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1. Introduction

For many non-perturbative aspects of QCD, there exist well defined methods of

study such as lattice calculations or chiral perturbation theory. But one of the

most fundamental aspects of non-perturbative QCD at high energy colliders, namely

hadronisation, the relation between what is calculated perturbatively (parton level)

and what is actually measured (hadron level) remains well beyond the reach of such

methods. At best there are complex models which appear to reproduce much of the

experimental data, but they leave something to be desired in terms of a fundamental

understanding of what is involved in hadronisation.

Over the past few years there has been considerable theoretical [1]–[18] and exper-

imental [19]–[22] interest in the study of hadronisation contributions to e+e− and DIS
event shapes. These variables provide a convenient ‘laboratory’ for such studies be-

cause the hadronisation effects are responsible for a significant fraction of the observ-

able, making it feasible to carry out quantitative tests of the theoretical predictions.

A number of the current theoretical approaches are based on the idea of extending

the reach of perturbation theory to very low scales — thus hadronisation effects are

argued to be related to the infrared behaviour of the coupling, or equivalently to the

high-order behaviour of the perturbative series. All the methods predict that the

hadronisation (or power) corrections to event shapes should scale as 1/Q, where Q

is the hard scale of the process. They also aim to predict the relative normalisation

of the corrections from one observable to another.

As a result of their perturbative origins, the theoretical calculations are usually

carried out with the assumption that all particles are massless. But in practice the

observed hadrons do have masses. So in this paper we examine how the treatment

of hadron masses modifies one’s expectations about power corrections.

It is perhaps worth illustrating how masses can affect our observables with a

simple example. Let us consider the event-shape variable ρ, i.e. the squared invariant

jet mass, normalised to Q2 (for brevity we often refer to it simply as the jet mass).

Initially one might consider a Born event consisting of a pair of back-to-back particles,

each of mass m. The jet mass has the value ρ = m2/Q2. If this were the end of the

story then we would argue that particle masses can be neglected since they give a

1/Q2 correction.

But one also needs to consider events containing soft particles. Here the situation

is qualitatively different: the jet mass is (E2 − p2)/Q2, where E and p are the total
jet energy and 3-momentum respectively. For a jet aligned along the z-axis a particle

with mass mi, z-momentum pzi and energy Ei contributes an amount (Ei − pzi)/Q
to the jet mass and this difference includes a piece of order m2i /(2EiQ). For a soft

particle with Ei ∼ Λ this translates to a 1/Q contribution. So parametrically at
least, mass-related effects from soft particles are of the same order as traditional

power corrections, and should not be neglected.
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This is not the end of the story, for the simple reason that an event generally

contains many soft particles: there will be a multiplicity-related enhancement of

the m2/QEi correction. The sum, over all particles, of 1/Ei is proportional to the

(−1)th moment of particle energy fractions. It has been known for a long time that
positive moments and even the zeroth moment of particle energy fractions undergo

logarithmic scaling violations with perturbatively calculable anomalous dimensions.

It turns out that such analyses can be extended to negative moments, with the

result that the sum
∑
i 1/Ei scales as (lnQ)

A, where A = 4CA/β0 ' 1.6, with
β0 = (11CA − 2nf)/3. This means that the formally 1/Q contribution from mass
effects is enhanced by a factor (lnQ)A.

The jet mass is an example of a variable in which it is quite straightforward to see

that there are mass effects; in other cases the mass dependence can arise more subtly.

For a general variable, the ability to factorise transverse and longitudinal degrees of

freedom (with respect to the quark-antiquark directions) is an essential element of

traditional, ‘perturbative’ approaches to hadronisation corrections. We will discover

that for an ensemble of massive particles, differences arise between the factorisations

applying to the event-shapes on the one hand and particle production on the other

— and by studying this mismatch we become sensitive to hadron mass effects.

We will also see that a given event-shape variable can be defined in variety of

ways (schemes) which are all equivalent for an ensemble of massless particles, but

differ if there are massive particles. Two examples are a definition in terms of just 3-

momenta (p-scheme), and a definition in terms of energies and angles (E-scheme). It

turns out that of these schemes, one, the E-scheme, is privileged, because it has the

property that there is no mismatch between the event-shape and particle-production

factorisation properties, even for massive ensembles.

Does this mean that in the E-scheme there are no mass-dependent contributions?

The answer is no: it just means that any mass-dependent contribution is proportional

to the same coefficient cV as the ‘traditional’ non-perturbative correction. One can
demonstrate that there really are still mass-dependent corrections by studying the

difference between an event shape before hadrons have had the time to decay and

after they have decayed.

We shall present the different elements of our analysis as follows. In section 2

we define the event shapes that will be considered and then quote their soft limits,

being careful to leave in the leading dependence on particle masses.

Then in section 3 we review the tube model for non-perturbative effects [23, 2],

which is known to reproduce all basic predictions for universal power corrections.

However in contrast to previous treatments we leave in mass effects and see how they

lead to non-universal 1/Q power corrections. This lays the ground for introducing

alternative definitions of event shapes (massive, p, E and decay-scheme definitions)

which are identical for massless ensembles but differ in the treatment of particle

masses.
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Whereas the tube model is adequate for describing normal 1/Q power corrections

it cannot address issues such as the scaling violations of energy moments which

must be considered in order to derive the full Q-dependence of the mass-dependent

corrections. For this we need to recall how coherent branching [24] affects hadron

multiplicities and relate this to our particular problem. This is done in section 4.

Then in section 5 we start to study some of the practical aspects of mass correc-

tions — for example we examine how, numerically, they compare to other contribu-

tions. We discuss some of the issues related to the experimental measurement of mass

effects (a fairly difficult task) and we compare our predictions to results from Monte

Carlo event generators. There is good agreement with Herwig [25] and Ariadne [26],

but significant disagreement with Pythia [27] concerning the energy dependence of

mass effects at very high energies.

Finally in section 6 we use a Monte Carlo event-generator to correct data for

event shapes to a variety of schemes and see how this affects the fitted values for the

perturbative and non-perturbative parameters αs and α0. We also investigate the

feasibility of carrying out fits with an extra parameter intended to allow a separation

of hadronisation into ‘traditional’ hadronisation effects and mass-related effects.

Our conclusions [28] are presented in section 7. The appendices contain a sum-

mary of the notation used and introduced in this article (appendix A), some cal-

culational details related to the jet broadenings (appendix B), some considerations

about 1/Q2 power corrections associated with heavy quark decay (appendix C), and

a Monte-Carlo study of some peculiar features of the heavy-jet mass (appendix D).

2. Event shapes

The basic event shapes that we shall consider are the thrust T , the invariant jet mass

ρ, the C-parameter and the total jet broadening BT . For an ensemble of particles

with momenta ki they are defined as follows:

T = max
~n

∑
i
~ki.~n∑
i |~ki|

, (2.1a)

ρ =

(∑
i kiΘ(

~ki.~nT )
)2

(
∑
i k0i)

2 . (2.1b)

C =
3

2

∑
i,j |~ki||~kj| sin2 θij(∑

i |~ki|
)2 , (2.1c)

BT =

∑
i |~kti|

2
∑
i |~ki|

, (2.1d)

where θij is the angle between particles i and j, ki = (k0i, ~ki) the four-momentum,

and ~kti the transverse momentum of particle i with respect to the thrust axis ~nT .
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We shall also discuss the heavy-jet mass ρh which measures the invariant jet mass

in the heavier of the two hemispheres (separated by the plane perpendicular to the

thrust axis), and the wide-jet broadening BW , which measures the jet-broadening in

the wider of the two hemispheres.

For the purpose of calculating power corrections we will be interested in the

behaviour of the event shapes variables for two-jet configurations, since it is such

configurations which are the most frequent, representing a fraction 1 −O (αs) of all
events. In the two-jet limit all variables tend to zero, except the thrust which tends

to 1. Accordingly it will be more convenient to refer to τ = 1− T .
Essentially a two-jet event consists of a pair of back-to-back hard particles (which

may have fragmented collinearly) and a bunch of accompanying soft particles. The

hard particles (associated with the qq̄ pair at parton level) define the axis of the event,

while the soft particles (gluons at parton level) give the deviation of the event shape

variable from its Born value of zero. Variables like τ , ρ and C are particularly simple

(linear) in that, in the two-jet limit their value is given by the sum of independent

contributions from each soft particle:

τ ' 1
Q

∑
i∈soft

kti e
−|η̄i| , (2.2a)

ρ ' 1
Q

∑
i∈soft

√
k2ti +m

2
i e
−ηi Θ(ηi) , (2.2b)

C ' 1
Q

∑
i∈soft

3 kti
cosh η̄i

, (2.2c)

where η̄i is the pseudorapidity of particle i with respect to the thrust (z) axis,

η̄i = − ln tan θi/2 and ηi is its rapidity ηi = 1
2
ln k0i+kzi
k0i−kzi . For massless particles the

pseudorapidity and the rapidity are identical. In these expressions we have neglected

mass effects in the denominators (in the case of τ , only after going from T to τ),

since on average the numerator is small, O (αs), and thus modifications of O (Λ) to
the denominator give effects of O (αsΛ/Q), which we can neglect.
Other variables like the heavy-jet mass and the broadenings are more complex.

To see why, let us consider the case of the heavy-jet mass: when the event contains

exactly one soft particle the heavy-hemisphere is always that in which the soft particle

is present and the soft particle always contributes to the heavy jet mass. But if

there are many soft particles then the hardest one (specifically, the one with the

largest kti e
−|η̄i|) determines which hemisphere is heavy and any given softer particle

contributes when it is in the heavy hemisphere i.e. only half the time. Thus the

heavy jet mass is not equal to a linear combination of independent contributions

from each soft particle.

For the purposes of studying non-perturbative corrections we can however make

a simplifying approximation: the ‘hardest’ soft particles come from perturbative
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emissions, while non-perturbative emissions will be much softer. The contributions

from these softest particles do combine linearly [7, 12], so that one can write

ρh ' 1
Q

∑
i∈softest

√
k2ti +m

2
i e
−ηi Θ(ηi) + · · · , (2.2d)

where we have taken the hard hemisphere as being that with η > 0 and the dots

indicate the contribution from harder particles. For both jet broadenings analogous

arguments apply [12, 15] and one has

BT ' 1

2Q

∑
i∈softest

kti + · · · (2.2e)

BW ' 1

2Q

∑
i∈softest

ktiΘ(η̄i) + · · · , (2.2f)

where again we have taken the wide hemisphere as being that with η̄ > 0.

3. Power corrections: the tube model

A variety of approaches exist for the study of power corrections in event shapes [1]–

[18]. The simplest, which reproduces the results of the more sophisticated meth-

ods [10]–[14], is the tube, or longitudinal phase-space model [23, 2].

The principle behind the tube model (the ideas of [6] are analogous, though

presented in a more formal language) is as follows. Soft hadrons (i.e. the hadrons re-

sponsible for non-perturbative corrections) are generated from the qq̄ pair of sources;

since both sources are fast moving (in opposite directions) a moderate boost along

the qq̄ direction still leaves us with two fast-moving particles, and so does not change

the structure of the low-transverse momentum fields at central rapidities. As a re-

sult soft particle production at central rapidities must be boost-independent. Since

a boost just corresponds to a shift in rapidity, this is equivalent to saying that non-

perturbative (and in general soft) particle production is rapidity-independent, at least

for rapidities η � lnQ/kt, beyond which one becomes sensitive to the finite energy
of the source. The tube model makes no statement about the transverse-momentum

distribution of soft particles, so we just write the distribution of non-perturbatively

produced1 hadrons of type h as being:

dnh

dη d ln kt
= φh(kt) , |η| � ln Q

kt
, (3.1)

with φh(kt) some a priori unknown function. There is no Q-dependence in φh(kt)

since the fields generated by a source (q or q̄) moving close to the speed of light are

independent of the energy of the source.
1‘Non-perturbatively produced’ is a rather awkward term — in section 4 we examine in detail

what we mean.
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V τ ρ ρh C BT BW

cV 2 1 1 3π
π

2
√
CFαs

− β0
6CF

+ η0
π

4
√
2CFαs

− β0
24CF

+
η0
2

Table 1: coefficients of 1/Q power corrections; β0 =
11
3 CA − 23nf and η0 ' 0.13629.

