incoherent spectrum has positive tune shifts, and

the coherent dipole π-mode is visible at twice the incoherent tune shift. In the vertical
plane, the incoherent spectrum has negative tune shifts and again the coherent π-mode is
shifted twice as much. In Fig.10 we show a similar picture for a separation of only 6.0 σ
in the horizontal plane. Comparing Figs. 9 and 10, the larger tune shift for the smaller
separation is clearly visible as well as the increased tune spread of the incoherent spectrum
in Fig.10. Both scale with the inverse square of the normalized separation, as expected.
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Figure 9: Spectrum of the vertical (left) and horizontal (right) centroid motion for long
range collisions with horizontal separation Lx = 10.0 (in units of σx) and no head-on col-
lision (215 turns, N = 104 macroparticles). The tune shift due to long range collisions has
opposite sign in the two transverse planes. The coherent π-mode is at twice the incoherent
tune shift.
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Figure 10: Spectrum of the vertical (left) and horizontal (right) centroid motion for long
range collision with horizontal separation Lx = 6.0 (in units of σx) and no head-on colli-
sion (215 turns, N = 104 macroparticles). The tune shift due to long range collisions has
opposite sign in the two transverse planes. The coherent π-mode is at twice the incoherent
tune shift.
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6 Conclusions.
We have implemented the HFMM technique to describe the beam-beam collision of

two beams in the strong-strong regime. This allows us to study, by means of multi-particle
tracking and with no approximation in the evaluation of the electromagnetic force, the
coherent modes of oscillations of two colliding beams. Future improvements shall extend
this work to several bunches per beam and, in particular, will allow us for the first time
to study details of the modes excited by long range interactions.
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