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1 Introduction

In this note we present a next-to-leading evaluation of the coefficient function of the shape function. The
leading-order analysis was done in [1]. The coefficient function allows relating the shape function — computed
with a non-perturbative technique — to physical distributions in semi-inclusive heavy-flavour decays.

In general, we consider the process

Hh → X + (non − QCD partons) (1)

in the hard limit

Q � Λ (2)

and in the semi-inclusive region1

M � Q, (3)

where M is the invariant mass of X, the hadronic final state; Hh is a hadron containing a heavy quark h and
the non-QCD partons can be a lepton pair, a vector boson, a photon, etc. The quantity Q is the hard scale
of the time-like process: Q ≡ 2E , where E is the final hadronic energy and Λ is the QCD scale. Well-known
examples of (1) are:

B → Xs + γ (4)

for a large photon energy and

B → Xu + l + ν (5)

for a small hadronic mass or a large electron energy2.

For the hadron at rest, i.e. with velocity v = (1; 0, 0, 0) , and the jet X flying along the minus direction (−z
axis), the shape function is defined as [2]–[5]:

ϕ (k+) ≡ 〈Hh (v) |h†
v δ (k+ − iD+) hv |Hh (v)〉. (6)

The latter is also called structure function of the heavy flavour and represents the probability that the heavy
quark in the hadron has momenta

ph = mHv + k (7)

with any transverse and minus component and with given plus component k+. The static field hv (x) is related
to the Dirac field of the heavy quark h (x) by:

h (x) = e−imHv·xhv (x) + O (ΛmH) . (8)

1This region is also called threshold region, large-x region, radiation-inhibited region and Sudakov region.
2For the rare decay (4), since Q = mB

(

1 + m2

Xs
/m2

B

)

, one can actually set Q = mB .
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With the shape function, the decay (1) is related to its respective quark-level process

h → X̂ + (non− QCD partons) , (9)

where the heavy quark has the momentum (7) with the distribution (6). Note that the state X̂, unlike X, does

not contain the light valence quark(s) in H. The invariant mass m of X̂ is related to the plus virtuality of the
heavy quark k+ by the relation:

k+ = −m2Q. (10)

The shape function is a non-perturbative distribution — analogous to parton distribution functions — and it
describes the slice of the semi-inclusive region in which

m2 ∼ Λ Q.

In terms of the variables used in QCD and in the effective theory (ET), this is:

k+ ∼ Λ, z ∼ 1 − ΛQ, N ∼ QΛ, (11)

where

z ≡ 1 − m2Q2, (12)

and N is the moment index (see later).

The shape function describes the mass distribution of a jet coming from the decay of a heavy flavour. It
therefore generalizes to region (11) the jet function J

(
Q2, m2

)
introduced in ref. [6], representing the probability

that a light parton produced in a hard collision with scale Q evolves inclusively into a jet with mass m. The
main difference is that in our case the distribution depends on the process as a whole, and not only on the
fragmentation of the final quark. The shape function depends on the initial hadron state; for example, it is
different for a B meson and a Λb hyperon.

The coefficient function C is defined by the relation3

ϕ (k+; Q) =

∫
dk′

+ C
(
k+ − k′

+; Q, µ
)

ϕ
(
k′
+; µ

)
, (13)

where µ is the renormalization point or UV cut-off of the operator entering the definition of the shape function
(see eq. (6)). The coefficient function is then obtained by evaluating in next-to-leading order (NLO) the QCD
effective form factor ϕ (k+; Q) and the shape function ϕ (k+; µ) and taking their ratio (see later). Since C
is expected to be a short-distance quantity, we compute the QCD distribution and the shape function in
perturbation theory (PT) for an on-shell heavy quark (k = 0). This expectation will be verified a posteriori.

The coefficient function is different, even at the leading level, for the shape function regulated in dimensional
regularization (DR) and in lattice regularization; it is short-distance-dominated in both cases [7]. The main
difference is that, at one loop, C contains a double logarithm of k+ in DR, while it contains at most a single
logarithm of k+ in lattice regularization. In view of the applications, we specialize ourselves in the lattice case.