3.1 Massless case

Most power correction analyses work within the approximation that particles are

massless.2 As a result in eqs. (2.2) all explicit mass-dependence disappears, and one

can replace η̄ with η. This leaves the expressions for the event-shape variable V in a
factorised form, whereby all rapidity dependence (which differs from one observable

to another) can be separated from the transverse momentum dependence (kt/Q in

all observables):

V =
∑
i∈soft

kti

Q
fV(ηi) . (3.2)

For example for the the thrust we have fτ (η) = e−|η|. The non-perturbative contri-
bution to the mean value of the event-shape is then given by

〈VNP〉 =
∫
dkt
kt

kt
Q

∑
h

φh(kt)

∫
dηfV(η) =

a0
Q
cV (3.3)

where we have defined a non-perturbative parameter

a0 =

∫
dkt
∑
h

φh(kt) (3.4)

and a calculable, variable-dependent coefficient,

cV =
∫
dη fV(η) . (3.5)

The factorisation of rapidity and kt dependence is the prerequisite for universality,

namely the fact that the power corrections for a range of observables all depend

on the same, universal, non-perturbative quantity (a0), with a calculable coefficient

(cV). The predictions for the coefficients are given in table 1.
The more complex form for the broadenings [15] arises because these variables

are sensitive to the mismatch between the thrust axis and the quark axis. Emissions

are uniform in rapidity with respect to the latter, whereas the broadening measures

kt with respect to the former. After considering recoils one finds that there is an

effective cutoff on contributions from rapidities (with respect to the thrust axis)

η & lnQ/pt, where pt is the transverse momentum of the quark with respect to the
thrust axis. This leads to cB ∼ 〈lnQ/pt〉 which is of the order of 1/√αs.
2Even the ‘massive-gluon’ calculations make this approximation, since they generally assume

that the massive gluon decays into two massless particles. An exception is to be found in [8], as

discussed briefly in section 3.5.
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More sophisticated approaches to the problem of power corrections at first sight

seem quite different from the tube model: they examine the high-order behaviour of

the perturbation series, or the dependence of the observable on a dispersive gluon

virtuality (see for example [3, 4, 7, 8]). But it turns out that both of these proce-

dures are equivalent to determining the dependence of the observable on infra-red

properties of the coupling; since the production of gluons with a given kt is rapidity-

independent and proportional to αs(kt) we have a situation very similar to the tube

model but with φh(kt) replaced with αs(kt). Accordingly we can write a relation be-

tween a0 and the quantity α0(µI), often used in phenomenological analyses, defined

as

α0(µI) ≡
∫ µI
0

dkt

µI
αs(kt) , (3.6)

namely [3, 4, 11, 12]

a0
Q
=
4CF
π2
MµI

Q

{
α0(µI)− αs(Q)− β0α

2
s

2π

(
ln
Q

µI
+
K

β0
+ 1

)}
(3.7)

withM ' 1.490, K = CA

(
67
18
− π2

6

)
− 5
9
nf . The purpose of the αs terms in (3.7) is

to subtract out contributions that are already taken into account in the perturbative

calculation of the mean value.

It has become a standard procedure to carry out simultaneous fits for αs and

α0 in mean values of a variety of event shapes. One important test of this class of

models for hadronisation corrections is then that the fitted values α0 (and αs) should

be the same for all variables, i.e. that α0 should be universal.

3.2 Including mass effects

From the point of view of the tube model itself nothing changes when one introduces

masses for the hadrons — we still have a distribution of hadrons independent of

rapidity and with some unknown dependence on kt. What does change is that we

need to use the full (massive) expressions for the values of the event shapes. In most

cases the event shapes are just defined in terms of the pseudorapidities (angles) and

transverse momenta of the particles. This means that we have to keep track of the

relation between rapidity and pseudorapidity, which is expressed in the following

(equivalent) equations:

kt sinh η̄ =
√
k2t +m

2 sinh η , (3.8a)

k2t cosh
2 η̄ +m2 = (k2t +m

2) cosh2 η . (3.8b)

For example for the thrust and the C-parameter, we have

〈VNP−massive〉 =
∫

dkt

kt

kt

Q

∑
h

φh(kt)

∫
dη fV

(
η̄

(
η,
m2h
k2t

))
(3.9)
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where all that has changed compared to eq. (3.3) is the replacement of fV(η) with
fV(η̄). However the fact that η̄ is a function of both η and m2/k2t means that
eq. (3.9) cannot be factorised into two independent pieces. Hence universality (a

direct consequence of the factorisation) is broken.

For a general variable V it will be convenient to write the resulting non-universal
mass-dependent piece of the power correction as

〈δmV〉 =
∫
dkt
kt

kt
Q

∑
h

φh(kt)

∫
dη δfV

(
η,
m2h
k2t

)
, (3.10)

where for example, for the thrust

δfτ

(
η,
m2

k2t

)
= fτ (η̄)− fτ (η) = e−|η̄| − e−|η| . (3.11)

We then proceed in a manner analogous to that in the massless case. We define

a δcV ,

δcV

(
m2

k2t

)
=

∫
dη δfV

(
η,
m2

k2t

)
, (3.12)

which unlike cV depends on kt (a consequence of the non-factorisability). Then the
mass-dependent correction to the mean value of the event shape is

〈δmV〉 =
∑
h

mh

Q

∫
dkt

kt
φh(kt)

kt

mh
δcV

(
m2h
k2t

)
. (3.13)

To understand the properties of the mass-dependent corrections we need to study

the δcV ’s:

δcV

(
m2

k2t

)
=




∫
dη̄ fV(η̄)

(
dη

dη̄
− 1
)

V = τ, C,BT , BW ,
∫
dη e−η Θ(η)

(√
1 +

m2

k2t
− 1
)
V = ρ, ρh ,

(3.14)

where

dη

dη̄
=

cosh η̄√
cosh2 η̄ +m2/k2t

. (3.15)

For the event-shapes in the first line of eq. (3.14) the integrals have been rewrit-

ten with a change of variable in the first term as this simplifies their subsequent

evaluation.

9



J
H
E
P
0
5
(
2
0
0
1
)
0
6
1

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5

1 
+

 δ
c V

/c
V

kt / m

ρ, ρh
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τ

Figure 1: The dependence of cV + δcV on particle masses, shown for the four distinct
groups of variables.

The exact forms for the δcV are

δcτ

(
m2

k2t

)
= 2

[
1

ξ
K

(√
ξ2 − 1
ξ

)
− ξE

(√
ξ2 − 1
ξ

)
+ ξ − 1

]
, (3.16a)

δcC

(
m2

k2t

)
=
6

ξ
K

(√
ξ2 − 1
ξ

)
− 3π , (3.16b)

δcBT

(
m2

k2t

)
= 2δcBW = − ln ξ , (3.16c)

δcρ

(
m2

k2t

)
= δcρh = ξ − 1 , (3.16d)

where we have introduced the shorthand ξ2 = 1 + m2/k2t , and E and K are the

complete elliptic integrals defined as follows,

E(x) =

∫ π/2
0

√
1− x2 sin2 ψ dψ (|x| ≤ 1) , (3.17a)

K(x) =

∫ π/2
0

dψ√
1− x2 sin2 ψ

(|x| < 1) . (3.17b)

To see how the δcV will affect our power correction we compare them to the
universal cV power contribution. Figure 1 shows [cV + δcV(m2/k2t )]/cV for a range
of variables as a function of kt/m. One immediately sees that for small kt the non-

perturbative correction to the jet mass will be enhanced, while the NP correction

to the other variables will be suppressed. Furthermore the enhancement for the jet
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V τ ρ ρh C BT BW
γV −π/2+1 1/2 1/2 −3π/4 −1/2 −1/4

γV/cV −0.285 0.5 0.5 −0.25 −0.180 −0.227
Table 2: The coefficients of the high-kt behaviour of the mass-dependent power correction,

γV . In the case of the broadenings the cV depend on αs(Q), so the ratio γV/cV is shown
for Q =MZ .

mass is much larger than the suppression for the other variables (which are fairly

similar to one another).

To study the question more quantitatively we observe that for large kt, the δcV
scale as m2/k2t ,

δcV

(
m2

k2t

)
= γV

m2

k2t
+O

(
m4

k4t

)
(3.18)

with the γV given in table 2. This means that the integral in eq. (3.13) is dominated
by low momenta for all reasonable forms of the distribution of particles φh(kt), and

hence just gives a number. Therefore 〈δmV〉 is proportional to 1/Q, i.e. formally of
the same order as the universal power correction.

The question of the quantitative relationship between the sizes of the mass-

corrections in the different observables is more delicate because it depends on the

region of kt which dominates the integral in eq. (3.13). If φ(kt) is such that moderate

kt’s dominate (i.e. where δcV is equal to γVm2/k2t ) then we can expect the following
relation to hold:

〈δmV〉 ∝ γV . (3.19)

If φ(kt) is such that smaller kt’s dominate the integral (3.13), then formally we

can make no such statement. Nevertheless by examining figure 2, which shows

kt/mδcV/γV as a function of kt/m, one observes that for τ , C and the broadenings
the shape of the δcV(m2/k2t ) functions are very similar. This means that regardless
of the form of φ(kt) we will still observe the property that

〈δmV1〉
γV1

' 〈δmV2〉
γV2

. (3.20)

For the jet masses on the other hand, δcV(m2/k2t ) has a different shape and being
considerably larger at small momenta, so that we can expect the following relation

to hold:

〈δmρ〉
γρ

& 〈δmτ〉
γτ

. (3.21)

The conclusion of this section is that mass effects introduce extra 1/Q power

corrections, which break the simple ‘universal’ picture of power corrections that is
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Figure 2: The observable-dependent piece of the integrand for the non-universal mass-

dependent power correction, eq. (3.13), normalised to γV . The curve labelled ‘decay’ will
be discussed in section 3.4.

obtained in the massless case. For most variables we expect a negative correction,

whose magnitude is roughly proportional to γV (which for these variables is roughly
−cV/4). For the jet masses we expect positive corrections whose magnitude is larger
than what would be expected from a simple proportionality to γV (which itself is
cV/2) .

3.3 Alternative schemes

So far we have used the event-shape definitions given in eqs. (2.1). From the point of

view of the perturbative QCD calculation however we could have chosen any number

of related definitions with the same massless limit and we would have obtained the

same perturbative (and universal non-perturbative) predictions. Here we discuss two

particular examples of such modifications.

The p-scheme: The difference between the jet masses and the other variables

occurs because the jet masses are the only variables to be sensitive to the difference

between the energies and 3-momenta of the particles. However one could equally well

consider a second pair of variables, identical to the jet masses except that they are

defined only in terms of the particle 3-momenta (i.e. in the definition, each occurrence

of particle energy is replaced by the modulus of the corresponding 3-momentum).

We will refer to these as the jet masses in the p-scheme (whereas we will refer to the

default definitions as the massive scheme).
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As pointed out at the beginning of the section, from the point of view of the per-

turbative and universal non-perturbative calculations, which ignore particle masses,

such a variable would have identical properties to the original jet mass. However, for

an event consisting of soft massive particles its value would be

ρp ' 1
Q

∑
i∈soft

kti e
−|η̄i|Θ(η̄i) , (3.22)

rather than eq. (2.2b). Noting the similarity between this expression and eq. (2.2a),

one obtains that

δcρp(m
2/k2t )

cρ
=
δcτ (m

2/k2t )

cτ
, (3.23)

i.e. relative to the universal power correction the mass-dependent piece is identical

in the two cases. The use of the p-scheme makes no difference for the variables other

than jet masses, since they are all already defined purely in terms of the 3-momenta.

So in the p-scheme all variables should have a mass-dependent correction which

is roughly proportional to γV , which itself is roughly proportional to cV . Therefore
universality should (more or less) appear to remain intact.

The E-scheme: Another definition of event-shapes which is identical at the per-

turbative and universal non-perturbative level is one defined purely in terms of the

energies and directions of particles, i.e. where all 3-momenta are substituted with

momenta in the same direction but whose modulus is equal to the energy. We call

this the E-scheme. We note that similar definitions, in terms of energy flow, have

been suggested in the past by various authors [6, 29], on the grounds that they are

closer to what is measured in a experimental calorimeter and that they may also

allow event shapes to be expressed in terms of correlation function of fields.

