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1 Introduction

The mass of the bottom quark is an important parameter in the theoretical de-
scription of B meson decays. In particular, for the extraction of Vub and Vcb from
inclusive decays a precision in the bottom quark mass of the order 1% is desirable
due to a strong mass dependence. Precise determinations of the bottom mass are
available from Lattice QCD using the B mesons mass (see Refs. [1] for recent re-
views) and from perturbative QCD. As the B meson binding energy is dominated
by non-perturbative QCD, perturbative methods can only be applied to Υ mesons,
where the relevant dynamical scales, momentum 〈p〉 ∼ Mbv and energy 〈E〉 ∼ Mbv

2,
v being the bottom quark velocity, can be larger than the hadronization scale ΛQCD.1

In recent time new perturbative bottom mass analyses have been carried out in-
cluding newly available NNLO (i.e. O(v2, αsv, α2

s)) corrections in the non-relativistic
expansion for heavy quark–antiquark systems based on the concept of effective theo-
ries and employing properly defined short-distance quark mass definitions2 that are
adapted to the non-relativistic framework [3]. It has become practice to determine
the bottom MS mass mb(mb) as the reference mass to compare the various analy-
ses among each other. The various results, which are based on experimental data
on the Υ mesons, show good agreement with a central value for mb(mb) of about
4.2 GeV and an uncertainty ranging from 50 to 80 MeV. It is important to note that
the uncertainty is predominantly theoretical, and (as a necessary consequence) partly
depends on the taste and believes of the respective authors. It is therefore impossible
to interpret the value for the error in a statistical way. It will be the primary aim
of future studies and analyses to achieve a better understanding of this theoretical
uncertainty—not necessarily in order to reduce it further, but in order to put it on
firmer ground.

One effect that has been neglected in previous bottom quark mass analyses is com-
ing from the finite masses of the light quarks (u, d, s, c), where ”light” means ”lighter
than the bottom quark mass”. In this talk I report on results and examinations on
light quark mass corrections at NNLO in the non-relativistic expansion which have
been presented in Refs. [4,5]. Light quark mass corrections are interesting because
the non-relativistic bb system is governed by a tower of scales: Mb, 〈p〉 ∼ Mbv and
〈E〉 ∼ Mbv

2. For small velocities these scales form a hierarchy and their relations
to ΛQCD determines the theoretical approach that has to be used to describe the bb
dynamics. In the work discussed in this talk I assume that all three scales are much
larger than ΛQCD (i.e. that v is not smaller than about 0.3 for bottom quarks) as
only for this case the relevant approach is well understood theoretically.

Whether the mass of a light quark can also be considered ”light” in the context of
the non-relativistic bb dynamics depends on its relation to the three scales mentioned

1At LEP the MS bottom mass at the Z scale has been determined from the rate of 3 jet events
containing a bb pair [2]. This measurement established experimentally the ”running” of the bottom
MS mass. For this method, the uncertainties are, however, still too large that light quark mass
effects would be irrelevant.

2I call a heavy quark mass definition without an O(ΛQCD) ambiguity a short-distance mass.
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above. The masses of the up, down and strange quarks are indeed much smaller than
any of the three scales and one can expect that for them the massless approximation
is a very good one, as an expansion in their masses is justified. The mass of the
charm, however, can be about as large as 〈p〉 and larger than 〈E〉, and it is clearly
inappropriate to consider the massless approximation in the first place. I will show
that the effects of the non-zero charm quark mass in bottom mass determinations
can amount to up to several tens of MeV depending of the method and the bottom
short-distance mass definition that is employed.

Apart from the resulting quantitative effects in the determination of bottom quark
short-distance masses, light quark mass effects are also interesting conceptually be-
cause the massive quark loops provide an infrared cutoff of the momentum flow
through gluon lines. The behavior of light quark mass corrections, in general, can
therefore serve as a natural tool to monitor the degree of infrared (IR) sensitivity of
various bottom quark mass definition and their resulting ambiguity. This is in close
analogy to the well-known IR renormalon studies with a fictitious gluon mass, but
with the difference that the light quark mass corrections are real.