The paper is organized as follows. In sec. 2 we present a compact derivation of a resummed QCD form factor
ϕ (k+; Q) to NLO accuracy. In sec. 3 we perform a similar computation for the shape function ϕ (k+; µ) . In
sec. 4 we evaluate the coefficient function and we discuss the physical implications. Finally, in sec. 5, we draw
our conclusions.

3QCD quantities are denoted by bold-face symbols, the related quantities in the ET by normal symbols.
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2 The QCD distribution

We are interested in a general QCD distribution f (z) in the threshold region. For clarity’s sake, let us consider
a specific case: the photon spectrum in the decay (4),

f (x) = 1ΓBdΓdx, (14)

where

x ≡ 2Eγmb (15)

and ΓB is the Born width:

ΓB = απG2
F m5

b32π3|VtbV
∗
ts|

2|C7 (µb) |
2. (16)

The distribution reads, to order αS [8]:

f (x) = f (x) + αS k δ (1 − x) + αS d (x) . (17)

The function f (x) factorizes (perturbative) long-distance effects occurring in (4) and reads:4

f (x) = δ (1 − x) − A1αS (log [1 − x] 1 − x)+ + B1αS (11 − x)+ , (18)

where

A1 = CF π, B1 = −74CF π (19)

and CF =
(
N2

c − 1
)
/ (2Nc) = 4/3. The spike term involves the constant

k = −CF π
(
log µbmb + 54 + π23

)
, (20)

where µb is the renormalization scale of the operator O7; this (unphysical) scale must be taken of O (mb) in
order to avoid large (ultraviolet) logarithms in the matrix elements. The function d (x) is the “remainder”:

d (x) = CF 4π
[
7 + x − 2x2 − 2 (1 + x) log (1 − x)

]
. (21)

Plus-distributions are defined as usual as P (x)+ ≡ P (x) − δ (1 − x)
∫ 1

0
dy P (y) . For the resummation, it is

natural to write the function f (x) in an “unintegrated” form as

f (x) = δ (1 − x) +

∫ 1

0

dε

∫ 1

0

dt [A1αSεt + S1αSε + C1αSt] [δ (1 − x − εt) − δ (1 − x)] , (22)

4Overlined quantities denote subtracted quantities, containing only infrared logarithms.

3



where we have defined the unitary energy and angular variables

ε ≡ EQ and t ≡ 1 − cos θ2. (23)

The quantity E is two times the energy of the soft gluon, E = 2Eg, and θ is the gluon emission angle. It proves
to be convenient to separate the soft from the collinear term, as we have done. By explicit evaluation, we find

S1 = −CF π, C1 = −34CF π. (24)

Note that B1 = S1 +C1, i.e. it is the sum of the coefficients of the soft and the collinear terms. Expression (22)
is symmetric for ε ↔ t.

Next-to-leading corrections are included following these prescriptions:

1. Replacement of the bare coupling by the two-loop running coupling:

αs

(
q2

)
= 1β0 log q2/Λ2 − β1β

3
0 log log q2/Λ2 log2 q2/Λ2, (25)

evalutated at the gluon transverse momentum squared [9]:

αS → αS

(
k2
⊥

)
, (26)

where

k2
⊥ ' Q2ε2t. (27)

The first two coefficients of the β-function are:

β0 = 11CA − 2nF 12π = 33− 2nF 12π,

β1 = 17C2
A − 5CAnF − 3CF nF 24π2 = 153− 19 nF 24π2, (28)

where CA = Nc = 3 and nF = 3 is the number of active quark flavours;

2. Inclusion of the two-loop correction to the term A1αS , so that

A1αS → A1αS + A2α
2
S . (29)

The explicit computation gives [10, 6]

A2 = 12CF π2K (30)

where, in the MS scheme for the coupling constant,

K = CA

(
6718− π26

)
− 109nfTR, (31)

with TR = 1/2.
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The “effective” one-gluon distribution5 then reads:

f (x) = δ (1 − x) +

∫ 1

0

dε

∫ 1

0

dt
[
A1αS

(
Q2ε2t

)
+ A2 α2

S

(
Q2ε2t

)
εt + S1 αS

(
Q2ε2t

)
ε + C1 αS

(
Q2ε2t

)
t
]

[δ (1 − x − εt) − δ (1 − x)] . (32)

This integral is no longer symmetric for ε ↔ t because of running coupling effects.

