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Abstract

We present an analysis of shielding of electro-magnetic fields excited by
beams of charged particles surrounded by thin conducting layers or metal
stripes inside an external structure of finite length. The ability of shielding
by a layer thinner than the skin depth is explained and expressions for the
impedance are derived. A previous result[1] showing preferential penetra-
tion through the shielding layer at the resonant frequencies of the surround-
ing structure is verified, and extended to include finite resistivity of the outer
structure. Integration over the spectrum of the beam bunch shows that pen-
etration is (nearly) independent of the quality factors of the resonances. The
transition of these results to those for a geometry of infinite length requires
numerical evaluation.

1 Introduction

The shielding of rf fields emanating from coaxial cables was already treated
in the literature more than 50 years ago[2]. A large number of publica-
tions followed afterwards, even a whole journal issue was devoted to this
subject[3]. Already then it was known that conducting layers of a thickness
less than the skin depth could reduce the outside field strength sufficiently
to avoid “cross talk” between adjacent cables. Also the wall penetration
of rf fields excited by charged particle beams has been analyzed in a num-
ber of publications[4, 5, 6]. In most of these papers rotationally symmetric
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structures or concentric wire cages of infinite extent had been assumed for
simplicity, as will also be done here except for the wire cage.

The importance of thénite lengthof structures surrounding a thin con-
ducting shield has been recognized when investigating the field penetration
into the LHC kickers[7]. An analysis of such a geometry has recently been
made[1] and showed that rf fields will penetrate through a thin shielding
layer preferentially at the resonant frequencies of the cavity formed by the
surrounding structure. However, that analysis did not include a finite resis-
tivity of the structure material which will be treated here.

In addition, we will discuss also the effects of shielding by conducting
stripes or wire cages, which are often preferred to a continuous metal layer in
order to reduce eddy current losses in rapid cycling synchrotrons or pulsed
devices like kickers. The results of a number of bench measurements on
such structures have been published[7, 8] as well as recent measurements
with beam[9] .

2 Shielding by a thin conducting cylinder

For the calculation of the longitudinal coupling impedance we take as source
field a narrow ring of charg® with radiusa, traveling with velocityy = ¢
along thez-axis inside a circular cylindrical screen of inside radiuand
thicknessr, surrounded by a concentric vacuum chamber of radius

In the frequency domain with = w /v, this corresponds to a charge and
current density given by

(s) _ Q - —jkz
Pz = go—=d(r—a)e
(s) — (s) — _Q _ —jkz
JE(ryz) = vp'¥(r, 2) 27m<5(7“ a)e , (2.1)

The (Fourier transforms of the) electro-magnetic (EM) field components
generated by this source in free space outside the beam,a, are then
given by

EW(r,z) = jwuo 6227{%(2”’;) Ko(vr)e %,
(s) _ QIO(VG) —jkz
ZoHy ' (r,z) = wuoi%rﬁ'y Ki(vr)e ",
Iy(va ks

E7(,S) (T, Z) = —Wwug %;227) Kl(yr)e gk s (22)
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wherey is the free space permeabilityy = w/c = gk, v = (1 — 52)‘%

is the relativistic energy factor; = &/~ the radial propagation constant in
vacuum, and,,, K,, are modified Bessel functions of the first and second
kind, ordern, regular at- = 0 and atr = oo, respectively.

The fields given by Egs. (2.2) can be thought of as a wave moving in the
outward radial direction. As discussed in the preceding section, we investi-
gate a thin conducting cylinder, extending fram= b tor = b + 7, which
is used to isolate the beam and the regian b + 7 from one another. We
shall assume that < b andd < b, whered = /2/(wpuo) is theskin depth
in a metal with conductivityr and permeability:. At the moment, we make
no assumptions about the relative size-@ndJ.