The expression for ρE in the soft limit is

ρE ' 1
Q

∑
i∈soft

kti e
−|η̄i|Θ(η̄i)

√
cosh2 η̄i +m2i /k

2
ti

cosh η̄i
, (3.24)

where the extra factor compared to ρp is the ratio of the energy to the 3-momentum.

The expression for δcρE is then

δcρE

(
m2

k2t

)
=

∫
dη̄ e−|η̄|Θ(η̄)


dη
dη̄
·
√
cosh2 η̄ +m2/k2t

cosh η̄
− 1

 . (3.25)

However, noting the form of dη/dη̄, eq. (3.15), one sees that this is identically zero.

A similar phenomenon occurs for the other variables, i.e. in general we have

δcVE

(
m2

k2t

)
≡ 0 . (3.26)
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In other words in the E-scheme there is no non-universal mass-dependent 1/Q power

correction. So if one wants to study the universality of 1/Q power corrections, the

best to way to do it is to measure all variables in the E-scheme.3

The p and E-schemes are of also of interest because in principle one can measure

the difference between a given observable in two different schemes. For example if

one measures the difference between τ in the p and E-schemes, one expects this to

be equal to 〈δmτ〉. This can be done for various observables, after which one can
verify the relations (3.20), (3.21).

3.4 Hadron decay

Quite often hadron-level measurements are performed on particles which are un-

stable, though long-lived compared to their time of flight across the detector. The

definition of the observable does not specify at what stage of the hadron decay chain

we should make our measurement, so we are actually free to make it at any stage we

like — as long as we specify the stage.

This leads us to wonder about dependence of the observable on the particular

hadron level that is chosen. It is possible quite generally to argue that redefining the

hadron level should not affect the universality pattern. Suppose one starts off at a

stage consisting of short-lived hadronic resonances. The boost-invariant nature of the

mechanisms of hadronisation implies that these hadronic resonances will have been

produced with a rapidity-independent distribution. Hadron decay is also a boost

invariant process, so the decay products of the resonances will also be distributed in

a rapidity-invariant manner. But the mean transverse momentum may well change

because the decay of a hadron liberates energy, some of which may enter into the

transverse degrees of freedom. Therefore the power correction to a given observable

will increase as a result of hadron decay, but the increase will be proportional to cV
(as long as the observable is measured in the E-scheme).

Though it is perhaps more natural to treat hadron decay as a change in the

distributions φh(kt), if one wants quantitative predictions it turns out to be more

convenient to discuss it in terms of a δcV(m2/k2t ) contribution. Since our decay
process is rapidity independent we can write the δcVdecay for an arbitrary variable as

δcVdecay

(
m2

k2t

)
= cV Xdecay

(
m2

k2t

)
(3.27)

3We note though one small defect of the E-scheme, namely that the rescaled 3-momenta do

not necessarily add up to exactly zero. Experimentally this is in any case quite common due to

measurement errors, and so is not necessarily a major defect. However to preserve various desirable

properties of the event-shape definitions, in the E-scheme we choose to boost the event (by a small

amount, of order Λ/Q) so as to place it in the centre-of-mass frame. One might worry that the

boost itself might alter the value of the event shape, but it can be shown that the effect of the boost

is to modify the event shape by a relative amount Λ/Q, so that the effect on the mean value is of

order αs(Q)Λ/Q, i.e. formally negligible.
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where Xdecay, which is independent of the variable, is defined by

Xdecay

(
m2

k2t

)
=

〈
1

kt

∑
i∈ children

|kti|
〉
− 1 , (3.28)

is the mean relative change in total transverse momentum as a result of the decay of

a parent with transverse momentum kt and mass m.

In general Xdecay is a fairly complicated function, because actual hadronic decays

can involve 3-body final states where one or more of the decay products is massive.

For the purposes of the studies in this paper we instead introduce a decay-scheme,

in which all hadrons are artificially decayed to a pair of massless particles. At first

sight this seems a little arbitrary, but there are two reasons why it is nevertheless of

interest. Firstly, it is fairly straightforward to apply this scheme to a given ensemble

of particles: one simply takes each hadron and in its centre of mass frame decays it

to two particles moving in opposite directions along a randomly chosen axis. The

second reason is phenomenological: as we shall discover in section 5.3 if one applies

the procedure to different hadron levels (say the normal hadron level and some ‘res-

onance’ level, earlier on in the decay chain) one finds that the decay scheme results

in the two cases are very similar — in other words, decay-scheme results are almost

independent of the particular hadron level from which one starts.

In this 2-body decay scheme, Xdecay is given by the following expression

Xdecay

(
m2

k2t

)
=

=

∫ 1
−1
d(cos θ)

∫ 2π
0

dφ

4π



√√√√1 +(m2

k2t
+ cos2 φ

)
sin2 θ + 2

√
1 +

m2

k2t
sin θ cosφ− 1


 ,

(3.29)

for which we have yet to find a closed form. Its behaviour for kt � m is such that

for a general variable the expansion coefficient defined in eq. (3.18) is

γVdecay =
1

4
cV . (3.30)

The shape of the function δcVdecay is similar to that of δcρ, as can be seen from figure 2.

3.5 Relation to massive-gluon calculations

Many of the traditional power-correction calculations are based on the dispersive,

or massive-gluon approach. Often however, as we have already mentioned, there is

an implicit or even explicit [10]–[14] assumption that the gluon decays into massless

particles, leading to the statement of universality.
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One exception is the calculation in [8] which considered the thrust using the

full kinematics of the undecayed massive gluon (both in the numerator, where gluon

decay often makes no difference, and in the denominator where it does make a dif-

ference). They obtained the result that the coefficient cτ for the thrust should be 4G

rather than 2, where G ' 0.916 is Catalan’s constant. This seems quite strange since
we have argued that a proper treatment of particle masses should lower the value of

the thrust rather than increase it, whereas the analysis of [8] suggests that the power

correction increases. However the situation is subtle because the massive-gluon ap-

proach takes the power correction as being proportional to the non-analyticity in the

gluon mass (or virtuality) after integration over the whole of phase space, and there

is a non-trivial relation between the effect of the gluon mass on the value of τ for a

given event and the non-analyticity.

4. QCD-based analysis

When discussing universal power corrections in section 3 we introduced the function

φh(kt), the one-particle inclusive distribution for the non-perturbative production of

hadrons h with transverse momentum kt. Within the tube model we vaguely know

what we mean (the hadronisation associated with the low momentum fields from the

q, q̄ sources), but in QCD it is quite ambiguous: after all, all hadrons are produced

non-perturbatively!

Strictly what we are interested in is the difference between our observable at the

hadron level and the value calculated from a given order of perturbation theory. In

our particular case the variables are sensitive to the mean transverse momentum (at

a given rapidity). A proper definition of the difference in mean transverse momentum

between parton and hadron levels is

a0 =

∫
dkt

kt
kt

(∑
h

Φh(kt, η)−
∑
p=q,g

Φp(kt, η)

)
(4.1)

where Φh(kt, η) is the distribution of hadrons h at a given transverse momentum and

rapidity, and Φq,g(kt, η) is the perturbative distribution of partons. So the quantity

φh(kt) should really be understood as being defined as follows:∑
h

φh(kt) ∼=
∑
h

Φh(kt, η)−
∑
p=q,g

Φp(kt, η). (4.2)

In eq. (4.1) the integrals over Φh(kt, η) or Φq,g(kt, η) separately would have values

of the order of αs e
−|η|Q, because a fraction αs of the time there can be a hard particle.

But typical pictures of hadronisation state that the difference should be dominated

by particles ‘produced at low transverse momenta,’ as opposed to particles which

come from the collinear fragmentation of a hard parton, since in the latter case

16



J
H
E
P
0
5
(
2
0
0
1
)
0
6
1

the sum of kt’s of the hadrons should on average be equal to the kt of the original

parton and there will be no contribution to the difference (4.1). This ensures that

the integral of
∑
h φh is dominated by low kt’s and that it is roughly rapidity and

Q-independent.

But when working out mass-dependent effects, Φq,g does not contribute at all

since in the perturbative calculation one has massless quarks and gluons (we do not

consider the case of calculations with massive quarks). So in the expression for the

mass-dependent non-universal power correction, eq. (3.9), we shall replace φh(kt)

with Φh(kt, η).

4.1 Spectrum of hadrons

To study mass effects in detail it is necessary to have some understanding about Φh.

The simplest approach that is currently available is based on local parton-hadron

duality (LPHD) [30, 31], namely the idea that on average there is a correspondence

between the production of partons and the production of hadrons. One can then

calculate the distribution of partons and expect the distribution of hadrons to be

very similar. Using this idea the distribution of low-kt hadrons has been calculated

as a function of kt and rapidity in [32]:

Φ(kt, η, lnQ/Λ) ∼ 4CF
β0

(
1

ln kt/Λ
+
4CA
β0
ln
ln kt/Λ

lnQ0/Λ
ln
lnQe−|η|/Λ
ln kt/Λ

+ · · ·
)

(4.3)

where Λ is the QCD scale in some arbitrary scheme, Q0 is an unknown cutoff below

which parton branching stops. We have explicitly added lnQ as an argument of Φ to

emphasise that it is now Q dependent. The η dependence of Φ is actually properly

described by this formula only for large η. But since most of our integrals in η

converge rapidly we will usually be able to ignore the η-dependence altogether.

The first term in the brackets in (4.3) just corresponds to the radiation of a single

gluon of transverse momentum kt from the qq̄ pair, with intensity αs(kt). This term

is both rapidity and Q-independent. The second term comes from the coherent (or

angular ordered) radiation of another gluon from the first gluon, with the logarithms

originating from the integrations over the two gluon momenta.

At lowest momenta the first term dominates. At higher momenta the second

term becomes more important. We note that it has significant Q-dependence: this

means that a piece of the mass-dependent correction will behave as ln lnQ times

some function of kt, and the fact that this function is enhanced at larger values of

kt implies sensitivity to δcV(m2/k2t ) in a region where the approximation of δcV by
γV m2/k2t might be expected to work — in other words we expect there to be a term
in the mass-dependent power correction proportional to

γV
ln lnQ/Λ

Q
,

as opposed to a simple 1/Q correction.
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A proper treatment requires that one take into consideration not only the first

term to have Q dependence in (4.3) but also yet higher orders. This can be done

via moments Dω(lnQ) of the multiplicity distribution of particles with momentum

fraction x emitted from a gluon at scale Q, D(x, lnQ):

Dω(Y = lnQ/Λ) =

∫ 1
0

dx

x
xω [xD(x, Y )] . (4.4)

The corresponding moment for emissions from a quark is just CF/CADω(Y ). We

will actually be interested in the moments of the multiplicity distribution at fixed η

(which we take positive), Φω(η),

Φω(η, lnQ/Λ) =

∫
dkt

kt

(
kt

Q

)ω
Φ(kt, η, lnQ/Λ) (4.5)

which is given in terms of Dω by

Φω(η, lnQ/Λ) = e
−ωη d

dY
Dω(Y )

∣∣∣∣
Y=lnQ/Λ−η

. (4.6)

The full multiplicity moment satisfies the following equation, embodying coher-

ence [24] at double logarithmic accuracy (DLA) as discussed for example in [33]

d

dY
Dω(Y ) =

∫ ∞
0

dy e−ωy 4CA
αs(Y − y)
2π

Dω(Y − y) . (4.7)

By differentiating both sides this can be written as a second order differential equa-

tion, for which an approximate (DLA) solution is

Dω(Y ) ' Dω(Y0) exp

[∫ Y
Y0

dy γDLAω (αs(y))

]
, (4.8)

with

γDLAω (αs) =
1

2

(
−ω +

√
ω2 +

16CAαs
2π

)
. (4.9)

Hence the moment of the distribution at fixed rapidity is given by

Φω(η, lnQ/Λ) = γωDω(lnQ/Λ− η)e−ωη . (4.10)

Eq. (4.7) and its solution eq. (4.9) are usually derived for the region around ω = 0.