A consistent resummation to NLO accuracy (and beyond) is naturally performed in moment space, so that
we consider [11]:

fN =

∫ 1

0

dx xN−1 f (x)

= 1 + ∆fN . (33)

With this definition of the Mellin transform, the total rate is given by the first moment. Note that fN=1 = 1.
The inverse transform to the original distribution in x-space is usually done numerically [12]. The moments of
the one-loop distribution f (x) given in eq. (18) read:

fn = 1 − A1αS2 log2 n − B1αS log n − A1π
212αS + O (1n) . (34)

We have defined n ≡ N/N0, where N0 ≡ e−γE = 0.561459 . . . with γE = 0.577216 . . . the Euler constant [6].
The single logarithm, the log n term, is positive and tends to increase the rate, as is often the case [13]. Its
coefficient B1 is rather big; it is over a factor of 2 larger than in DIS, for example, where C1 is the same and
S1 = 0. Simple exponentiation of the effective one-gluon distribution takes place in N -space, so that

fN = e∆fN . (35)

The non-logarithmic integrations of the terms proportional to S1 and C1 can be explicitly done [6] and one
obtains:

log fN =

∫ 1

0

dx xN−1 − 11 − x

{∫ Q2(1−x)

Q2(1−x)2
dq2q2

[
A1αS

(
q2

)
+ A2α

2
S

(
q2

)]
+

+S1αS

(
Q2 (1 − x)2

)
+ C1αS

(
Q2(1 − x)

)}
+ O

(
αn

S logn−1 N
)
, (36)

Using the large-N approximation xN − 1 ' −θ (1 − x − 1/n) [6]6, the moments read:

log fn = −A12β0

[
log s log log s − 2 log sn log log sn + log sn2 log log sn2

]
+

+β0A2 − β1A12β3
0

[
log log s − 2 log log sn + log log sn2

]
+

−β1A14β3
0

[
log2 log s − 2 log2 log sn + log2 log sn2

]
+

−S12β0

[
log log s − log log sn2

]
− C1β0 [log log s − log log sn] , (37)

where s is the square of the hard scale in unit of the QCD scale,

s ≡ Q2Λ2. (38)

Note that fn = 1 for n = 1. Substituting log s in eq. (37) by its expression in terms of the two-loop coupling,

log s = 1β0αS + β1β
2
0 log (β0αS) , (39)

5We call it “effective” because the insertion of the running coupling in the time-like region and of the term proportional to A2

already includes some multiple-gluon-emission effects.
6The error in this approximation amounts to next-to-next-to-leading logarithms and to terms suppressed by powers of 1/N.
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one obtains the exponent (37) as a series of functions [14]:

fn = exp [L g1 (β0αSL) + g2 (β0αSL) + αS g3 (β0αSL) + · · ·] , (40)

where the leading and next-to-leading functions are respectively [15]:

g1 (w) = −A12β0 1w [(1 − 2w) log (1 − 2w) − 2 (1 − w) log (1 − w)] ;

g2 (w) = β0A2 − β1A12β3
0 [log(1 − 2w) − 2 log(1 − w)] − β1A14β3

0

[
log2(1 − 2w) − 2 log2(1 − w)

]
+

+S12β0 log(1 − 2w) + C1β0 log(1 − w). (41)

We have defined αS ≡ αS

(
Q2

)
and L ≡ log n. The two-loop terms coming from the expansion of the resummed

distribution read:

log f
2loop

n = −12A1β0 α2
S L3 − (12A2 + β0S1 + 12β0C1) α2

S L2. (42)

The effective form factor is real — and therefore sensible — only for

n < ncrit = exp
[
12β0αS

(
Q2

)]
∼ QΛ. (43)

This restriction is induced by the soft terms — i.e. by those proportional to A1, S1 and A2. The reliability of
the resummed result is then limited to

n � QΛ ⇔ m2 � Λ Q. (44)