Due to the presence of the conducting layer, the EM field components
in Egs. (2.2) must be revised to include the reflected wave. In the region
a < r < b, the components required for matching are

E.(r,z) = A[Ko(vr) + ady(vr))e 7%=

ZoHy(r,z) = —jBvA[Ki(vr) — aly(vr)le 7" (2.3)

whereq is a not yet determined reflection coefficient, and

A= jutaZr) (2.4)
The radially outgoing wave far > (b + 7) is
E,(r,z) = AT Ky(vr)e 7k,
ZoHy(r,z) = —jﬁ'yATKl(yr)efij, (2.5)

where7 is atransmission coefficientrorb < r < b + 7, inside the metal
with a conductivitys > weq, the radial propagation constant becomes ap-
proximatelyv. = (1 + j)/6 and hencev.b| > 1. With the large argument
approximations for modified Bessel functions aigl = (o/v2)(0E, /Or)

we get

Burz) = A[BelH0D/ 4 co-(+0-b/3] ok

o0 A

[BeH)=b/0 _ o= (UH=b/3) o=ik= - (2.6)

whenr < b. The coefficientsy, 7 and the amplitude factorB, C can be
determined by requiring continuity df, and Hy atr = b andr = b + 7.
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After considerable algebra the transmission coefficient is found to be

1 1
= ~ 2.7
cosh [(1+7)7/8] + Dsinh [(1 +j)7/6] 1+ (1+j)D1/d 2.7)
where the approximation is valid far < §. With the abbreviation
TR o B Sl
§=—(+j) g5 = 5 F*9ho (28)
the parameteD can be written
LK+ I K
p- thEi+1Io 0/ (2.9)

L Ko+ IpK;q

wherel,, = I,,(vb) while K,, = K,,(v(b + 7)). Becauser < b, all Bessel
functions may be evaluated ab. Then we can use the Wronskian[10]
Ko(z)I1(x) + Iy(x) K1 (z) = 1/ to simplify the denominator of Eq. (2.9):

In(vb
D = —vb[¢[, Ky + IoKo /€] ~ —vb E - n(g )} . (2.10)
Now we approximatg for kb < -, i.e. for not too high frequencies or
for ultra-relativistic beam energies, Eq. (2.7) becomes
T = ! (2.11)
o PR 2 br kb '
9 322 §2 ~y

The conducting shell shields the beam from the region outside when the
transmission coefficient is small] | < 1. We thus get thehielding condi-
tion

1
T 25 4 2 4 2 2
5> 5| (k)" + <ﬁ—7) In (k:b/y)] , (2.12)
Forké < 2,/In(vb) /3%, this condition simplifies to
T JCRORI]
- —_ 2.1
5~ 2ln(kbj7) b’ (213)

On the other hand;o > 2/In(vb)/~ for large~y, and the condition becomes

7 > 2/(k3b), independent of the skin depth. Depending on the values of
B~ and kb, shielding can then be achieved with a layer whose thickness is
smaller than the skin depth. The ability of a conducting layer thin compared
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to the skin depth to shield electro-magnetic fields has been known for many
years[2, 3]. This astonishing feature can be explained by the faqidinizf
the field is reflected by the conducting layer, while the transmitted part
undergoes a succession of reflections from both interfaces at= b and
r = b+ 7. Whenr — 0, the accumulated result is complete transmission.
However, for finiter, the successive reflections are shifted in phase and
damped so as to lead to the result in Eq. (2.11).

A major simplification of the analysis can be made whes §. Then
the tangential electric field in the conducting layer can be considered to be
constant inr, implying a current density £, within the conductar The
discontinuity in the tangential magnetic field through the layer is then given
by

0Hy =10F,. (2.14)

In this limit, which is used in the rest of this paper, it is not necessary to
consider the variation aF., or the current density within the conductor.

3 Space charge and resistive wall impedances

We now consider an outer beam pipe of radiusonductivityo,, and skin
depths; = (2/wpoy)/?, shielded by a cylindrical layer at = b of con-
ductivity o, skin depthd, = (2/wuo,)'/?, and thickness < § atr = b

(see Fig.1). The source fields in Egs. (2.2) are modified as in Egs. (2.3) to
include both the effects of the conducting layer and the beam pipe. With the
still undetermined reflection coefficientthey can be written:

E.(r,z) = A[Ko(ur)—l—ozfo(ur)]efjkz,
ZoHy(r,z) = —jByA[K:i(vr) —aly(vr))e 7% (3.1)

for r < b. With the undetermined transmission coefficiprane can write
the fields forr > b:

E.(r,z) = pA[Ko(vr) + aglo(vr)] e Ikz
ZoHy(r,z) = —jBypA[Ki(vr) — agli(vr)]e 7% (3.2)

The second reflection coefficient; at the outer layer = d can be ob-
tained directly by applying the “Leontovich boundary conditiof, =