There they are known to give the correct leading term of γω, proportional to
√
αs. The

first set of subleading corrections in this region are also known and can be obtained

within the modified leading log approximation (MLLA) which takes into account

effects such as a gluon splitting into quarks, and the part of the Pgg splitting function
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which is finite at z → 0. These corrections can be embodied into a modification of
γω and give [30, 34]

γω(αs) = γ
DLA
ω (αs) +

αs

2π

[
−a
2

(
1 +

ω√
ω2 + 16CAαs/2π

)
+ β0

16CAαs/2π

ω2 + 16CAαs/2π

]
,

(4.11)

where a = 11CA/3+2nf/3C
2
A. Around ω = 0 MLLA effects give corrections to γω of

order αs, i.e. suppressed by an amount
√
αs compared to the leading contribution;

effects associated with the correct scale choice for αs start at O(α3/2s ) and so do not
mix with the MLLA corrections.

For our applications we are actually interested in the region around ω = −1
and it is not immediately obvious that we can apply the ω ∼ 0 derivation. One can
envisage two sources of problems: firstly since the Dω=−1 moment is dominated by
low momenta one might worry that its evolution is entirely non-perturbative. Sec-

ondly one may wonder whether the soft approximation of the Pgg splitting function,

implicitly included in eq. (4.7), is valid (for ω = 1 for example it would not be). But

bearing in mind that for negative ω, γω(αs) = −ω + O (αs), we see that eq. (4.7)
has an integrand nearly independent of y over the whole integration region (modulo

powers of αs(Y − y)), so that the integration is logarithmic. This means that it is
dominated neither by the very soft (non-perturbative) region, nor by the region in

which the splitting is hard, and as a consequence it is safe to write eq. (4.7). However

since we are not in a double logarithmic, but a single logarithmic region, we can only

trust the first order expansion of γω:

γω(αs) = −ω − 4CAαs
2πω

+O (α2s) , ω < 0 . (4.12)

Pieces of order α2s come additionally both from the MLLA corrections and from other

uncalculated sources such as the scale choice for αs, which is beyond our control. This

means that we are not able to go beyond leading order in our studies.

Now that we have an expression for γω(αs), we make the standard assumption

that branching only occurs above some scale Q0, so that Dω(Y0 = lnQ0/Λ) = 1 and

we arrive at the results

Dω(Y ) ∼ e−ω(Y−Y0)
(
Y

Y0

)−A/ω
, (4.13)

and

Φω(η, Y ) ∼ −ωe−ω(Y−Y0)
(
Y − η
Y0

)−A/ω
, (4.14)

where A = 4CA/β0 ' 1.565(1.714) for nf = 5(6).
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The Dω and Φω obtained so far correspond to expectations for numbers of gluons.

The LPHD hypothesis suggests that for a given hadron species h we should have,

Φh,ω(η, Y ) = −Nh,ω ω e−ω(Y−Y0,h)
(
Y − η
Y0,h

)−A/ω
. (4.15)

where Nh,ω is a unknown normalisation factor, which contains the information about
the conversion of partons into a given hadron species h. It should depend on Y0,h =

lnQ0,h/Λ in such a way as to ensure that the final result for Φh,ω is independent

of Q0,h. The assumption of local parton-hadron duality implies that Nh,ω is free of
soft divergences, since these should all have been taken into account in the QCD

treatment of gluon radiation.

4.2 Application to power corrections

The expression for the mass-dependent piece of the power correction is (cf. eq. (3.10))

〈δmV〉 =
∑
h

∫
dkt

kt

kt

Q

∫
dη δfV

(
η,
m2h
k2t

)
Φh(kt, η, Y ) , (4.16)

which we can rewrite as

〈δmV〉 =
∑
h

∫
dω

2πi

∫
dη δfV ,ω(η) Φh,−ω(η, Y ) , (4.17)

where we have defined (note the extra factor of kt/Q)

δfV ,ω(η) =
∫
dkt

kt

(
kt

Q

)ω
kt

Q
δfV

(
η,
m2h
k2t

)
. (4.18)

Let us then expand the rapidity dependence of Φh,−ω(η, Y ):

Φh,−ω(η, Y ) = Φh,−ω(0, Y )
(
1− A

ω

η

Y
+ · · ·

)
. (4.19)

We see that rapidity dependent pieces are suppressed by powers of 1/Y , or equiva-

lently by powers of αs. Since for most variables (the special case of the broadenings

is discussed in appendix B) the rapidity integration in eq. (4.17) converges rapidly,

powers of η do not lead to any particular enhancement and we can simply neglect

the rapidity dependence of Φh,−ω:

〈δmV〉 =
∑
h

∫
dω

2πi
δcV ,ω Φh,−ω(η = 0, Y ) , (4.20)

where we have defined

δcV ,ω =
∫
dη δfV ,ω(η) =

∫
dkt

kt

(
kt

Q

)ω
kt

Q
δcV

(
m2h
k2t

)
. (4.21)
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To understand the structure of eq. (4.20) let us consider for now just the case of the

jet mass (in its default, massive scheme), which has

δcρ,ω = −
(
mh

Q

)ω+1 Γ (ω
2

)
Γ
(−1+ω

2

)
4
√
π

. (4.22)

Eq. (4.20) then becomes

〈δmρ〉 =
∑
h

mh

Q

∫
dω

2πi
Nh,−ω ω

Γ
(
ω
2

)
Γ
(−1+ω

2

)
4
√
π

(
mh

Q0,h

)ω (
lnQ/Λ

lnQ0,h/Λ

)A/ω
, (4.23)

where the integration contour passes between ω = 0 and ω = 1. For sufficiently large

Q the integrand has a saddle point close to ω = 1 and accordingly we consider its

behaviour in that region:4

γρNh,−1
1− ω

(
mh

Q0,h

)ω (
lnQ/Λ

lnQ0,h/Λ

)A(2−ω)
. (4.24)

Such a form holds in general for all the variables. If we use it to evaluate the saddle-

point integral we obtain the following result

〈δmV〉 ' γV
∑
h

Nh,−1 m2h
QQ0,h

(
lnQ/Λ

lnQ0,h/Λ

)A
(4.25)

When mh < Q0,h, we can quite easily study the corrections to this result since the

contour in (4.23) can be closed to the right, and the integral is equal to the sum

of residues at ω = 1, 3, 5, . . . . The first residue just gives our answer (4.25). The

relative magnitude of the contribution from higher residues depends critically on the

normalisation of the poles of δcV ,ω at ω = 3, 5, . . . (which can be worked out) and
on the value of mh/Q0,h (which is unknown) and so cannot be determined a priori.

However the energy dependence of these higher residues is much weaker: for example

the residue at ω = 3 goes as (lnQ/Λ)A/3. We are of course assuming that Nh,−ω has
no relevant non-analytic structure. This cannot be guaranteed, and for example if

the distribution of hadrons goes as dk2t /(k
2
t +m

2) then we expect Nh,−ω to have a pole
at ω = 2. This would lead to corrections to our results proportional to (lnQ/Λ)A/2.

So we expect that the mass-dependent power correction should go as

〈δmV〉 = γV ε
Q
lnA

Q

Λ
+O

(
Λ

Q
lnA/3

Q

Λ

)
(4.26)

where A/3 in the second term could potentially be A/2 and where ε represents the

4assuming Nh,−ω to be free of non-analyticity around ω = 1.
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unknown (but formally universal) factors in eq. (4.25)

ε =
∑
h

Nh,−1 m
2
h

Q0,h
ln−A

Q0,h

Λ
. (4.27)

These results give us two distinct predictions. Firstly mass-dependent power cor-

rections should have a leading piece which goes as (lnAQ/Λ)/Q, where A ' 1.565
for nf = 5. Secondly the normalisation of this leading Q dependence should be

predictable for all variables to within a new universal constant factor ε which is

intrinsically non-perturbative. There can be additional corrections which are be-

yond our control, but their scaling should be closer to that of a pure 1/Q term, and

therefore at very high energies they will be subleading.

4.3 Absolute predictions

Within the tube model (and all renormalon based analyses) we had a prediction that

the leading hadronisation correction should scale as 1/Q. Yet from the arguments

so far in this section we can see that, even in the E-scheme, the differences between

two different hadronic levels (related by the decay of some hadron species) will in-

volve a term of order (lnAQ)/Q. Therefore for an arbitrary hadron level the total

hadronisation correction will also have a piece of order (lnAQ)/Q.

One may well ask whether there exists a hadron level free of (lnAQ)/Q correc-

tions. For example if one reconstructs the various hadronic decays so as to arrive

at the level of the ‘first hadronic resonances created’ then one is free of the correc-

tions associated with hadron decay. But it is difficult to define what is meant by

the first hadronic resonances, since one doesn’t know how far ‘back’ in the decay

chain to go, especially when one reaches resonances whose width is of the same order

as their mass: at this stage resonance decay and the hadronisation process become

intertwined.

There are even reasons to believe that hadronisation itself could lead to contri-

butions of order (lnAQ)/Q, as is illustrated by the following simplistic argument: in

the same way that the decay of a massive hadron (mass m, energy E) liberates a

certain amount of energy, roughly of order m2/2E, in order to produce a massive

hadron one needs to supply that amount of energy. The reshuffling of momenta asso-

ciated with ‘supplying this energy,’ may well affect the mean transverse momentum

per unit rapidity. After summing over all hadrons, this implies a contribution to the

mean transverse momentum proportional to the (−1)th moment of the energy, i.e.
to (lnAQ)/Q. Since the process at play should be rapidity independent, we expect

that for a particular event-shape variable, V, the correction will be proportional to
cV as was the case for corrections due to hadron decay (and with the same proviso
concerning the broadenings). We point out that the change in transverse momen-

tum associated with the hadronisation could well be negative, if the energy that is

‘reshuffled to produce the masses’ comes from transverse degrees of freedom.
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So for a given hadronic level `, what we can say about the (lnAQ)/Q part of the

hadronisation corrections, is that for a variable V in a scheme S it has the form5

(cV µ` + γVS ε`)
lnAQ/Λ

Q
, (4.28)

where ε` is the same as ε defined in section 4.2, but now specific to our hadronic level

`; the scale µ` relates to the (mass-dependent) change in mean transverse momentum

per unit rapidity coming from the hadronisation and subsequent decays of resonances

to our hadronic level `:

µ` = lim
Q→∞

1

lnAQ/Λ

∫
dkt
kt
kt

(∑
h

Φh(kt, 0)−
∑
p=q,g

Φp(kt, 0)

)
. (4.29)

We can make one further statement: there is phenomenological evidence that our

decay scheme gives a reasonable approximation to actual hadronic decays, or more

specifically that regardless of the initial hadronic level, the decay-scheme results are

almost identical (cf. section 5.3). Accordingly, for any pair of hadronic levels ` and

`′ we expect the following relation to hold

4µ` + ε` ' 4µ`′ + ε`′ , (4.30)

where for variables other than the broadening we have exploited the fact that

4γVdecay = cV .

4.4 Infrared and collinear saftey?

All the event-shapes considered in this paper are generally considered to be infrared

and collinear (IRC) safe. Yet above we have argued that they are sensitive to hadron

multiplicities which are inherently IRC unsafe. How can these two statements be

reconciled?

Event-shapes are perturbatively IRC safe because they are linear in particle

momenta; so if a parton of energy E0 splits collinearly into two partons of energies

E1 and E2 then the value of the event shape is unchanged, V ∼ E1/Q+E2/Q = E0/Q.

Mass effects behave differently because, simply kinematically, they are propor-

tional to m2/EQ. They are not usually to be seen in perturbative calculations

because partons are considered to be massless. But hadrons are massive and since

energy is now in the denominator, the relation 1/E0 6= 1/E1+1/E2 means that mass
effects appear to be IRC sensitive. There are also situations where one would expect

multiplicity enhancements, similar to those discussed here, in purely perturbative

calculations. With massive b quarks for example, in the difference between p and E

schemes one would see an mb/Q suppressed contribution. This would be sensitive to

the multiplicity of slow large-angle b quarks, which at high orders is be enhanced by

infrared and collinear logarithms of mb/Q.
5In the case of the broadenings the full form actually has 4γBdecayµ` rather than cVµ`.
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But mass effects do not turn an IRC safe observable into an IRC unsafe one.