The condition is the same as that in the leading order analysis. On the other hand, the hard collinear contribution
— the term proportional to C1 — remains well-defined up to much larger values of n :

n � n2
crit ∼ Q2Λ2 ⇔ m2 � Λ2. (45)

The collinear factor is therefore well-defined in the kinematic region (11) described by the shape function. It
becomes singular only in the resonance or exclusive region m2 ∼ Λ2, which is well beyond the reach of the shape
function.
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Figure 1: Plot of the QCD form factor fn as a function of n (first 24 moments) for the values of the parameters
discussed in the text. Solid line: NLO distribution; dashed line: LO distribution; dotted line: expansion to
order α2

S of the exponent in the NLO distribution.

The LO and NLO form factors are plotted in fig. 1 for Q = mB ' 5.2 GeV, for which αS ' 0.21 and ncrit ' 28.
The NLO curve lies above the LO one and it exceeds one in the small-n region because of the single logarithm,
as already discussed. The two-loop curve lies above the NLO one because the leading terms in higher orders
are all negative (cf. eqs. (34) and (42)).

The resummed distribution is usually written as [16]:

fN (αS) = K (αS) fN (αS) + DN (αS) , (46)

where K is a function with a power series expansion in αS :

K (αS) = 1 + k αS + k ′α2
S + · · · (47)

and DN is a remainder function:

DN (αS) = d N αS + d ′
N α2

S + · · · , (48)

starting at order αS and vanishing in the large-N limit,

DN ∼ 1N for N → ∞. (49)

To NLO accuracy, the contributions of order αS to the function K (and DN ) are needed. To the same accuracy,
in place of (46), one can write fN = (1 + αS k + αS d N ) fN .

An expression analogous to (46) also holds for the distributions in the semileptonic decay (5) with a fixed
hadronic energy, i.e. to differential distributions in the hadronic energy. One simply has to make the replacement

x → z (50)
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in eq. (46) and to account for a dependence of K and DN on Q/mB. The function f is the same in the
semileptonic and in the rare decay:

f (x) = f (z) . (51)

The general variable for the threshold region of heavy flavour decays is z, even though, for the rare decay (4),
it is more convenient to use x. In the semi-inclusive region these two variables concide, because

1 − z = 1− x (2 − x)
2

= 1 − x + O
(
(1 − x)

2
)

. (52)

3 The shape function

Let us now consider the quantity in the effective theory related to f (z), namely the shape function ϕ (k+) . The
latter has the analogous decomposition:

ϕ (k+) = ϕ (k+) + αS h δ (k+) + αS p (k+) . (53)

The function ϕ (k+) factorizes long-distance effects and reads:

ϕ (k+) = δ (k+) − A1αS θ (0; k+;−µ) − k+ log−k+µ + A1αS δ (k+)

∫ 0

−µ

dl+ − l+ log−l+µ +

+S1αS θ (0; k+;−µ) − k+ − S1αS δ (k+)

∫ 0

−µ

dl+ − l+, (54)

where µ ≡ 2ΛS and we have defined θ (a1; a2; · · · an) ≡ θ (a1 − a2) θ (a2 − a3) · · · θ (an−1 − an) . The regulariza-
tion used [4] imposes a cut-off on the spatial loop momenta and not on the energies,

|
−→
l | < ΛS , −∞ < l0 < +∞, (55)

and it is qualitatively similar to lattice regularization7. Proceeding in a similar way, one can write:

ϕ (k+) = δ (k+) +

∫ µ

0

dEE

∫ 1

0

dt
[
A1αS

(
E2t

)
+ A2α

2
S

(
E2t

)
t + S1αS

(
E2t

)]
[δ (k+ + Et) − δ (k+)] . (56)