2 Light Quark Mass Corrections in the Coulomb Potential

In order to account for the light quark mass effects in the non-relativistic quark-
antiquark dynamics at NNLO we have to determine the light quark mass corrections
to the Coulomb potential Vc(r) = −CF αs

r
+. . . that occurs in the Schrödinger equation

(

− ∇
2

Mb

− ∇
4

4 M3
b

+
[

Vc(r) + . . .
]

− E
)

G(r, r′, E) = δ(3)(r − r
′) . (1)

Here Mb is (just as a matter of convenience in writing down Eq. (1)) the bottom pole
mass and E = Ecm−2Mb, Ecm being the center-of-mass energy. At NNLO, corrections
to the Coulomb potential have to be taken into account up to order α3

s. For massless
light quarks these two-loop corrections have been determined in Refs. [6]. At NNLO
there is also a potential of order α2

s/(Mbr
2) and another of order αs/(M2

b r). (The
latter contains e.g. the Darwin and the spin-orbit interactions.) For these potentials
light quark mass corrections do not have to be considered because they contribute
only at NNLO, whereas for light quark mass corrections we gain at least one more
power of αs. There are also no light quark mass corrections to the kinetic energy
terms.

The light quark mass corrections to the Coulomb potential arise for the first time
at order α2

s from the insertion of the light quark self energy into the gluon line (Fig. 1).
These corrections contribute at NLO in the non-relativistic power counting. For one
massive light quark flavor, and the other nl−1 light quark flavors being massless, the
correction reads (m̃q = eγE mq):

δV NLO

c,m
(r) = −CF α(nl)

s

r

(α(nl)
s

3 π

)

{

ln(m̃q r) +
5

6
+

∞
∫

1

dxf(x) e−2mqrx

}

,
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Figure 1: NLO contribution to the static potential coming from the insertion of a one-loop
vacuum polarization of a light quark with finite mass.

f(x) ≡ 1

x2

√
x2 − 1

(

1 +
1

2 x2

)

. (2)

The light quark mass corrections vanish for mqr → 0. This is related to the definition
of αs that is (here and for the rest of this presentation) chosen to include the evolution
originating from the massive light quark. In other words, the massive light quark is
not integrated out. I emphasize that the statements about the size and behavior of
the light quark mass corrections I will make later, are only true for this definition of
αs. It is straightforward to generalize Eq. (2) to arbitrary numbers of massive light
quark species and different definitions of αs. However, I emphasize that all previous
analyses, where the light quark masses were neglected have naturally adopted the
same scheme, so the results discussed here can be directly interpreted as additive
corrections.

In Eq. (2) the NLO light quark mass corrections to the Coulomb potential are
given in terms of a subtracted dispersion relation, where f is the absorptive part of
the vacuum polarization. This representation is advantageous for determining the
effects of the light quark masses to heavy-quark–antiquark bound state properties
in Rayleigh-Schrödinger perturbation theory due to the simplicity of the dependence
on r. The remaining dispersion integration can then be carried out numerically
(or if possible analytically) at the very end. In particular, for the determination of
multiple potential insertions at higher orders in time-independent perturbation theory
this method is probably the only feasible one. On the other hand, the dispersion
representation makes the choice of definition for αs manifest.

At NNLO the light quark mass corrections to the Coulomb potential arise from
dressing the one-loop diagram in Fig. (1) with additional gluon, ghost and light quark
lines. The resulting diagrams where calculated numerically by Melles [7]. Using again
the dispersion relation representation it is possible to rewrite Melles’ results in a form
that is simple to use for determining the light quark mass corrections. With the same
conventions as for the NLO result, and adopting the pole mass definition for mq, the
result reads [5]:

δV NNLO

c,m
(r) = −CF α(nl)

s

r

(α(nl)
s

3 π

)2
{ [

3
(

ln(m̃q r) +
5

6

) (

β0 ln(µ̃ r) +
a1

2

)

+ β0
π2

4
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−3

2

∞
∫

1

dx f(x) e−2mqrx

(

β0

(

ln
m2

q

µ2
+ g1(x, mq, r)

)

− a1

) ]

−
[

−
(

ln(m̃ r) +
5

6

)2

− π2

12
+

∞
∫

1

dx f(x) e−2mqrx

(

g2(x) + g1(x, mq, r) −
5

3

) ]

+
[

57

4

(

ln(m̃q r) +
161

228
+

13

19
ζ3 + c1

∞
∫

c2

dx

x
e−2mqrx + d1

∞
∫

d2

dx

x
e−2mqrx

) ] }

, (3)

where

g1(x, mq, r) = ln(4x2) − Ei(2 mq x r) − Ei(−2 mq x r) ,

g2(x) =
5

3
+

1

x2

(

1 +
1

2 x

√
x2 − 1 (1 + 2x2) ln

(x −
√

x2 − 1

x +
√

x2 − 1

)

)

. (4)