They are always suppressed by powers of m/Q, so even if this factor is enhanced by

logarithms of m/Q, in the limit Q → ∞ the net contribution still goes to zero, as
required for IRC safety.

5. Comparison to Monte Carlo

It would be nice to test our predictions of mass effects against data, for example by

looking at the differences between measurements of the same variable in two different

schemes. The experimental difficulties are significant though.

To calculate event shape observables in an experiment, four-momenta have to be

reconstructed from the tracking and calorimetric data. As a simultaneous measure-

ment of p and E is far too imprecise to constrain the mass, one usually explicitly

assigns a mass to each of the reconstructed particles. The mass assignment is based

on the signature in the detector. In general it allows the separation of neutral from

charged and electromagnetic from hadronic particles, but the separation of differ-

ent hadrons (π, K, p or n) is experimentally much more difficult and usually left

to specialised tagging algorithms. Often the pion mass is chosen to be assigned to

charged hadrons, as pions are the most common charged hadrons. For neutral parti-

cles, in principle calorimetry could distinguish between electromagnetic and hadronic

particles, but in practice this is difficult and all neutrals are assigned zero mass.

In any case the effect of misassignment needs to be corrected using Monte Carlo

simulation. This means that ‘measurements’ of differences between schemes depend

critically on the extent to which the Monte Carlo simulator gives an accurate de-

scription of features of the data which are not measured. Of course the Monte Carlo

programs have themselves been tuned in order to reproduce the (separate) data on

the production of different hadron species, but this tuning does not constrain all the

available degrees of freedom. As a result it is difficult to establish the magnitude of

those systematic errors on the measurement that are associated with the dependence

on the particular Monte Carlo model that has been used for calculating corrections.

5.1 Magnitude of mass effects

When comparing the results from Monte Carlo simulations with data one cross-

check comes from comparing the absolute value of an observable. Table 3 shows the

invariant jet mass calculated in different schemes from Monte Carlo as well as from

data. Within the experimental errors the simulations agree with the experimental

results. The difference between the schemes, though, is more sensitive to the choice

of the Monte Carlo program. Different simulations deviate up to ±10% indicating a
systematic uncertainty of that order. The differences computed from the DELPHI

results confirm that the simulation used by DELPHI gives consistent results.
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Herwig 6.1 Pythia 6.1 Ariadne DELPHI
Observable

default default tuned default data

ρ 0.0363 0.0372 0.0371 0.0375 0.0370± 0.0005
ρp 0.0316 0.0326 0.0332 0.0330 0.0327± 0.0003
ρE 0.0326 0.0336 0.0341 0.0340 0.0335± 0.0003
δρp 0.0047 0.0046 0.0039 0.0045 0.0043

δρE 0.0037 0.0036 0.0030 0.0035 0.0035

Table 3: Comparison of MC with data for standard and p-scheme at 91.2GeV. The

statistical errors on the MC results are below 0.0001. Differences between the different

models indicate systematic uncertainties, which for δρp are of the order of 10%. DELPHI

numbers were obtained by averaging the published [21] results for heavy and light-jet

masses. The tuning used for the tuned Pythia results is based on [35].

0

0.001

0.002

0.003

0.004

0.005

0 0.05 0.1 0.15 0.2

ρ

δρ

π

K

N

Figure 3: The contributions to δρ, the difference between the mean jet mass ρ in the

default (massive) and p-scheme, coming from different hadron species (π±, kaons and
nucleons), shown as a function of ρ in the default scheme.

It is also interesting to see how the shift caused by switching from default to p-

scheme depends on the value of the observable and how the different particle species

contribute. Figure 3, for the jet mass, was obtained using Ariadne [26] separating the

contribution from different particle species by applying the p-scheme only to particles

of a given type and stacking the results.
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Because the particle masses enter quadratically into ρ nucleons give the biggest

effect, despite their low multiplicity. At low values of ρ changing the scheme causes a

low average shift, which first rises with ρ and then falls off again. This structure stems

from all particle types. An additional peak at large values of ρ is due to nucleons

only and probably arises due to peculiarities of baryon production in 4-jet events.

The overall structure reflects influences from the numerator and the denominator

in the definition of ρ. Low values of the numerator are probable only at low multiplic-

ities which in turn only have small corrections. With larger values of ρ the average

multiplicity rises and so does the average difference between standard and p-scheme.

For even larger values the relative change in the numerator decreases and mass-effects

in the denominator get progressively more important, finally over-compensating the

changes in the numerator.

The interplay between numerator and denominator results in a complex ρ-de-

pendence of the difference between schemes and demonstrates that mass-effects have

a non-trivial influence on the observables shape. Mean values are, however, domi-

nated by small values of the numerator, where the influence of the denominator is

suppressed (see section 2.2).

While the necessary experimental corrections make it difficult to measure the

difference between the schemes from data, the experiments’ reliance on simulation

allows us to correct the existing data to any desired scheme without introducing

significant additional systematic errors. We shall use Ariadne [26] to transform ex-

isting data [36, 19, 21] to a desired scheme whenever corresponding measurements in

this scheme do not exist. Currently data exists for non-standard schemes only from

DELPHI [21], H1 and ZEUS [22].

In figure 4 we show data for the jet mass ρ as function of Q in the default and

in the p-schemes. As ρ is usually not given by the experiments, it was taken as the

average of the measured heavy and light-jet masses. The lines in figure 4 correspond

to fits using the O (α2s ) perturbative prediction and a power correction of the form
eq. (3.7).

The difference between the two middle (red solid and dashed) curves corresponds

to the normal, ‘universal’, power correction. The difference between the upper two

(red and black solid) curves is the mass-dependent power correction. One sees that

above Q = MZ it is as large as the traditional 1/Q term, and it can be as much as

10% of the mean value of the observable (cf. also table 3). For a general observables

differences between the p and E-schemes at Q = MZ are of the order of a few

percent, whereas differences between decay and E-schemes are between 5 and 10%

of the observable.

So while none of our previous analysis has given us any indication of the absolute

size of mass-induced effects, comparisons in this section have shown that the absolute

size of mass effects at Q = MZ due to hadrons can be sizable portion of the non-

perturbative power-corrections.
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Figure 4: The jet mass ρ as measured in the default scheme (upper set of points) and

corrected to the p-scheme (lower set of points). The upper curve corresponds to a fit to

the default-scheme points, while the lower three curves correspond to a fit to the p-scheme

points (the dotted curve is the pure αs component, the dashed curve includes the O
(
α2s
)

term while the solid curve includes a power correction of the form eq. (3.7)).

Further results of comparisons with data, transformed to various schemes, will

be presented in section 6.

5.2 Comparison to predictions

Here we compare Monte Carlo results with the predictions of sections 3 and 4. There

are two main predictions which we wish to test. Firstly that the leading energy-

dependence of mass-dependent effects is (lnAQ)/Q; secondly that the coefficient

of the leading energy dependence is proportional to γV . We are also interested
in examining a third, more qualitative prediction, namely that certain subsets of

observables have similar subleading 1/Q mass effects.

We shall study results from three Monte Carlo event generators: Herwig [25],

Pythia [27] and Ariadne [26]. Let us first illustrate the kind of behaviour that is

seen by examining three observables: the difference between the p (default) and

E-schemes for the C-parameter, the difference between the massive (default) and

E-schemes for the jet mass and the difference between the decay and E-schemes

for the thrust. These differences (multiplied by Q) are shown as a function of Q in
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figures 5a, 5b and 5c for Herwig and Pythia and Ariadne respectively.6 They have

all been normalised to the appropriate γV .
Pure γV/Q corrections would lead to superimposed flat lines. The fact that the

lines rise for all three event generators is consistent with the fact that we have a

correction enhanced at larger values of Q. But the nature of the Q dependence is

not consistent between the different programs. For Herwig and Ariadne the second

derivative is positive and roughly consistent with lnAQ with A ' 1.6 as predicted
in eq. (4.26). On the other hand the Pythia results are inconsistent with such a

hypothesis — we return to this problem shortly.

Our second prediction in eq. (4.26) was that the Q-dependence should be pro-

portional to γV — the fact that our observables (normalised to γV) have very similar
Q dependences supports this hypothesis. This is true for all three event generators.

To study these questions more systematically we fit a formula of the following

form7

〈δmV〉 = γV
Q

(
ε lnAeff

Q

Λ
+B

)
, (5.1)

to 〈δmV(Q)〉, where ε, Aeff and B are the fit parameters (we take Λ = 0.2GeV). Im-
plicit in this procedure is the assumption that terms with subleading energy depen-

dence are reasonably well approximated by γVB/Q (fits involving more sophisticated
forms for the subleading terms turn out to be fairly unstable). To reduce the impact

of subleading effects we only fit points with Q > 100GeV. We have generated 105

events per point.

We expect Aeff to be somewhere between the nf = 5 and nf = 6 values of

A = 1.565 and A = 1.714. The results for Aeff are shown in the left hand plot of

figure 6, for all three event generators, together with bands representing the predicted

nf = 5 and nf = 6 values for A. Almost all the Pythia results have Aeff ' 0 which is
a signal of a dependence of the form ln lnQ/Λ. The Herwig and Ariadne results in

general lie close to the predicted value for A. Most of the observables lie to within

±0.1 of the expected range, the notable exceptions being the difference between the

6The plots have been generated using only events with primary down-quarks: there seem to

be slight differences between the results coming from different light-quark species and the change

in flavour composition of events as Q approaches MZ leads to an extra small but spurious Q-

dependence. More important though is the removal of top-quark production: for Q & 2mt the
structure of the Born level of primary top-quark events is very different from that primary light-

quark events, because of the top decay.
7In the case of the broadenings in the decay scheme we actually use a more complicated form,

in line with the discussion in appendix B:

〈δmV〉 = 1
Q

(
γV,ω=1ε lnAeff

Q

Λ
+ γV,ω=∞B

)
.
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(b) PYTHIA
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Figure 5: Herwig, Pythia and Ariadne results for the differences between pairs of mea-

surement schemes for three observables. In all cases the differences have been normalised

to γV . The lines are fits of the form eq. (5.1) to the points with Q > 100GeV. These
figures have been generated using events with primary down-quarks; the labels (d − E),
(M − E) and (p − E) indicate differences between the decay and E-schemes, the massive
and E-schemes and the p and E-schemes respectively.
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decay and E-schemes for the heavy-jet mass and the broadenings. The broadenings

in the decay scheme are quite delicate observables because they involve an expansion

in powers of
√
αs which may be quite slowly convergent. In the case of the heavy-jet

mass it is not too clear what is going wrong though it may well be related to the

non-inclusiveness of the variable (cf. appendix D).

It is of interest to establish whether the inconsistency between our prediction and

Pythia is due to the nature of the hadronisation or to the parton showering. If it were

the former we might think that we had been too naive in assuming LPHD and an

absence of qualitative changes due to hadronisation. Two distinct arguments support

the hypothesis that the problem lies with the parton showering. One is that Ariadne

uses the same string fragmentation routines as Pythia and so the problem must lie

in the part of the physics which is treated differently between the two programs

(the parton showering). The second argument comes from a direct investigation of

the Pythia parton level: in Pythia, parton level gluons are massless so we cannot

simply look at the difference between two mass-schemes. However mass effects are

just related to the sum of the inverse energies of all the particles, so we can instead

look directly at the behaviour of D−1(Y = lnQ/Λ) (cf. eq. (4.4)) at both parton
and hadron level (where it is best examined for individual hadron species) and check

that it has the right energy dependence. We find that in Pythia both at parton and

hadron levels, D−1(Y ) rises too slowly with energy, while Herwig for example shows
an energy dependence which is consistent with our prediction, both at parton and

hadron level. This suggests that the parton showering present in Pythia might be

lacking some of the dynamics associated with the coherent branching approach used

in section 4.