—+/jwu/o Hy there. This yields
_Ko(l/d) + ’I”Kl(l/d) . _Ko(Vd)
Io(vd) —rIi(vd) — Io(vd)

— &, (3.3)

agq =
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wherer = (1 — j)3?~vkd/2. For|r| < 1, one gets approximately

1—j 9% 4
=— 34
b= 3 I2(vd) d (34)
We requireE, (r, z) to be continuous at = b, which yields one condition
for o andp

Ko(vh) + alo(vh) = plKo(vh) + aglo(vh). (35)

The change iy atr = b must satisfy Eq. (2.14), leading to the second
condition fora andp:

plagli(vb) — K1(vb)] — [al1(vb) — K1(vb)] = l/—nb [Ko(vb) + ady(vd)],
(3.6)
where
_2j7h
U 52’7255'
The longitudinal impedance is usually defined as the integral over (the
Fourier transform of) the axial electric field component along theax4).
When it is obtained by integrating at the annular radius a this will only
suppress the constant term of unity in the g-fagter 1 + 21n(b/a). This
term actually reduces to 1/2 if one correctly averages over the beam cross
section. Ignoring these small differences, the impedance can be written

(3.7)

Z)(w) = —é /_0:0 dzE.(a, z)e’™. (3.8)

Solving Egs. (3.5) and (3.6) far andp and assumingyd < 5~ (low
frequency and/or high), we thus find for the impedance divided by the
azimuthal mode number = w/wy

4w o § [, In(d/b) — &4
nZo B [l 1= ylm(d/b) — &) (3.9)

The impedance| /n, computed without low-frequency approximations,
is shown in Fig.2. In the absence of a shielding layer 0) the impedance
in Eq. (3.9) reduces to the standard form of space charge plus resistive wall
impedance. The dependence on the beam pipe radius and conductivity be-
comes negligible when

|| In(d/b) — &al > 1, (3.10)



in which limit Z) (w) = ZP°(w) + Z}* (w), with

ZSC(w) . b
Il J
=—— _In-= 3.11
nZy B2 e ( )
and
82nZ, Z 27 R
ZiM (w) = _Bnth _ _B%h = Reshield- (3.12)
27b wopbtoy  2mbroy

The rhs of Eg. (3.12) is simply the resistance of the conducting shield in the

axial direction. We shall later see that the re$@f™ (w) = Rypicia) is also

true for a shield of finite length.

Ford, < d/3%~? or|¢4| < In(d/b), the shielding condition Eq. (3.10)

can be written -
Ty B %
% ~ 2In(d/b) b

corresponding to the shielding of the space charge fields. For high energy

machines, however, usually; >> d/3%~? or |¢;] > In(d/b), the condition

becomes

(3.13)

To% 4 (3.14)

corresponding to the shielding of the resistive wall impedance.

4  Shielding by a wire cage

In the previous section, we considered the shielding capability of a thin con-
ducting layer at- = b. However, in order to reduce eddy currents due to
a rapidly changing magnetic field, one would prefer to shield witfthin
wires of conductivityo, radiusr,,, located at*, (r, = b, 6, = 27p/N),
wherep goes from 0 taV — 1 (see Fig.3).

In the absence of any shielding, the EM fields inside a conducting vac-
uum chamber at = d can be written, fon < r < d:

E,(r,z) = AGo(m“)e_jkz
ZoHy(r,z) = jByAGH(vr)e (4.1)
where
Go(vr) = Ko(vr) + aglo(vr),
Gy(vr) = —Ki(vr) + agli(vr), 4.2)
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with ag chosen to satisfy the boundary condition at the beam pipe radius
r =d, see Eq. (3.3).
We now add the fields which are due to a curréptin each of theV
wires. For this we replac€((vr) in Eq. (4.1) by
N-1
Go(vr)+1 Z Ko (v — 1)), (4.3)
p=0
wherel = QIy(va) is a dimensionless current. The electric field corre-
sponding to the term proportional foin Eq. (4.2) does not yet satisfy the
required boundary condition at= d. In order to do this, we use the addition
theorem[12]