The first three lines in Eq. (3) are exact and involve corrections coming from one and
two insertions of the one-loop massive light quark vacuum polarization. The fourth
line involves all other corrections and is parametrized by four numerical constants.
Of these constants only two are independent, because the corrections have to vanish
for mq → 0. A useful parameterization of the constants reads [5]

c1 =
ln A

d2

ln c2
d2

, d1 =
ln c2

A

ln c2
d2

, A = exp
(

161

228
+

13

19
ζ3 − ln 2

)

, (5)

where for the constants c2 and d2 one can obtain the following numerical results from
the results of Refs. [7],

c2 = 0.470 ± 0.005 d2 = 1.120 ± 0.010 . (6)

3 1S Mass, n = 1 3S1 Binding Energy and Upsilon Expansion

Naively one might think, that – at least up to some non-perturbative effects –
the mass spectrum for bb mesons could be obtained from solving the Schrödinger
equation (1). However, the theoretical formalism from which it has been derived
is becoming unreliable for higher radial excitations (n >∼ 2), because the average

momentum 〈p〉 ∼ Mbαs

n
and the average energy 〈E〉 ∼ Mbα

2
s

n2 become comparable or
even smaller than ΛQCD.

For the ground state (n = 1), however, the formalism for the perturbative contri-
butions is likely to work, and one can determine e.g. the MS value of the bottom quark
mass from comparing the Υ(1S) mass with the result for the n = 1, 3S1 bb bound
state energy once an estimate for the non-perturbative corrections is made [8,9].

On the other hand, one can use the perturbation series for a n = 1, 3S1 bound
state mass obtained from Eq. (1) as a formal short-distance mass definition, because
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it is free of the strong linear infrared sensitivity that leads to an ambiguity of order
ΛQCD in the the pole mass definition [10,11]. In Ref. [12] the so called 1S mass has
been defined as one half of the perturbative n = 1, 3S1 bound state mass obtained
from Eq. (1). It has been demonstrated that the 1S bottom quark mass leads to a very
well convergent perturbative series for totally inclusive B decay rates [13]. Physically
this behavior can be understood from the fact that the 1S mass is adapted to the
situation where heavy quarks are very close to their mass shell, a situation that is
realized for heavy-heavy as well as for heavy-light bound state systems. Heavy quark
mass definitions that have this property are called ”threshold masses” [14]. There
are other heavy quark threshold mass definitions in the literature, such as the PS
mass [11] and the kinetic mass [15], which will, however, not be further discussed in
this talk.

The light quark mass corrections to the Coulomb potential presented in the previ-
ous section can be used to determine the light quark mass corrections in the bb bound
state energies. Here we will, as indicated earlier, only consider the binding energy of
the n = 1, 3S1 triplet ground state, but the calculation can be generalized without
difficulty to arbitrary quantum numbers. In Dirac notation the NNLO result for the
light quark mass corrections reads

2
[

M1S
b − Mb

]

m
=

[

Mbb,1 3S1
− 2Mb

]

m
= 〈 1S | δV NLO

c,m
| 1S 〉

+ 〈 1S | δV NNLO

c,m
| 1S 〉 +

∑

i6=1S

∫

〈 1S | δV NLO

c,m

| i 〉 〈 i |
E1S − Ei

δV NLO

c,m
| 1S 〉

+ 2
∑

i6=1S

∫

〈 1S | δV NLO

c,m

| i 〉 〈 i |
E1S − Ei

V NLO

c,massless
| 1S 〉 . (7)

The first term on the RHS of Eq. (7) is the NLO correction of order Mbα
3
s (in the

non-relativistic power counting) and the terms in the second and third line are the
NNLO corrections of order Mbα

4
s. The explicit result based on the dispersion relation

representation is given in Ref [5]. The NLO contribution has already been calculated
earlier in Ref. [16] and agrees with the result here. The corrections coming from gluons
and massless quarks (not displayed in Eq. (7), and called ”massless corrections” from
now on) have first been calculated in Ref. [8].