Problems with coherence should have implications also for hadron multiplici-

ties. If we restrict ourselves to ‘uds’ primary-quark events, we find that the ratio

of Herwig and Ariadne π± multiplicities is essentially independent of Q (to within
1% for Q between 100GeV and 30TeV). The ratio of Pythia to Ariadne π± mul-
tiplicities on the other hand decreases by about 13% over this range. We note in

passing that the π± multiplicities from Herwig and Ariadne at any given Q differ
by about 8%, and that if one includes heavy primary quarks the situation is more

complicated.

Our second prediction was that the leading Q-dependence should be proportional

to γV . To test this systematically we fix Aeff to be equal to A = 1.565 and fit for
the values of ε and B in eq. (5.1) (using the same range of Q as before). We do

this only for Herwig and Ariadne. The results are shown in the right hand plot of

fig. 6. The mean value of ε is about 0.023GeV for Herwig and about 0.016GeV for

Ariadne. One should not be misled into thinking that these small numbers imply

small effects — they get multiplied by lnAQ/Λ, which is about 17 for Q =MZ ! The

range of ε values for different observables is typically about ±10% from the central
value (with the exception of the difference between the decay and E-schemes for ρh).
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Figure 6: The left-hand plot shows the power Aeff ‘measured’ for a range of observables

from Pythia, Ariadne and Herwig; the yellow bands are the expected values for nf = 5

and nf = 6. With Aeff fixed to its predicted nf = 5 value, the values of ε fitted for the

different observables are shown in the right-hand plot (just Ariadne and Herwig). The fits

are carried out for Q > 100GeV to reduce their sensitivity to subleading effects using only

events with d primary quarks. production is disallowed. Errors are statistical from 105

events at each of 17 energies.

Thus our two main predictions, concerning the energy dependence and the relative

normalisation of mass-dependent effects are in remarkable agreement with Monte

Carlo results.

We can also examine the mass correction at a given fixed value of Q, rather

than its Q-dependence. In the left-hand plot of figure 7 we show Q〈δmV(Q)〉/γV for
Q =MZ . The points seem to fall into two groups: those corresponding to differences

between the p and E-schemes, and those corresponding to differences between the

massive and E-schemes (jet masses) and the decay and E schemes. The differences

between and p and E-schemes are all governed by the functions δcV in figure 2
which have a maximum: these functions have very similar shapes, meaning that
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Figure 7: The left hand plot shows the value of the observables at a fixed value of Q =MZ ,

normalised to γV . The right hand plot shows the Q-dependence of the various observables
normalised to the leading-order perturbative coefficient rather than to γV . Results are
shown for Herwig only.

whatever the form of Φh(kt, Y ) in (4.16) the integral will be proportional to γV . This
statement was made earlier in the form of eq. (3.20). The fact that the points for the

jet masses (massive minus E-schemes) and the decay minus E-schemes are higher

was anticipated in eq. (3.21), since after accounting for the rescaling by γV , their
δcV ’s remain larger than those of the other variables.
Finally, for entertainment purposes, in the right hand plot of figure 7 we show

the Q-dependence normalised not to γV but to APT , the first coefficient of the per-
turbative expansion of the event shape. It illustrates the fact that mass effects vary

significantly in size and sign from one observable to the next — and that the ability

to predict that pattern of this variation is a non-trivial achievement!

5.3 Resonance and hadron-level decay scheme results

In section 3.4 we mentioned that a phenomenological advantage of the decay scheme is

that regardless of the hadronic level from which we start the decay scheme results are

very similar. To verify this we start with two hadronic levels: a normal hadronic level,

as defined earlier and a resonance level which is ‘defined’ as the first level of hadrons
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V τ ρ ρh C BT BW
Vdecay,had − Vdecay,res
VE,had − VE,res (%) 1.1± 0.2 −7.3± 0.9 0.8± 0.2 1.9± 0.1 1.5 ± 0.2 −1.5± 0.5

Table 4: Percentage dependence of decay scheme results on the choice of the initial

hadronic level (‘normal hadron’ or resonance level), relative to the dependence of E-scheme

results on the hadronic level. The numbers are shown for Q = MZ using results from

Ariadne.

produced in Pythia or Ariadne. We then look at the difference between decay-scheme

event-shape values for these two hadronic levels compared to the difference between

the E-scheme values. Results obtained from Ariadne are given (in %) in table 4:

they show that for most variables, in the decay scheme one is very insensitive to

the initial hadronic level. This is not completely trivial since the actual decays that

take one from resonance to hadron level are not just the artificial massless two-body

decays of the decay scheme.

For most of the variables the ratio shown in table 4 scales roughly as 1/Q, i.e.

at these energies the difference between decay schemes for the two hadronic levels is

dominated by a 1/Q2 correction rather than a 1/Q correction. The jet mass ρ and

the wide-jet broadening seem to be more complex (note also the different sign of the

correction compared to the other observables, and the somewhat larger value for ρ),

but the origins of the differences have yet to be identified.

A point worth noting (we will see a related point in section 6) is that at lower

energies, the good correspondence between the two decay-scheme results holds only

if heavy-quark decays are taken into account separately.

5.4 Total hadronisation

So far in this section we have examined differences between various measurement

schemes and various hadronic levels. We observed in section 4.3 that, since the dif-

ference between any two hadronic levels contains terms proportional to (lnQ)A/Q,

the total hadronisation corrections in going to an arbitrary hadronic level must also

contain such terms. Additionally, hadronisation itself might introduce a contribu-

tion proportional (lnQ)A/Q, as a consequence of the reshuffling of momenta asso-

ciated with the production of massive hadrons. We introduced the parameter µ` to

represent the normalisation of such a component for a given hadronic level `, and

pointed out that it could quite conceivably be negative, for example if the energy

required to produce the hadron masses comes partially from transverse degrees of

freedom.

One may wonder what happens in the hadronisation models used in Monte Carlo

event generators. The various curves in figure 8 show the corrections to τ (multiplied

by Q) in going from parton level to each of a variety of hadronic levels, as determined

from Ariadne. The first level after hadronisation is the resonance level — the fact

33



J
H
E
P
0
5
(
2
0
0
1
)
0
6
1

-1.5

-1

-0.5

0

0.5

1

1.5

10 100 1000 10000 100000

Q
 <

τ l 
- 

τ p
ar

to
n>

 [G
eV

]

Q [GeV]

ARIADNE

l = decay
l = hadron
l = resonance

Figure 8: The difference between hadron and parton level results for τ (multiplied by

Q), shown as a function of Q. Curves are shown for three different hadronic levels, and

have been obtained from the Ariadne event generator with only light primary quarks. The

thrust is defined in the E-scheme.

the corresponding line has negative slope means that µ` is negative. Indeed the

hadronisation corrections change sign at around 200GeV!

However we expected mass effects to have a characteristic signature, namely to

contain a term (lnQ)A/Q with A ' 1.6. If we carry out a fit (analogous to those
carried out in section 5.2) to determine the effective power for the resonance level

curve then we obtain Aeff ' 1.0. This could be due to subleading mass effects, or
some completely different effect which has yet to be considered.

At other hadronic levels one sees a weakerQ dependence — the positive (lnQ)A/Q

contribution from hadron decays cancels a large part of the negative contribution

from the hadronisation. This in itself is an interesting, and even quite natural,

result: the negative contribution from hadronisation is of the same order as the

positive contribution from the decay of all hadrons!

Of course these observations may be very specific to the hadronisation model

being considered. It would have been interesting to carry out a similar exercise with

the Herwig event generator, however there the situation is more complex because

the gluons have a (large) mass (0.8GeV). So in some sense, part of the hadronisa-

tion mass effects will already be implicitly included in the parton showering and a

straightforward investigation of the difference between hadron and parton levels will

show up only a part of the mass effects (and there will be a large ambiguity coming

from the choice of scheme in which to measure the parton level).
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6. Fits to data

6.1 2-parameter fits

Following the suggestion of [3] it has become standard procedure in recent years to

carry out simultaneous fits for αs and α0, with formulae of the form

〈V〉 = C1 αs
2π
+ C2

α2s
(2π)2

+ cV
a0

Q
, (6.1)

where the Ci are the perturbative coefficients for the mean value and a0 is defined in

terms of α0 and αs in eq. (3.7). In order to set the scene we show in figure 9a one-σ

confidence-level contours from such fits to data [36, 19, 21] for a range of event-shape

variables, all in the default schemes. In the absence of mass effects the universality

hypothesis states that the values of αs and α0 should be consistent for the different

variables.

Compared to the figures of this kind that one usually sees, one difference is the

inclusion of a result for ρ — until now generally only ρh has been studied. While

data do not exist for ρ itself, there are some data on the light-jet mass ρl, and from

this one can calculate ρ = (ρh + ρl)/2. What one sees is a significant inconsistency

between this variable and the others.8

Of course we know that we should really be carrying out the fits with additional

terms of the form (4.28), so as to take into account mass-dependent corrections. Let

us for the time ignore µ` (i.e. pretend it is conveniently zero!) and concentrate on the

term involving γVSε` — this piece is measurement scheme-dependent. In the default
schemes γVS is positive for the jet masses, and negative for all the other variables (cf.
table 2). If we ignore it then our fit parameters for ρ and ρh should come out larger

than for the other variables. This is exactly what we see in figure 9a.

So if we want to be check universality we first have to ensure that these non-

universal mass effect are absent, i.e. choose a scheme in which the γVS are zero,
namely the E-scheme (we could also use a scheme in which all the γV are more or
less proportional to cV , such as the p-scheme). Accordingly in figure 9b we repeat
the fits for αs and α0 but using E-scheme data.

9 The arrows show how the best fit

values have moved in going from the default to the E-schemes.
8It is perhaps ironic that this should be the one ‘standard’ variable that had not been studied

until now!
9As discussed in section 5.1 there is as yet very little data in the E-scheme (in e+e− it exists only

from Delphi, for the jet-masses [21]), so we use Ariadne to correct data from the default scheme

to the E-scheme. To be as close as possible to what the experiments use one might have preferred

Pythia, but as we have seen in section 5.2 this does not reproduce the correct energy dependence

for mass effects, though at phenomenologically relevant energies the discrepancy is quite small. All

other corrections to different schemes and hadron levels are also done with Ariadne. It should be

kept in mind that, especially at low values of Q there are big differences for example between Herwig

and Ariadne — consider τ (d−E) in figure 5 — this implies non-negligible uncertainties regarding
the effect of the scheme changes on the best-fit values for αs and α0.
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Figure 9: 1-σ confidence-level contours from fits to event-shape variables in a range of

schemes. (a) fits in the default schemes (normal hadron level); (b) fits in the E-scheme

(normal hadron level), with arrows indicating the motion of the contour in going from the

default to the E-scheme; (c) fits in the E-scheme at resonance level, with arrows indicating

the motion of the contour from the decay-scheme, to the hadron-level E-scheme, to the

resonance E-scheme — here the correction to resonance level has carried out using only

events with light primary quarks; (d) fits in the E-scheme at resonance level where the

correction to resonance level now includes events with heavy primary quarks as well — the

arrows indicate the motion from the ‘uds’ resonance level.

The switch to the E-scheme decreases the values of the jet masses, while it

increases, by somewhat less (in accord with the opposite sign and smaller value of

γV/cV), the values of the other variables. We see a change in both αs and α0 because
it is only through a linear combination of the αs and α0 Q-dependences that the

fits can mimic a term of order (lnAQ)/Q. The ‘angle’ of the arrows depends on the

relative amounts of (lnAQ)/Q and plain 1/Q in the mass-correction: if mass effects
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involved just 1/Q corrections then only α0 would change. For the broadenings the

situation is more complex because the ‘universal’ power correction goes as 1/(
√
αsQ)

which is more similar to a mass effect than a pure 1/Q term, so there is less need for

a change in αs to mimic the mass effect.

In the E-scheme the universality picture changes with respect to the default

schemes: whereas in the default scheme ρ was clearly inconsistent with the other

variables, in the E-scheme it is now very close to the thrust and the C-parameter.

The heavy-jet mass on the other hand now seems to be the least consistent of the

different variables as can be verified by examining the χ2 contribution from ρh in a

simultaneous fit to all variables. It may well be that the non-inclusiveness of this

variable is responsible for its different behaviour, as is discussed in appendix D.