A few comments are in order. The hard scale Q does not appear in ϕ (k+), as it should. The term proportional
to C1 is absent because the shape function retains only the leading terms in the soft limit E → 0, which are
proportional to 1/E. With the same definition of the coupling constant in QCD and in the ET, the constant
A2 is the same in the two theories [17, 18]8. Since k+ = −Q (1 − z) , the shape function in the “QCD variable”
z reads:

f (z) = δ (1 − z) +

∫ 1/r

0

dεε

∫ 1

0

dt
[
A1αS

(
Q2ε2t

)
+ A2 α2

S

(
Q2ε2t

)
t + S1αS

(
Q2ε2t

)]
[δ (1 − z − εt) − δ (1 − z)] ,

(57)

7By this we mean that the double logarithm at one loop is the same in the two regularizations.
8A difference would imply a breakdown of factorization.
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where we have defined an adimensional function as

f (z) ≡ Q ϕ (k+) . (58)

The quantity r is the ratio of the hard scale to the UV cut-off of the effective theory,

r ≡ Qµ > 1, (59)

because the shape function is defined in a low-energy effective field theory. To avoid substantial finite cut-off
effects, one has also to assume

µ � Λ. (60)

Taking moments and exponentiating the one-loop distribution as in the QCD case, one obtains:

fN = e∆f
N . (61)
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Figure 2: Plot of the shape function fn (first 25 moments). Solid line: NLO distribution; dashed line: LO
distribution; dotted line: expansion to order α2

S of the exponent in the NLO distribution.

Making the same approximations as in the QCD case, the shape function is written:

log fn = −θ (n − r)

∫ 1/r

1/n

dyy

{∫ 1/r

y

dεε
[
A1αS

(
Q2εy

)
+ A2 α2

S

(
Q2εy

)]
+ S1αS

(
Q2y2

)
}

. (62)

A straightforward integration then gives:

log fn = θ (n − r)
{
−A12β0

[
log sn2 log log sn2 − 2 log sr n log log sr n + log sr2 log log sr2

]
+

+A2β0 − A1β12β3
0

[
log log sn2 − 2 log log sr n + log log sr2

]
+

−A1β14β3
0

[
log2 log sn2 − 2 log2 log sr n + log2 log sr2

]
+ S12β0

[
log log sn2 − log log sr2

]}
.(63)
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Figure 3: Comparison of QCD form factor with the shape function. Solid line: NLO QCD distribution; big
dashed line: NLO shape function; small dashed line: LO QCD distribution; dotted line: LO shape function.

The main point is that the terms containing n2 are independent of r : the infrared behaviour is the same as in
QCD, as expected on physical grounds. Substituting log s by its expression in terms of the two-loop coupling,
the result reads:

log fn = L gET
1 (β0αSL; β0αSR) + gET

2 (β0αSL; β0αSR) + · · ·

where:

gET
1 (w; τ) = −A12β0w [(1 − 2w) log (1 − 2w) + (1 − 2τ) log (1 − 2τ) − 2 (1 − w − τ) log (1 − w − τ)] ,

gET
2 (w; τ) = A2β0 − A1β12β3

0 [log(1 − 2w) + log (1 − 2τ) − 2 log (1 − w − τ))] +

−A1β14β3
0

[
log2(1 − 2w) + log2(1 − 2τ) − 2 log2 (1 − w − τ)

]
+

+S12β0 [log(1 − 2w) − log(1 − 2τ)] , (64)

and

R ≡ log r > 0, (65)

and the over-all factor θ (L − R) has been omitted. Note that fn is continuous at n = r, but it has a cusp
singularity in this point. The range of n is restricted by eq. (44): the same limitation of the QCD distribution
occurs. The QCD form factor fn, except for the C1 term, is obtained by taking τ = 0 in the above expression,
i.e. letting the gluon energy to reach the hard scale. The shape function is plotted in fig. 2 for the same values of
the parameters of the QCD distribution and for µ = 2 GeV. In fig. 3 we compare the QCD form factor with the
shape function. In NLO, the shape-function curve is below the QCD one for small n because it has no C1 term.
NLO distributions are very close to each other for large n, but this seems accidental; indeed, this phenomenon
does not occur for the LO distributions. In general, the shape-function curves look somehow shifted with respect
to the corresponding QCD ones.