It is not possible to use Eq. (7) directly for any phenomenological analysis that
intends a precision better than order ΛQCD, because it is written in terms of the
bottom pole mass. Nevertheless, it is instructive to have a closer look at the behavior
of the ligh quark mass corrections in the bottom 1S-pole mass relation displayed in
Eq. (7). For Mb = 4.9 GeV, mc(mc) = 1.5 GeV for the MS charm quark mass and
α(4)

s (µ = 4.7 GeV) = 0.216 we obtain

M1S
b =

{

4.9 −
[

0.051
]

LO
−

[

0.074 + 0.0045m

]

NLO

−
[

0.099 + 0.0121m

]

NNLO

}

GeV , (8)
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where the charm mass corrections are indicated by the subscript m and the numbers
without subscript are from the massless corrections. We stress that because Mbαs ≈
1.5 GeV the charm mass correction shown in Eq. (8) cannot be obtained by an
expansion in the light quark mass. To obtain the numbers shown in Eq. (8) it is
essential that the complete expressions for the corrections given in Eqs. (2) and (3)
are taken into account. We see that neither the massless corrections nor the charm
mass corrections are converging. This is a consequence of the fact that I have used
the bottom pole mass as an input parameter and the practical reason why Eq. (7)
has only limited use for a phenomenological analysis. Another interesting point I
would like to mention is that the NNLO charm mass corrections arising from double
insertions of NLO potentials (the last two terms on the RHS of Eq. (7)) make for less
than 10% of the full NNLO charm mass corrections for µ between 1.5 and 5 GeV.
This property will be important for the analysis of the charm mass effects in the Υ
sum rules (Sec. 7).

It is interesting that the linear sensitivity to small momenta contained in the pole
mass definition is directly reflected in the analytic behavior of the light quark mass
corrections in Eq. (7) for mq → 0 (as ≡ α(nl)(µ)):

[

M1S
b − Mb

]

m
−→ −CF

(as

π

)2
{

π2

8
mq + . . .

}

NLO

−CF

(as

π

)3
{

π2

16
mq

[

β0

(

ln
µ2

m2
q

− 4 ln 2 +
14

3

)

− 4

3

(

59

15
+ 2 ln 2

)

+
76

3π

(

c1 c2 + d1 d2

) ]

+ . . .
}

NNLO
. (9)

Using the fact that the dispersion integrations in Eqs. (2) and (3) can be interpreted
as an integration over a gluon mass, one can show (see Ref. [17]) that the linear
light quark mass terms in Eq. (9) are directly related to the linear gluon mass terms
frequently used in renormalon analyses. A different way to look at this feature is
that the mass of the light quark provides an infrared cutoff for gluon lines due to
decoupling at very small momentum transfers. On the other hand, if we express the
1S mass in terms of another short-distance mass, such as the MS mass, these linear
light quark mass terms do not arise. I will come back to this point later in this talk.

I also would like to point out that the structure of the linear light quark mass
corrections in Eq. (9) themselves reveals their infrared origin. First of all, the linear
dependence on the light quark mass is non-analytic since it comes from the square root
of m2

q. On the other hand, the full vacuum polarization of the quark loop does only
depend on the square of the quark mass, so the linear mass terms cannot be obtained
from expanding in the light quark mass before doing the integration over the gluon
momentum. Consequently the linear mass terms arise from gluon momenta of the
order of the light quark mass. This feature is also reflected in the BLM scale in the
NNLO term in Eq. (9) which is of order mq rather than Mbαs. Another observation is
that the non-analyticity of the linear mass terms is associated with an enhancement
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factor π2. This is a common feature of contributions that originate from infrared
momenta. We will see later that this enhancement will help us a lot to determine the
three-loop light quark corrections to the MS-pole mass relation.

Another feature of expression (9) is that the linear light quark mass corrections
at NLO (NNLO) are multiplied by α2

s (α3
s), which appears to contradict the non-

relativistic power counting mentioned before. However, one has to take into account
that the light quark mass corrections are Mb times a function of the ratio mq/(Mbαs).
Thus there is no contradiction with the non-relativistic power counting.3 On the
other hand, one can also show that the linear light quark mass terms are in fact
completely independent of the quantum number of the bound state. This can be seen
from the fact that the terms displayed in Eq. (9) are equal to the linear light quark
mass terms contained in 1

2
[δV NLO

c,m
(r) + δV NNLO

c,m
(r)]. Because the linear terms are r-

independent they are just multiplied by the norm of the bound state wave function, i.e.
by 1. [The suppression of the NNLO charm mass corrections from double insertions
of NLO potentials mentioned above, can be understood from the dominance of the
linear and r-independent light quark mass terms in the potential: constant corrections
to potentials give zero in higher order time-independent perturbation theory.] This
means that the term ∝ α2

s (α3
s) in Eq. (9), can equally well be considered as two

(three) loop contributions. This interesting feature is giving us a direct hint how one
has to combine a usual loop expansion in powers of αs (such as the perturbative series
for the MS-pole mass relation) with a non-relativistic expansion that is in αs and the
velocity v (such as the 1S-pole mass relation). The guiding principle to combine the
two types of expansions is the cancellation of corrections that are linearly sensitive
to small momenta. The resulting prescription is called upsilon expansion [13] and
has been devised first for the massless corrections based on more general arguments.
The upsilon expansion states that we have to consider corrections of Nn−1LO in the
non-relativistic expansion (which contains itself a resummation of certain corrections
to all orders in αs) as of order αn

s in the usual expansion in the number of loops.