Now that we are in a scheme in which non-universal mass corrections have been

eliminated we can turn our attention to the question of universal mass corrections,

i.e. the contribution related to µ` in eq. (4.28). A first question of interest is whether

we actually need to worry about this term at all — maybe it is sufficiently small that

it can be ignored altogether. We know that µ` depends on the hadronisation level

`. To gauge the importance of µ` we study three levels, each in the E-scheme: the

decay level (actually the decay scheme of the usual hadron level), the usual hadron

level and a ‘resonance’ level. The latter is taken (arbitrarily) to consist of the first

level hadrons produced in the Pythia/Ariadne string hadronisation routines. The

results of 2-parameter fits to these different hadronic levels are shown in figure 9c:

the arrows start from the decay level best fit, go to the usual hadron level best fit,

and then to the resonance level, for which we also show the 1-σ contours.

All variables move more or less in the same direction and by the same amount —

this is consistent with our knowledge that µ` is multiplied by cV (the broadenings are
more complex and move a bit differently). Accordingly the situation regarding uni-

versality is essentially unchanged (if anything, in the resonance level it is somewhat

improved). However in going from the decay to the resonance scheme αs changes by

up to 0.007; α0 is also sensitive to the hadronic level chosen and varies by up to 0.2.

At Q =MZ the variation in the observables themselves is of the order of 10 to 15%.

In other words mass effects, even in a ‘universal’ scheme, are responsible for a signif-

icant part of an observable’s value and have a non-trivial effect on fits for αs and α0.

If we had examined the same three hadronic levels in the p-scheme we would

have seen even larger dependence on the scheme because of the contribution from

the γVpε` term (recall that ε`, which is zero in the decay level, increases as one goes
towards the resonance level, cf. eq. (4.30)). In particular the dependence of αs on

the hadronic level should double, a consequence of the relation γVp ' −γVdecay . The
complete range of values for αs and α0 in the different hadronic levels and E and p

schemes is summarised for our different event-shape variables in figure 10.

Coming back to figure 9c, one important point which we have yet to mention is

that the corrections from normal hadron to the resonance level have been calculated
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Figure 10: Plots showing αs and α0 values obtained by fitting to data corrected to a

variety of schemes and hadronisation levels. Corrections relative to the default schemes

have been obtained using Ariadne, as discussed in the text.

using events with only light (uds) primary quarks. The corrections have then been

applied to all events (including those with heavy primary quarks). This is equivalent

to reconstructing all resonances except those associated with primary heavy quarks.

The reason for doing this is that in an event with heavy primary quarks, going to

the resonance level involves a reconstruction of the heavy-quark hadrons. In the

usual hadron level these have decayed and the invariant mass mq of the hadron

contributes to the event shape at the level m2q/Q
2 (for a more detailed discussion,

see appendix C, and also the discussion of heavy-quark decays in the context of

fragmentation functions in [37]), whereas in the resonance level (E or p) schemes the

mass of a forward moving hadron has little impact on the value of the observable

(other than at order αsm
2
q/Q

2). If we had shown figure 9c including heavy-quark

events to carry out the correction from hadron to resonance level, the combination

of the heavy-quark decay effect and the usual light-hadron mass effects would have

made it difficult to interpret the figure. This is the reason why we applied a correction

calculated using only events with light primary quarks.
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V αs α0 µ` χ2/d.o.f.

τ res. (uds) 0.1448± 0.0141 0.891± 0.237 −0.077± 0.042 56.2/44

τ res. (full) 0.1206± 0.0095 0.262± 0.161 0.012± 0.027 57.7/44

Table 5: Results from a 3-parameter fit to the thrust in two different hadronic levels (‘uds’

and full resonance levels, E-scheme).

In order to give the ‘full story’, in figure 9d we show the 1-σ contours which

come from including primary heavy quarks in our correction to resonance level (the

arrows come from the ‘uds’ resonance level). The arrows are roughly at right angles

to those in the other plots — this is closely linked to the fact the difference between

the ‘uds’ and full resonance levels is a 1/Q2 correction (i.e. something which dies off

faster than 1/Q, so that we need the difference between a 1/Q and an αs(Q) term in

order to approximate it over the given energy range). Despite their significant effect

on the best fit for αs, the heavy-quark decay changes the value of the observables

significantly only at low Q values. At MZ for example the effect on the thrust is 2%

(compared to 16% from the decay of all the light-resonances).

A final point worth mentioning is the following: if one believes, as implied by

Ariadne in figure 8, that of the various hadronic levels the decay-level is that with the

smallest contamination from mass effects, then choosing this hadronic level for a fit

to αs and α0, and accounting also for heavy-quark decays (by either reconstructing

the heavy-quark hadron, or explicitly including the contribution from heavy-quark

decay as calculated in appendix C) will lead us to high results for αs, around 0.130.

This means that there may well be room for the large higher-order perturbative

coefficients predicted by Gardi and Grunberg in [16], which for normal p-scheme

measurements imply a value for αs of about 0.110.

6.2 3-parameter fits

That fact that the event-shape values depend significantly on the particular hadronic

level chosen implies an important contribution to the event-shape value from a term

proportional to µ`. This means that we should really be fitting for µ` as well as for

αs and α0, using an equation of the form

〈V〉 = C1 αs
2π
+ C2

α2s
(2π)2

+ cV
a0

Q
+ cV

µ`

Q
lnA

Q

Λ
. (6.2)

In the last term we fix Λ = 0.2GeV (tying Λ to the value of αs(MZ), in practice the

replacement of ln Q
Λ
by 2π/(β0αs), makes little difference). It turns out that the in-

clusion of the last term makes the fitting procedure quite unstable, and leads to large

(correlated) errors on the individual fit parameters as well as a strong dependence

on subleading effects. Consequently the significance of the results is limited.

To illustrate the point, we consider the thrust at two hadronic levels (both in

the E-scheme): the ‘uds’ resonance level and the ‘full’ resonance level. The former is
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subject to the m2b/Q
2 corrections arising from heavy quark decay, whereas the latter

should be free of them (but will still have other 1/Q2 corrections). The fit results

in the two cases, table 5, give completely different pictures. In the ‘uds’ resonance

level, the fit results seem inconsistent with our expectations for αs (if only at 2-σ).

In the full resonance level the value for αs is ‘as we would like’, but the χ
2 is a bit

larger.

There may of course be other subleading effects that we have not yet considered

(for example higher-order perturbative corrections) which could cause further big

changes. Additionally the event generator used to correct to a given scheme may not

have the right behaviour at low values of Q. So the systematics are such that, at

least currently, it is difficult to extract reliable information from a 3-parameter fit:

the uncertainties on αs are even larger than those which arise by considering a range

of hadronic levels in a 2-parameter αs, α0 fit and µ` remains unconstrained.

If our main aim is to determine µ` then we can try a 2-parameter fit with αs
fixed. But here again we find that the systematic uncertainties on µ`, are of the same

order as the parameter expected size of the parameter itself, i.e. about 0.02 (cf. the

values of ε in figure 6).

7. Conclusions

The good. In this paper we have understood many features of the contributions

to event-shapes that are associated with hadron masses: there are two classes of

contribution, both of which scale as (lnQ)A/Q. The contribution from the ‘non-

universal class’ depends on the details of whether the variable is defined in terms

of 3-momenta, energies and angles, or a mixture of the two, and we can calculate

the relative magnitude of the mass-correction for different definition schemes. It

turns out that there is a privileged scheme (E-scheme) in which non-universal mass

corrections are absent, because their coefficient is zero. The ‘universal’ class of mass

corrections gives contributions proportional to the same coefficient cV that appears
in calculations of traditional universal (massless) 1/Q corrections; universal mass

corrections are present regardless of the definition of the event-shape variable, and

they are proportional to a new non-perturbative parameter µ` which depends on the

particular hadronic level ` (i.e. stage of the decay chain) at which we observe the

event.

In traditional power correction analyses, 1/Q power corrections are often given a

quasi-perturbative interpretation in terms of an infrared-finite coupling, reflecting the

fact that they are associated with the strictly perturbative concept of the renormalon

divergence of perturbation theory. The parameter α0 that appears in such analyses

can be related to a moment of the coupling in the infrared. On the other hand our

new parameter µ` is more related to the ‘reshuffling’ of momenta associated with

the production of mass — in this sense it is a much more intimately associated
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with the dynamics of hadronisation, and there is perhaps even a possibility that its

determination could give us qualitative information about hadronisation. It is not

currently clear whether perturbative contributions could also give contributions with

a similar Q-dependence.

Our analytical predictions for differences between different measurement schemes

agree well with results from two commonly used Monte Carlo event generators, Her-

wig and Ariadne. Furthermore, in fits for αs and α0 from a range of event-shape

variables, they explain a pattern observed both in e+e− and DIS of the jet masses
giving significantly larger values of both αs and α0 than other variables: this is be-

cause in the default schemes there are positive (non-universal) mass-corrections for

the jet masses and negative corrections for the other variables. Measuring all vari-

ables in the E-scheme leads to a significant improvement in the consistency between

the jet masses and the other variables. We also note that for the jet masses the

p and E-schemes are relatively insensitive to certain experimental systematics (as-

sociated with difficulties in identifying hadrons) which are relevant in the default

measurement scheme.

The bad. Unfortunately it seems that a direct experimental verification of the

properties of mass effects is quite difficult. In principle mass effects can be seen by

looking at the difference between two measurement schemes for the same variable

(say massive and E-schemes in the case of the jet mass). However the experimental

determination of such differences relies on the accurate identification of the mass of

each particle in an event, whereas the experimental procedure usually just involves

the assignment of the pion mass to each hadron. Since a large part of mass effects

seems to come from kaons and nucleons this is a poor approximation. Given that the

results are then corrected for what cannot be seen, using Monte Carlo programs, the

resulting ‘measurement’ of the difference between two schemes is likely to be as much

a reflection of the properties of the Monte Carlo events as of the actual events!10

It so happens that in one of the Monte Carlo programs most commonly used for

correcting data, Pythia, the Q-dependence of mass effects differs significantly from

our predictions at very high energies, going very roughly as (ln lnQ)/Q rather than

(lnQ)A/Q. This is probably related to approximations in Pythia’s implementation

of coherence. Fortunately for measurements in the p or E-schemes this should not

have too large an effect on the practical determination of event shape values since

the 3-momentum or energy are close to what is truly measured by detectors (it is the

difference between them that is poorly measured). Furthermore at today’s energies

the discrepancy in the Pythia energy dependence is a small effect compared to other

differences between event generators.

10One possible more direct experimental test of the ideas at the base of the predictions for mass

effects would be a measurement of a quantity such as the sum of the inverse energies of all nucleons

(or some other particle species). This should scale as (lnQ)A.
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In general, given the difficulties of a direct measurement of mass effects in event

shapes, for an experimental test of the picture outlined here it might be worth in-

vestigating the feasibility of measuring some other observable expected to depend on

the same (−1)th moment of particle energies. The simplest might be ∑i 1/Ei where

the sum runs over charged tracks. This might give an idea of whether the LPHD

hypothesis used in this paper works also for negative moments, where it has so far

never been tested.

One ‘negative’ implication of our results relates to the determination of the per-

turbative and non-perturbative parameters of QCD. We would like to measure our

new non-perturbative parameter µ`. But the degeneracy in a 3-parameter fit for

αs, α0 and µ` is such that the currently available data are not precise enough to

give us any meaningful constraints on any of the fit parameters. Furthermore the fit

results are very unstable with respect to systematic uncertainties. Given this lim-

itation we might decide that for the time being we should carry on as before with

two-parameter fits αs and α0 (of course with the event-shape variables now measured

in the E-scheme). Our having neglected a parameter in the fit will translate to sys-

tematic errors on αs and α0. We can try to gauge the size of the systematics by

carrying out the fit on results at different levels of the hadronic decay chain (using

Monte Carlo results to determine the correction) — this suggests systematics of the

order of ±0.004 on αs and of about ±0.1 on α0.

The ugly. In the course of our studies we have come across two effects, unrelated

to light-hadron masses, that have a significant impact on event-shape studies and so

warrant further investigation.