The moments of the shape function can be decomposed in a form similar to the QCD distribution:

fN (αS) = H (αS) fN (αS) + PN (αS) , (66)
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where the functions H (αS) and PN (αS) have a power series expansion in αS :

H (αS) = 1 + h αS + h′α2
S + · · ·

PN (αS) = pN αS + p′N αS + · · · . (67)

To NLO accuracy, an expression alternative to (66) including higher-twist effects is fN = (1 + αS h + αS pN ) fN .

4 The coefficient function

We introduce the coefficient function CN relating the shape function to the QCD form factor, as

fN = CN fN . (68)

Inserting the expressions previously obtained and neglecting the remainder functions DN and PN , the coefficient
function reads:

CN (αS) = G (αS) ΣN (αS) , (69)

where

G (αS) = K (αS) H (αS) = 1 + g αS + · · · (70)

and

ΣN (αS) = fN (αS) fN (αS) (71)

with g = k−h. To NLO accuracy, the replacement G (αS) → 1+αS g +αS (dN − pN ) is allowed, including also
the remainder terms. The QCD distribution and the shape function are related by a convolution in momentum
space:

f (z) =

∫ 1

0

∫ 1

0

dz′dz′′δ (z − z′z′′) C (z′) f (z′′) . (72)

The function Σn reads:

log Σn = θ (r − n) log fn + θ (n − r)
[
log fn − log fn

]
. (73)

The explicit expression for n > r is:

log Σn = L gCF
1 (β0αSL; β0αSR) + gCF

2 (β0αSL; β0αSR) + · · · , (74)

where

gCF
1 (w; τ) = −A12β0w [2 (1 − w − τ) log (1 − w − τ) − 2 (1 − w) log (1 − w) − (1 − 2τ) log (1 − 2τ)] ;

gCF
2 (w; τ) = A2β0 − A1β12β3

0 [2 log (1 − w − τ) − 2 log(1 − w) − log (1 − 2τ)] +

−A1β14β3
0

[
2 log2 (1 − w − τ) − 2 log2(1 − w) − log2(1 − 2τ)

]
+

+S12β0 log(1 − 2τ) + C1β0 log(1 − w). (75)
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Figure 4: Plot of the coefficient function Σn for the choice of the parameters discussed previously (first 140
moments). Solid line: NLO distribution; dashed line: LO distribution; dotted line: expansion to order α2

S of
the exponent in the NLO distribution.

Equation (75) is our main result. Let us comment on it. The terms most affected by long-distance effects are
those containing the combination 1− 2w and they are the same in QCD and in the ET. As a consequence, they
cancel in the difference, proving that the coefficient function is short-distance-dominated to NLO accuracy; we
believe that this cancellation occurs to any order in PT. The coefficient function is meaningful up to

n � n′
crit = µQ exp

[
1β0 αS

(
Q2

)]
∼ µ QΛ2. (76)

Note that n′
crit lies between the critical values for the soft terms and the hard collinear one:

ncrit � n′
crit � n2

crit. (77)

The coefficient function contains also the jet factor, entirely coming from the QCD form factor:

Jn = exp [C1β0 log(1 − w)] . (78)
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Figure 5: Comparison of the coefficient function with the QCD form factor. Solid line: NLO coefficient function;
big dashed line: NLO QCD distribution; small dashed line: LO coefficient function; dotted line: LO QCD
distribution.

The coefficient function is plotted in fig. 4 for the values of the parameters specified previously. It becomes
singular at n′

crit
∼= 297, i.e. an order of magnitude above the QCD form factor or the shape function. For

n . 50, the NLO curve has a shape similar to the LO one and it is shifted up with respect to the latter
by ∼ 0.2. In fig. 5 we compare the coefficient function with the QCD form factor. Note that the large-N
approximation produces a cusp singularity in the NLO coefficient function at n = r.