4 Heavy Quark MS–Pole Mass Relation

The pole mass parameter is quite convenient in intermediate steps of calculating
the dynamics of a non-relativistic QQ pair, because the Schrödinger equation takes
its standard QED-like form only in the pole mass scheme (see Eq. (1)). However, for
practical applications (were a precision better than ΛQCD is relevant) the pole mass
needs to be replaced by a short-distance mass parameter. The standard choice is the
MS mass definition.

The upsilon expansion tells us that, if we want to describe the non-relativistic
QQ dynamics at NNLO, the heavy quark MS-pole mass relation has to be known at
order α3

s. The massless two-loop corrections have been determined a long time ago in
Ref. [18] and the massless three-loop corrections can be found in Refs. [19]. In Ref. [18]

3At NNLO the energy scale Mbα
2
s

does not yet arise as a relevant dynamical scale.
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also the two-loop light quark mass corrections were determined fully analytically for
any value of the mass. For mq � Mb the light quark mass corrections at two loops
read

[

M b(M b) − Mb

]

m
−→ −CF

(as

π

)2
{

π2

8
mq − 3

4

m2
q

Mb

+ . . .
}

. (10)

It is remarkable that the linear two-loop term is equal to the NLO term displayed
in Eq. (9). This is, of course, not an accident, but related to the universality of the
linear light quark mass correction, already mentioned before. However, the reason for
this is more general: it has been shown in Refs. [10,11] that the total static energy of
a QQ pair, Estat = 2MQ + V (r) is free of any linear dependence on small momenta
to all orders of perturbation theory. Therefore, also the three-loop linear light quark
mass corrections in [M b(M b) − Mb] are given by the NNLO linear terms displayed
in Eq. (9). From this fact alone we would not gain much because we cannot get
any information on the size of the three-loop correction with higher powers of the
light quark mass from this argument. However, we have seen before that the non-
analytic linear light quark mass terms are enhanced by a factor π2 with respect to
the analytic terms with higher powers of the light quark mass. This feature is also
clearly visible in Eq. (10). Comparing the size of the full two-loop light quark mass
corrections to the size of the linear term we find that the difference is at most 15% for
m/Mb < 0.3. We therefore conclude (or conjecture) that the three-loop linear light
quark mass corrections dominate the yet uncalculated full three-loop light quark mass
corrections in a similar way and that the linear light quark mass terms provide a very
good approximation at the level of 10% to the full light quark mass corrections. Some
more numerical examinations based on BLM type three loop corrections have been
carried out in Ref. [5] and are compatible with the conjecture. It even seems likely
that the two- and three-loop differences between linear mass approximation and full
results have a different sign, so that the difference in the sum might be much below
10%.

To conclude the discussion of the light quark mass corrections to the MS–pole
mass relation let me also show some numerical values. For M b(M b) = 4.2 GeV,
mc(mc) = 1.5 GeV for the MS charm quark mass and α(4)

s (µ = 4.7 GeV) = 0.216 we
obtain

Mb =
{

4.2 +
[

0.385
]O(αs)

+
[

0.197 + 0.0117m

]O(α2
s)

+
[

0.142 + 0.0176m

]O(α3
s) }

GeV . (11)

The massless corrections are somewhat better behaved than for the 1S-pole mass
relation (but not what one would honestly call ”convergent”), but the charm mass
corrections (which are in the linear approximation) are again quite badly behaved.
If we evaluate the charm mass corrections for µ = mc(mc) = 1.5 GeV, which is the
natural scale for the linear mass terms, we obtain 36 MeV for the order α2

s corrections
and 32 MeV for the order α3

s terms.
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5 Heavy Quark MS–1S Mass Relation

The perturbative relation between the bottom 1S and the MS mass can be used
for two purposes. First, one can extract the bottom MS mass from the experimental
number for the mass of the Υ(1S) (with a model-dependence from the estimate of
non-perturbative corrections). Second, one can determine the bottom MS mass from
determinations of the 1S mass from methods that are less sensitive to non-perturbative
effects, such as the Υ sum rules.