S Ly(vr)Kn(vb) cosn(6 — 6,) forr < b
Ko (W[ =rpl) =4 "™ (4.4)
>, Ky(vr)I,(vb)cosn(d —0,) forr >b

n=—oo

We may replacds,, (vr) in Eq. (4.4) byG,,(vr), where

Gn(vr) = Kp(vr) + agnIn(vr). (4.5)
Herea, in Eq. (3.3) is generalized for the n-th harmonic to
 Ky(vd)
Adn = — In(l/d) - gdna (46)
with R
. i d
=(1- - 4.7

We furthermore require that the wire current be consistent with the elec-
tric field in each wire, leading to

I, = 20 E,(b, 2,0,). (4.8)

After considerable algebra, assumikg < (v as for the cylindrical shell,
we obtain the impedance in the form analogous to that of Eq. (3.9):
Z j — —
1w j { b (§a —Ind/b)(1 — A) } C49)

n
nZy Byl a  nu(lnd/b—E&)—(1—A)
Here
jNTs,
77w = 9
527252
) oON
Jre b b
= 1——==11. 4.1
8 pegt lN"”w < d2N>] (#19
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Forr,, < [(vd4 we can neglech in Eq. (4.9), providedV > 1 andd —b >
b/N, i.e. when the radial extent beyond the wires is larger than the spacing
between wires. In that case the condition is fulfilled as the harmonics due to
the wire periodicity decay rapidly withr — b|. Furthermore

o .] WNTZ; ] Awires

e v S 411
Mo = 324262 7 324252 (4.11)

and ) .
J27b j Ashen

n= BA25% 7 f2252
allowing us to reach the important conclusion that
only the net area of conductors counts for the penetration of fields
in a regular array of wires.
The same result is valid for narrow conducting stripes on a thin ceramic
cylinder, which is often the most practical implementation of shielding.

(4.12)

5 Cavity of finite length

In analogy to the analysis without a shield[13], we write an integral equation
for the longitudinal electric field, in a cavity of lengthy and of outer radius
d, coaxial with an infinite beam pipe of radibgsee Fig.4):

Ko(l/b) —ik
E = A |K, — I Jkz
L(r, 2) [ o(vr) To(vb) o(vr)|e
< Jo(kr)
192 A < A
b e AQ R r<h 6
where the propagation constant is

k2 =k — ¢ (5.2)

The term proportional tdy(vr) is included so that the first term in brackets
vanishes at = b. Then the term including!(q) has a non-vanishing value
only for0 < z < g, whereE, (b, z) = f(z) is different from zero.

The integration contour in theplane is taken above (below) the poles where
Jo(kb) = 0 on the positive (negative) reataxis to ensure outgoing waves
(generated by the cavity) in the beam pipe. A Fourier transform of Eq. (5.1)
atr = bleads to

Aq) = % /Og d2 f (29 (5.3)



Use of Maxwell's equations then leads to

IPVA Jkob /g I, /
ZoH, — jke _ J702 K,(z — 4

where the pipe kernek, () can be written as a sum over the zeros of
JO(ps):

97 & ibslCl/b
— —. (5.5)

Here
bo= (0 —92) = =i (- k) " = =i (56)

We now write the magnetic field in the cavity regiérn+ 7 < r < d
in terms of f(z), which is the electric field at = b, in the presence of a
conducting layer at = b of thicknessr <« . Thus

ZoHo(b+7,2) = ]ko / ' (2 ) (5.7)

where the cavity kernek’.(z, 2’) is given by
K.(z,2") —422 k2 , (5.8)

wherek, = wy/Bc andhy(z) is the normalized magnetic field at= b + 7
for the mode/ in the annular cavity occupying+ 7 <r <d,0< z < g.

We now require that the discontinuity iy across the thin shield satisfy
Eqg. (2.14). This leads to the integral equation

AT

/0 TP K (= — ) + Ku(z, ) = e 9% — SIE() (5.9)
where 07
_ J 0

Once Eq. (5.9) is solved far(z), we obtain the cavity impedance
Zi™() _
Zy

J gd F(z)el** 5.11

when we confine our attention to low frequencies whgre< 5v/b.
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The cavity kernels can be evaluated approximately for the kase 5
andk(d — b) < (. Then they are independent efand 2/, and can be
written[14]

. kob/m b/mg
27 2mj 1 2 1
Ki+K, 2% ————+— o —. 5.12
TR = g n) T p Szzl b b Szkb/ﬂﬁs (5.12)

One can then solve Eqg. (5.9) to obtain the cawitiynittance

. kob/m b/mg .
2mkob —J 1 J 2T
cav () o + Y =+ Y =+ (5.13)
== Rod=b) " = b = B kgs?