The computation of the shape function from first principles — namely lattice QCD — requires a large
amount of theoretical work, consisting of the following steps:

1. analytic continuation from Euclidean to Minkowski space of the relevant correlation function, a 4-point
function;

2. lattice regularization of the effective theory in which the shape function is defined, which involves the
HQET (Wilson lines off the light cone) and the LEET (Wilson lines on the light-cone);

3. computation of the shape function in lattice perturbation theory to full order αS ;

4. matching of the lattice shape function with the QCD distribution to full order αS ;

5. Numerical computation with a Monte Carlo program of the correlation function on the lattice.

The first step was taken in ref. [19], showing the possibility of a lattice computation of the shape function. Step
2 has only partially been completed: the lattice HQET has been formulated in ref. [20] while the lattice LEET
— as far as we know — has not been constructed yet. The main difference is that, in the latter case, not
only soft singularities but also light-cone singularities appear in the euclidean correlation functions; we do not
attempt at the construction of the lattice LEET here. No theoretical work exists — as far as we know — on
points 3, 4 and 5. In general, a lot of work is yet to be done: the purpose of this note was simply showing how
to resum to all orders the threshold logarithms appearing in the coefficient function.

Our result (75) applies to the coefficient function of the shape function defined in lattice regularization ,
after the identification is done:

1a = c µ, (79)
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where c is a constant or order 1 and a is the lattice spacing. c is determined, for example, imposing the equality
of the coefficients of the single logarithms in the lattice shape function and in eq. (53) (steps 3 and 4). In our
work, we have assumed the consistency of the lattice LEET and the knowledge of the one-loop lattice amplitude.

In the absence of a (non-perturbative) computation of the shape function, we can compare our coefficient
function evaluated with a cut-off of a few times the hadronic scale (in practice 1 ÷ 2 GeV) directly with the
experimental data. The mismatch is the non-perturbative component up to a scale µ, namely the shape function.
The factorization scale µ acts effectively in the coefficient function as a prescription for the Landau pole. In this
respect, our coefficient function can be considered as a complete QCD form factor, with a prescription to remove
the Landau pole outside region (11). As we have seen, the singularity is not completely removed, but it is shifted
to much larger values of N. We stress that our splitting of the QCD form factor into a coefficient function and
a shape function represents a consistent separation of perturbative from non-perturbative effects; it somehow
differs from the usual strategy of finding a good prescription for the running coupling in the non-perturbative
region.

5 Conclusions

We have presented a NLO evaluation of the resummed coefficient function for the shape function. Our result,
together with a one-loop lattice computation that is still missing, allows relating the shape function computed
with lattice QCD to distributions in heavy-flavour decays in the semi-inclusive region (11). The NLO analysis
corroborates the results of the leading order one, but it does not reveal any new qualitative feature. The
coefficient function is short-distance-dominated in the relevant region (11), and corrections to factorization are
expected to be of the order Λ/µ, i.e. to involve one inverse power of the factorization scale. The NLO coefficient
function contains also a jet factor that takes into account the emission of hard collinear gluons. The latter
process is indeed not described by the effective theory, which takes into account only soft emission up to the
scale µ. On the quantitative side, NLO effects increase the coefficient function by ∼ 20% for µ = 2 GeV and
n . 50 in the case of B decays.

In general, the process (1) contains three different scales:9

i) Q2 � Λ2,

ii) Q k+ ∼ Q Λ � Λ2,

iii) k+
2 ∼ Λ2. (80)

The emission of gluons with transverse momenta ranging between i) and ii) is reliably computed in perturbation
theory, while fluctuations in region iii) ask for a non-perturbative treatment. With factorization by means of
the shape function, another scale is introduced in the problem, intermediate between ii) and iii) :

iv) µ k+ ∼ µ Λ � Λ2. (81)

The fluctuations between scales iii) and iv) are factorized in the shape function. The general idea behind
the shape-function approach is that soft contributions are more “non-perturbative” than collinear ones in
double-logarithmic problems in region (11), because they involve smaller transverse momenta. These soft non-
perturbative effects can be represented as hadronic matrix elements of non-local operators involving Wilson
lines. For a given process, one identifies a dominant kinematical configuration and replaces the hard partons
with Wilson lines with the same momenta.

To summarize, we have presented a NLO evaluation of the resummed coefficient function of the shape
function, which confirms the consistency of the effective theory approach and allows a more accurate theoretical
analysis.

9I wish to thank G. Korchemsky for a discussion on this point.
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