Using the results of the two previous sections and combining them using the
upsilon expansion to eliminate the pole mass parameter (which is absolutely crucial!)
it is straightforward to derive this relation to order α3

s (or NNLO in the non-relativistic
expansion). The full analytic expression for the resulting perturbative series can be
found in Ref. [5].

To illustrate the behavior of the series let me show here again some numerical
results. For M1S

b = 4.7 GeV, mc(mc) = 1.5 GeV and α(4)
s (µ = 4.7 GeV) = 0.216 we

obtain

M b(M b) =
{

4.7 −
[

0.382
]O(αs),LO −

[

0.098 + 0.0072m

]O(α2
s),NLO

−
[

0.030 + 0.0049m

]O(α3
s),NNLO }

GeV . (12)

Comparing this result to Eqs. (8) and (11) we see that now the massless corrections
show a quite good convergence and the charm mass corrections a fairly good one.
This behavior reflects the fact that the MS and the 1S mass definition both are short-
distance masses, i.e. they do not have an ambiguity of order ΛQCD such as the pole
mass. It is therefore possible to reliably extract e.g. the bottom MS mass from a
given value for the 1S mass with a precision better than ΛQCD.

The reason why the convergence of the charm mass corrections in our numerical
example is not much better is the fact that the natural choice of the renormalization
scale for the charm mass corrections is of the order of the charm mass and not the
bottom mass, as used in Eq. (12). For µ = 1.5 GeV we find that the order α2

s (α3
s)

charm mass corrections amount to −16 MeV (−1 MeV). However, for µ = 1.5 GeV we
also find (−570, 33, 55) MeV for the order (αs, α

2
s, α

3
s) massless corrections, because

for them the characteristic scale is larger than the charm mass. Because the massless
corrections are the dominant ones it is, of course, more suitable to choose the larger
scale as we did in Eq. (12). Thus we find that the charm mass corrections lead to a
shift of about −15 MeV in the value of M b(M b) for a given value for M1S

b . We note
that the size of the charm mass corrections is larger than one would estimate from
an effect of order (αs

π
)2 m2

Mb
. The size arises from the incomplete cancellation of the

linear light quark mass term in the bottom MS-pole mass relation, since we are not
allowed to expand in the charm mass in the bottom 1S-pole mass relation. On the
other hand, for the up, down and strange quarks we are allowed to use the light quark
mass expansion (because their masses are smaller than 〈p〉 ∼ Mbαs and 〈E〉 ∼ Mbα

2
s)

and the linear mass terms are canceled, leaving a tiny correction that is quadratic in
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the light quark masses. For mq(mq) = 0.1 GeV the light quark mass corrections are
well below the 1 MeV level. Thus the mass effects from the quarks lighter than the
charm can be neglected.

The expression for the order α3
s (NNLO) relation between the bottom 1S and MS

is quite complicated, but it turns out that for mq(mq) > 0.4 GeV and µ >∼ 2.5 GeV
the dependence of the bottom MS-1S mass relation at order α3

s on all parameters
is approximately linear. This allows for the derivation of a handy approximation
formula [5], which is applicable to all cases of interest and allows for a quick determi-
nation of the charm quark mass effects:

M b(Mb) =
[

4.169 GeV − 0.01
(

mc(mc) − 1.4 GeV
)

+ 0.925
(

M1S
b − 4.69 GeV

)

− 9.1
(

α(5)
s (MZ) − 0.118

)

GeV + 0.0057
(

µ − 4.69
)

GeV
]

. (13)

6 Bottom MS Mass from M(Υ(1S))

We can apply Eq. (13) to extract the bottom MS mass from the mass of the
Υ(1S) meson, if we assume that 〈p〉 and 〈E〉 both are larger than ΛQCD for the
1S state. Because for higher radial excitations Υ(2S), . . . this assumption is more
difficult to justify, we do not attempt a similar analyses for them. Recalling that the
1S mass just incorporates the perturbative effects, we need an estimate of the size
of non-perturbative effects in the Υ(1S) bound state. Using the gluon condensate
contribution obtained by Voloshin and Leutwyler [20] we get

[

M(Υ(1S))
]

non-pert ≈ 1872

1275

Mb π

(Mb CF αs)4
〈αs G

2 〉 . (14)

Using the standard literature range 〈αs G
2 〉 = 0.05±0.03 GeV4 the non-perturbative

correction can range from anywhere between 10 and 200 MeV due to the strong
dependence on the renormalization scale in αs. Taking this estimate and M(Υ(1S)) =
9460 MeV we arrive at