The second and third terms in the bracket come from the pipe kernel. They
are independent of the cavity parameters, except for a weak logarithmic de-
pendence olg. The condition for effective shielding is non-dependence on
d — b which becomes

T 1)

57 2d—0b)
At low frequencies, the impedance (or admittance) is then dominated by the
resistance of the shield of lengghnamely,

(5.14)

Z™(w) = Rehield = (5.15)

omobr’

If one chooses to shield with wires of finite length, one can accomplish
this using N wires whose total cross sectional area is equal to the cross
sectional area of a continuous layer

N?TT?U = 27br, (5.16)

as shown in Section 3. In this cag€,must be large and the spacing of the
wires must be small compareddo- b to achieve effective shielding.

It has been pointed out[15] that other cavity modes will enter into the
cavity kernel at higher frequencies, requiring additional contributions to the
first term in brackets of Eq. (5.13), which will be proportional (to? —
w2,)~! for a cavity mode with frequenay,,, /2x. Therefore the conducting
layer cannot shield the cavity wheris close tav,,. However, for a realistic
beam bunch, there is a spread of frequencies. Then only the average value
of [w? — w2, (14 1/Q)]~! is important, wher&) is the quality factor of the
resonance. Fof) > 1, the integral becomes independent of Q. Then we
obtain the shielding condition

T go

T 90 5.17
d (d - b)Lbunch ( )
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whereLyunen i the length of the beam bunch.

As g increases, Eq. (5.17) places an ever increasing lower boundion
in disagreement with our prediction for infinitein Egs. (3.13) and (3.14).
However, in that case we would need to solve the integral equation, EQ.
(5.9), for F(z) wheng is large. We have not been able to do so analytically,
but clearly the solution in Eq. (5.13), which applies to the case §/k, is
no longer expected to be valid.

We also expect Eq. (5.17) to be valid for screeningNbyvires. In this
case we write it in the form

21bgé?

Awir — 5.18
es > (d - b)Lbunch ( )

where we assume th&f > 1 and that the spacing between wires is small
compared withi — b. In addition these general principles should also apply
to the screening of holes by conducting wires.

6 Shielding of transverse fields

It is possible to repeat the foregoing analysis in order to explore shielding
of transverse fields. The general discussion of reflection and transmission
coefficients in Section 2 also applies to the transverse case, and should lead
to the same condition for effective shielding as in Eq. (2.12). In fact a
detailed analysis of shielding the transverse space charge impedance for the
infinite, perfectly conducting beam pipe confirms this. Unfortunately, the
analysis is made more complicated by the need to consider both TE and TM
modes in the beam pipe. We plan to present a more detailed discussion of
shielding the transverse impedance by a thin conducting layer or a wire cage
of finite conductivity in a future paper.

7 Conclusions

Shielding of electro-magnetic fields by thin conducting layers or thin wires
inside a vacuum chamber of finite resistivity have been analyzed for both
cases of infinite or finite lengths of the layer. Approximate conditions for
effective shielding as well as expressions for the longitudinal impedance
were derived. It was found that the analysis could be simplified considerably
by assuming that the axial electric field is constant across the thin conducting
layer, while the magnetic field changes by an amount equal to the current
flowing through it.
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For shields of finite length, the fields are given by an integral equation,
and an approximate expression for the admittance is given which is consid-
erably simpler than the corresponding impedance. However, the transition
from the finite to the infinite case could not be done analytically and re-
quires numerical evaluation of the integral equation under conditions when
the simplifying assumptions to not apply.

The shielding effect of a layer much thinner than the skin depth is often
puzzling; it can be explained by multiple reflections at both surfaces of the
layer, taking into account damping and phase shifting of the radial waves
inside of it. For the case of conducting wires or strips, it has been found that
only the total area is important for shielding, as long as the distance from
the shield to the outer wall is large compared to the distance between wires.
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Figure 1. Geometry of a screen in a circular cylindrical vacuum chamber
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Figure 2: Longitudinal Impedance calculated with Eq.(3.9).
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Figure 3: Geometry of wire cage
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Figure 4. Cavity of finite length
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