Firstly there is the observation that heavy-quark effects have a large impact

on fit values for αs and α0 — measuring an event shape before and after heavy

quark decay modifies αs values by up to 0.006, even though at MZ the effect of

heavy quark decay is only 2%. This peculiar behaviour is seen because the m2q/Q
2

contribution from quark decay is simulated by an increase of αs and a decrease of

α0. Given that the tools for studying heavy-quark effects in event shapes are well-

established, there is a strong argument for carrying out analyses that make full use

of them.

Secondly fits for the heavy-jet mass (a very non-inclusive variable) lead to values

for αs which are about 10% smaller than for inclusive variables like the thrust or

the mean jet mass. This needs to be understood. It could be due to a difference

in the behaviour of the perturbation series at higher orders. But in appendix D

there is evidence from Monte Carlo simulations that hadronisation corrections for ρh
have unusual characteristics: in contrast to what is seen in more inclusive variables,

the hadronisation depends strongly on the underlying hard configuration. There is

therefore a need to develop techniques allowing a more formal approach to the study

of such problems.
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A. Summary of notation

For convenience we give here a summary of the definition of the various schemes

introduced in this article.

p-scheme Scheme in which the observable is defined solely in terms of

particle 3-momenta.

E-scheme Scheme in which the observable is defined solely in terms of

particle energies and angles.

decay-scheme Scheme in which all massive particles are decayed isotropically

into pairs of massless particles. The observable is then calcu-

lated using the resulting ensemble of massless particles.

We also summarise some of the other notation used and introduced in this article.

V An event-shape variable.

Vp,VE,Vdecay An event-shape variable in p, E or decay-scheme, respectively.

cV The coefficient of the ‘traditional’ power correction for the ob-

servable V, introduced in eq. (3.5) and given for a range of
observables in table 1.

〈δmV〉 The non-universal mass-dependent correction to the mean value

of the observable V, cf. eq. (3.10).
δcV(m2/k2t ) The modification to cV for a particle with a given m2/k2t , cf.

eq. (3.12).

γV The coefficient of the leading m2/k2t dependence of δcV(m
2/k2t )

for kt � m, as defined in eq. (3.18). It is shown for a range of

variables in their default schemes in table 2.
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Xdecay(m
2/k2t ) The mean relative change in the sum of |kt|’s due to the decay

of a massive particle of mass m2 and transverse momentum k2t ,

as defined in eq. (3.28).

A Shorthand for 4CA/β0. Mass-dependent corrections have a lead-

ing term proportional to (lnQ/Λ)A/Q.

ε` The normalisation of the non-universal mass-dependent correc-

tion for a hadronic level `, cf. eqs. (4.27), (4.28).

µ` The normalisation of the universal mass-dependent correction

for a hadronic level `, cf. eqs. (4.28), (4.29).

B. Broadenings in the decay scheme

In determining the QCD-based predictions for mass-effects in section 4.2 we made

the assumption that for all variables considered, mass effects matter only in the

region of small rapidities. As a result we could ignore the rapidity dependence of the

hadron distribution, because it is significant only at large rapidities. More precisely

we expanded the rapidity dependence of Φh,−ω(η, Y ) and showed that it gave terms
suppressed by a power of αs,∫

dη δfV ,ω(η) αsη = O (αs) , (B.1)

which holds if δfV ,ω(η) decreases sufficiently rapidly with η. This works for all vari-
ables except the broadenings in the decay scheme, the reason being that for the

broadenings the difference between the normal and decay schemes is sensitive to

particle masses for particles up to rapidities of order 1/
√
αs. For the example the

total jet broadening has

δfBT,decay ,ω(η) = fBT (η)Xdecay,ω (B.2)

where we can write [15]

fBT (η) '
∫ ∞
0

d`Θ (`+ η0 − η)Θ(η)
(
2αsCF`

π
+
CFα

2
sβ0`

2

(π)2

)
e−

αsCF`
2

π
−CFβ0α2s `3

3π2 .

(B.3)

(We recall that here η0 has been defined with an additional 3/4 compared to what is

given in [15]). Since fBT is roughly 1 up to η ∼ 1/
√
αs the integral (B.1) is of order

1 (while the leading term is of order 1/
√
αs, cf. table 1). Even though this term is

subleading, in analogy with what is done for the cV ’s, we wish to control it, which
can be achieved as follows. First we write∫

dη δfV ,ω(η) Φh,−ω(η, Y ) = Φh,−ω(0, Y )δcV ,ω (B.4)
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where the η dependence of Φh,−ω has been absorbed into δcV ,ω:

δcV ,ω =
∫
dη δfVdecay ,ω(η)

(
1− A

ω

η

Y
+ · · ·

)
. (B.5)

Substituting in the above equations for δfBT,decay ,ω gives

δcBT,decay,ω =

(
π

2
√
CFαs

− β0

6CF
+ η0 − A

ω

β0

4CF

)
Xdecay,ω . (B.6)

In section 3.4 we had stated that

δcVdecay ,ω = cV Xdecay,ω .

If we compare our result (B.6) with cBT in table 1, we find that there is an additional

term −Aβ0/4CFω = −CA/CFω, not present in cV . This is the piece which arises from
the rapidity dependence of the hadron distribution and in practice it gives quite a

large correction to δcBT,decay ,ω.

The corresponding derivation for the wide-jet broadening involves the use of

δfBW,decay,ω(η) = fBW (η)Xdecay,ω , (B.7)

where

fBW (η) '
1

2

∫ ∞
0

d`Θ (`+ η0 − η)Θ(η)
(
4αsCF`

π
+
2CFα

2
sβ0`

2

(π)2

)
e−

2αsCF`
2

π
− 2CFβ0α2s `3

3π2 .

(B.8)

We thus obtain

δcBW,decay ,ω = Xdecay,ω

(
π

4
√
2CFαs

− β0
24CF

+
η0
2
− A

ω

β0
16CF

)
. (B.9)

The final form for the broadening mass-dependent power correction is analogous

to eq. (4.26) but with the appropriate ω-dependence introduced for γV :

〈δmBdecay〉 = γBdecay ,A
ε

Q
lnA

Q

Λ
+ · · · (B.10)

with

γBT,decay,ω =
1

4

(
π

2
√
CFαs

− β0

6CF
+ η0 − A

ω

β0

4CF

)
. (B.11)

and

γBW,decay,ω =
1

4

(
π

4
√
2CFαs

− β0

24CF
+
η0

2
− A

ω

β0

16CF

)
. (B.12)
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C. Heavy quark decay

While effects due to heavy quarks are not strictly speaking the concern of this article,

it turns out that they can have a significant effect on the fit results for αs and α0.

The presence of heavy quarks affects both the perturbative and non-perturbative

contributions to the event shapes.

Perturbative calculations of event shapes involving heavy quarks have been in

existence for a few years now [38]–[44]. They have started to be used for experimental

studies of events with heavy quarks, with hadronisation corrections deduced from

Monte Carlo event generators (see for example [45]).

Power corrections to event shapes with heavy quarks have been studied in [17] —

they differ from the light quark case because very collinear radiation (η & lnQ/mq,
where mq is the heavy-quark mass) is suppressed. For event shapes like τ , C and the

jet masses this leads to a reduction of the power correction by an amount of order

mqΛ/Q
2. The broadenings are more complex.

For typical measurements of event shapes, in the presence of heavy quarks there

is a second ‘hadronisation’ contribution due to the fact that what is measured is

not the final state involving charm or bottom-quark hadrons, but rather a final state

where the heavy-quark hadrons have decayed. This has been discussed in some detail

in the context of fragmentation functions in [37], and many aspects turn out to be

quite similar for event shapes. Since (for Q � mq) the quark is fast-moving, the

effect of the decay is to produce a bunch of nearly collinear hadrons whose invariant

mass is the heavy-hadron mass (for simplicity, from here on we neglect the distinction

between the heavy-quark and the heavy-quark hadron, while bearing in mind that

the mq relevant for the decay is actually the hadron mass).

If we consider a Born configuration consisting of two back-to-back heavy quarks

then it is quite straightforward to see what effect the decay will have on the simpler

event shapes. In the massive scheme ρ is unchanged by quark decay. In the p or

E-schemes it goes from being zero before the quark decay to

ρ =
m2q
Q2

(C.1)

after quark decay. This result can also be used to deduce the correction to the thrust

and C-parameter because in the collinear limit we have [46]

τ ' ρL + ρR C ' 6(ρL + ρR) . (C.2)

where ρL and ρR are the left and right-hemisphere jet masses respectively. To sum-

marise, the corrections expected as a result of the decay of primary heavy quarks are

shown in table 6.

For the jet broadenings the situation is more complex. If we start from the Born

configuration and let the heavy quarks decay, then with respect to the thrust axis all
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V τ ρ ρh C

δV (from quark decay) 2m2q
Q2

m2q
Q2

m2q
Q2

12m2q
Q2

Table 6: Corrections to event shapes arising from heavy quark decay.

the decay products will have transverse momenta of order mq, leading to values for

the broadenings of order mq/Q. However to consider just the effect of quark decay

on the Born configurations is an oversimplification. The variables discussed above

had the property that they are linear for soft and/or collinear particles (even ρh, to

within the approximations required here): namely the effect of quark decay is the

same regardless of whether we have the Born configuration, or one with extra soft

and/or collinear particles.

But the broadenings do not have this property. What goes on with heavy-quark

decay is very similar to the dynamics that led to the rather complex form for the

power correction to the broadening. Essentially the extra transverse momentum from

the decay only contributes at order mq/Q if the quark’s angle with respect to the

thrust axis is less than mq/Q. If the quark’s angle is larger than this, then azimuthal

averaging causes the mq/Q correction to be reduced to a m
2
q/ptQ correction, where

pt is the quark’s transverse momentum. A more quantitative understanding would

require a full treatment of the 3-body heavy hadron decay and a study (from a per-

turbative resummation) of how the quark transverse momentum compares with mq
as a function of Q (for very large Q it will usually be much bigger, but phenomeno-

logically accessible values of Q may not be large enough).

In [37] it has been pointed out that for the longitudinal fragmentation functions

there can also be corrections proportional to mb/Q associated with the decay of

secondary heavy-quarks produced from a soft gluon, though it is suggested that for

today’s energies such a behaviour may not yet have set in. The possibility of a similar

contribution in event shapes should be investigated.

D. The heavy-jet mass

We observed in section 6 that even in a ‘proper’ scheme the (αs, α0) fits for the heavy-

jet mass (and perhaps also the wide-jet broadening) seem to some extent inconsistent

with the results for the other variables. The distinguishing feature of the heavy-jet

mass is its non-inclusiveness, since it measures a specific hemisphere of the event

(the heavy one), whereas other variables measure the properties of the whole event.

We may well ask why non-inclusiveness leads to differences. One interesting

analysis has been presented in [18], which suggests that hadronisation corrections

can be different in the two hemispheres and convert a perturbatively light jet into

a heavy one. However this effectively increases the power correction rather than
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Figure 11: The hadronisation correction as a function of the value of the variable at

parton level.

decreasing it and so cannot explain the relatively small αs and α0 values that are

observed. This does not mean that such a mechanism is not present at all — indeed

in the difference between the E and p schemes the heavy jet mass correction is larger

than that for the single jet mass (cf. figure 6), and this could be due to such a

mechanism (it could also simply be because there are more hadrons in the heavy

hemisphere).

To help understand what is happening we have used Pythia to look at the mean

hadronisation as a function of the value of the variable at parton level, figure 11. For

the thrust, the hadronisation is fairly independent of the parton-level thrust value.

For the heavy jet masses (in the massive and p-schemes) however the hadronisation

correction is very negative for larger values of ρh at parton level (we note that there

are also very large event-by-event fluctuations in the hadronisation — this means that

the hadronisation does not just cause a simple shift of the perturbative distribution).

This feature may be at the root of the non-universality seen in the heavy jet mass, and

needs to be understood — one explanation might be that when one hemisphere is per-

turbatively heavy, the phase-space that remains for further emissions is limited, and

the only way of emitting non-perturbative radiation in the light-hemisphere is if some

energy (and mass) is removed from the heavy hemisphere. However such a hypothesis

would need to be placed on a more rigorous mathematical footing for it to be tested.

Such a phenomenon might also play a role in the wide-jet broadening, where it

has been observed that the theoretically predicted distribution is too wide at larger

values of BW [47].
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