M 1S

b
=

1

2

{

M(Υ(1S)) −
[

M(Υ(1S))
]

non-pert
}

= 4.68 ± 0.05 GeV . (15)

From Eq. (13) we then obtain

M b(M b) = 4.16 ± 0.06 GeV (16)

for the bottom MS mass for mc(mc) around 1.3 GeV and adding the uncertainty in
αs(MZ) quadratically. The charm mass corrections amount to about −15 MeV and
are smaller than the uncertainty.
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7 Υ Sum Rules

A method that is in principle much less sensitive to non-perturbative effects is to
extract the bottom quark mass from moments of the bb total cross section in e+e−

annihilation:

Pn =

∞
∫

smin

ds

sn+1
R(s) . (17)

Here R is the inclusive bb cross section normalized to the muon pair cross section
and s the square of the c.m. energy. The idea of the Υ sum rules is to determine
the bottom quark mass from comparing theoretical calculations of the moments Pn

with moments obtained from experimental data [21]. Non-perturbative effects can,
in contrast to calculations of the bb spectrum, be suppressed by hand by choosing
the parameter n small enough such that the size of the effective integration range in
the c.m. energy in (17) is much larger than ΛQCD [22]. For n <∼ 15 − 20 the gluon
condensate corrections to the theoretical moments turn out to be smaller than a
percent and can be neglected [21]. On the other hand, one would like to suppress the
influence of the quite badly known bb continuum in the experimental moments. This
can be achieved by choosing n large, so that non-relativistic dynamics dominates the
(theoretical and experimental) moments. In this case the only experimental input
needed for the determination of the experimental moments are the masses and the
electronic partial widths of the Υ mesons. The continuum can be approximated
by a crude model. Due to the large size of the bottom quark mass one can easily
find a window, 4 <∼ n <∼ 15, for which both requirements can be met. One can
show that the average relative velocity of bb pairs that dominate the moments is of
order veff = 1/

√
n. So, by restricting n to the values just mentioned we find that

〈p〉 ∼ Mbveff and 〈E〉 ∼ Mbv
2
eff form a hierarchy and are larger than ΛQCD. Thus the

Schrödinger equation (1) can be safely used to describe the dynamics encoded in the
moments.

For the case of massless light quarks a number of NLO [21,23] and NNLO [3,24]
analyses have been carried out. For the restricted range of n the theoretical moments
are directly related to the Green function G(0, 0, E) of the Schrödinger equation (1).
It is also necessary to include, for the NNLO moments, a two-loop renormalization
of an external current that describes the annihilation of a bb pair into a photon. One
can either calculate the bound state resonances and the continuum explicitly and
carry out the energy integration in Eq. (17) on the real energy axis, or one uses the
analyticity properties of the Green function and integrates instead in the negative
complex energy plane. The calculations involved in these computations are quite
extensive and shall not be describe here in more detail.

The light quark mass corrections to the moments have been determined in Ref. [5].
The NLO and NNLO corrections to the Green function G(0, 0, E) are determined
with time-independent perturbation theory in analogy to Eq. (7). In Ref. [5] only the
light quark mass corrections at NLO were fully determined, whereas at NNLO only
the single insertion contribution (corresponding to the second term on the RHS of
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Eq. (7)) was calculated. The NNLO double insertion contributions (last two terms on
the RHS of Eq. (7)) were neglected based on the assumption that the suppression of
the double insertion corrections (last two terms on the RHS of Eq. (7)) is as effective
as for the calculation of the 1S mass.

The light quark mass corrections to the two-loop renormalization of the current
were neglected because they are expected to be of order (αs/π)2(m/Mb)

2, which is at
the permille level even for charm quarks. There are no linear light quark mass correc-
tions to the current renormalization because it only contains effects from momenta of
order Mb. This means that non-analytic, and in particular π2-enhanced linear light
quark mass corrections do not exist.

In Ref. [5] a detailed analysis of the light quark mass correction in the 1S mass
scheme has been carried out. The mass effects from up, down and strange quarks
are negligible. For typical choices for the renormalization scales, αs(MZ) and the 1S
mass we find that the NNLO charm mass corrections are around -1% for n = 4 and
around -5% for n = 10, for mc(mc) ≈ 1.5 GeV. Thus the charm mass corrections in
the bottom 1S mass are negative. From dimensional analysis we see that the moments
Pn are proportional to (M1S

b )−2n, so we can estimate that the charm mass corrections
amount to about -15 MeV. (In the pole mass scheme the corrections are considerably
larger due to the large non-analytic charm mass corrections that we have already
discussed in the bottom 1S-pole mass relation. By using the bottom 1S mass in
the moments these large corrections are canceled. The same is true for the massless
corrections, see e.g. Ref. [25] for a comparison of results in different mass schemes.)

In Ref. [5] I have carried out a more thorough NLO and NNLO analysis based
on a χ2-procedure, where several (theoretical and experimental) moments have been
fitted simultaneously. This fitting procedure puts more statistical weight on the
relative than on the absolute size of the moments. Interestingly, the relative size
of the theoretical moments turns out to have smaller perturbative corrections than
their absolute size. This is an issue that is well known from the total cross section
for tt production close to threshold in e+e− annihilation, where the line-shape for
the NNLO prediction has much smaller perturbative corrections than the height (see
Ref. [14] for a review). Recently, using renormalization group improved perturbation
theory in the framework of ”vNRQCD” [26] the height of the line-shape has been
considerably stabilized by summation of logarithms of the top velocity at NNLL [27].
I will be quite interesting to see whether a summation of these logarithms can improve
the behavior of the absolute size of the moments as well.

The result for the allowed values for the bottom 1S mass from the χ2-procedure
based on the NNLO theoretical moments is displayed in Fig. 2 for mc(mc) = 0.0 and
1.3 GeV. The dots represent points of minimal χ2 for a large number of random choices
of renormalization scales and sets of n’s for given values of α(5)

s (MZ). Experimental
errors at 95% CL are displayed as vertical lines. (See Ref. [5] for more details.)
The dependence of the 1S mass on the input value for α(5)

s (MZ) turns out to be
quite weak, particularly if the charm mass corrections are taken into account. For
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Figure 2: Results for the allowed range of M
1S
b for given values of α

(5)
s (MZ) at NNLO for

mc(mc) = 0.0 and 1.3 GeV. It is illustrated by the vertical and horizontal lines how the

allowed range for M
1S
b is obtained, if 0.115 ≤ α

(5)
s (MZ) ≤ 0.121 is taken as an input.

mc(mc) = 1.4 ± 0.3 GeV we obtain

M1S
b = 4.69 ± 0.03 GeV (18)

for the bottom 1S mass. The charm mass corrections shift the 1S mass by about
-20 MeV, which is compatible with the crude estimate mentioned above. It is quite
interesting that this result is compatible with the determination of the 1S mass from
M(Υ(1S)) (see Eq. (15)). The difference to Eq. (15) is that that the central value and
the error from the sum rule determination are completely independent of the estimate
for the size of the non-perturbative gluon condensate contribution. In this respect
the result in Eq. (18) should be considered as more solid than the one in Eq. (15).

Taking the approximation formula (13) we then arrive at

M b(M b) = 4.17 ± 0.05 GeV , (19)

for the bottom MS mass, where we have added quadratically the uncertainties from
M1S

b (30 MeV), α(5)
s (MZ) = 0.118 ± 0.003 (30 MeV), µ = 4.7 ± 3GeV (15 MeV) and

mc(mc) = 1.4± 0.3 GeV (5 MeV). We note that the charm mass corrections in the Υ
sum rules and those in the MS-1S mass relation are additive and lead to an overall
shift of about -30 MeV in M b(M b) compared to an analysis where the charm mass is
neglected altogether. Thus the charm mass effects are are relevant for the sum rule
method, in particular if it should turn out that the perturbative uncertainties in the
moments can be decreased in the future.

8 Conclusions

In this talk I have reviewed recent results for light quark mass effects in perturba-
tive bottom quark mass determinations from Υ mesons [4,5]. We find that the effects
of the charm mass are non-negligible in view of the present theoretical uncertainties.
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Light quark mass corrections were determined for the 1S-pole mass relation at NNLO,
for the MS-pole mass relation at order α3

s and for the Υ sum rules at NNLO. In the
determination of the bottom MS mass, M b(M b), from the mass of the Υ(1S) meson
the charm mass corrections shift the value of M b(M b) by about -15 MeV. In the
determination of the bottom 1S mass, M1S

b , from the Υ sum rules the charm mass
corrections shift the value of M1S

b by about -20 MeV. The overall shift of M b(M b) ob-
tained from the Υ sum rule analysis is about -30 MeV. The sign and size of the charm
mass corrections shows agreement with a recent unquenched lattice determination of
M b(M b) [28].

On the conceptual side light quark mass corrections are interesting because they
provide a natural tool to investigate the sensitivity the heavy quark mass definitions
to infrared momenta.
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