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Analysis of Shielding Charged Particle Beams
by thin Conductors

Robert Gluckstern, Univ. Maryland, and Bruno Zotter, CERN∗

February 10, 2001

Abstract

We present an analysis of shielding of electro-magnetic fields excited by
beams of charged particles surrounded by thin conducting layers or metal
stripes inside an external structure of finite length. The ability of shielding
by a layer thinner than the skin depth is explained and expressions for the
impedance are derived. A previous result[1] showing preferential penetra-
tion through the shielding layer at the resonant frequencies of the surround-
ing structure is verified, and extended to include finite resistivity of the outer
structure. Integration over the spectrum of the beam bunch shows that pen-
etration is (nearly) independent of the quality factors of the resonances. The
transition of these results to those for a geometry of infinite length requires
numerical evaluation.

1 Introduction

The shielding of rf fields emanating from coaxial cables was already treated
in the literature more than 50 years ago[2]. A large number of publica-
tions followed afterwards, even a whole journal issue was devoted to this
subject[3]. Already then it was known that conducting layers of a thickness
less than the skin depth could reduce the outside field strength sufficiently
to avoid “cross talk” between adjacent cables. Also the wall penetration
of rf fields excited by charged particle beams has been analyzed in a num-
ber of publications[4, 5, 6]. In most of these papers rotationally symmetric

∗Submitted to Physical Review Special Topics on Accelerators and Beams

1



structures or concentric wire cages of infinite extent had been assumed for
simplicity, as will also be done here except for the wire cage.

The importance of thefinite lengthof structures surrounding a thin con-
ducting shield has been recognized when investigating the field penetration
into the LHC kickers[7]. An analysis of such a geometry has recently been
made[1] and showed that rf fields will penetrate through a thin shielding
layer preferentially at the resonant frequencies of the cavity formed by the
surrounding structure. However, that analysis did not include a finite resis-
tivity of the structure material which will be treated here.

In addition, we will discuss also the effects of shielding by conducting
stripes or wire cages, which are often preferred to a continuous metal layer in
order to reduce eddy current losses in rapid cycling synchrotrons or pulsed
devices like kickers. The results of a number of bench measurements on
such structures have been published[7, 8] as well as recent measurements
with beam[9] .

2 Shielding by a thin conducting cylinder

For the calculation of the longitudinal coupling impedance we take as source
field a narrow ring of chargeQ with radiusa, traveling with velocityv = βc
along thez-axis inside a circular cylindrical screen of inside radiusb and
thicknessτ , surrounded by a concentric vacuum chamber of radiusd .

In the frequency domain withk = ω/v, this corresponds to a charge and
current density given by

ρ(s)(r, z) =
Q

2πav
δ(r − a)e−jkz ,

J (s)
z (r, z) = vρ(s)(r, z) =

Q

2πa
δ(r − a)e−jkz , (2.1)

The (Fourier transforms of the) electro-magnetic (EM) field components
generated by this source in free space outside the beam,r ≥ a, are then
given by

E(s)
z (r, z) = jωµ0

QI0(νa)
2πβ2γ2

K0(νr)e−jkz,

Z0H
(s)
θ (r, z) = −ωµ0

QI0(νa)
2πβγ

K1(νr)e−jkz,

E(s)
r (r, z) = −ωµ0

QI0(νa)
2πβ2γ

K1(νr)e−jkz, (2.2)
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whereµ0 is the free space permeability,k0 = ω/c = βk, γ = (1 − β2)−
1
2

is the relativistic energy factor,ν = k/γ the radial propagation constant in
vacuum, andIn, Kn are modified Bessel functions of the first and second
kind, ordern, regular atr = 0 and atr = ∞, respectively.

The fields given by Eqs. (2.2) can be thought of as a wave moving in the
outward radial direction. As discussed in the preceding section, we investi-
gate a thin conducting cylinder, extending fromr = b to r = b + τ , which
is used to isolate the beam and the regionr > b + τ from one another. We
shall assume thatτ � b andδ � b, whereδ =

√
2/(ωµσ) is theskin depth

in a metal with conductivityσ and permeabilityµ. At the moment, we make
no assumptions about the relative size ofτ andδ.

Due to the presence of the conducting layer, the EM field components
in Eqs. (2.2) must be revised to include the reflected wave. In the region
a < r ≤ b, the components required for matching are

Ez(r, z) = A[K0(νr) + αI0(νr)]e−jkz

Z0Hθ(r, z) = −jβγA[K1(νr)− αI1(νr)]e−jkz (2.3)

whereα is a not yet determined reflection coefficient, and

A = jω
µ0QI0(νa)

2πβ2γ2
. (2.4)

The radially outgoing wave forr ≥ (b + τ) is

Ez(r, z) = AT K0(νr)e−jkz,

Z0Hθ(r, z) = −jβγAT K1(νr)e−jkz, (2.5)

whereT is a transmission coefficient. For b ≤ r ≤ b + τ , inside the metal
with a conductivityσ � ωε0, the radial propagation constant becomes ap-
proximatelyνc = (1 + j)/δ and hence|νcb| � 1. With the large argument
approximations for modified Bessel functions andHθ

∼= (σ/ν2
c )(∂Ez/∂r)

we get

Ez(r, z) ∼= A
[
Be(1+j)(r−b)/δ + Ce−(1+j)(r−b)/δ

]
e−jkz ,

Hθ(r, z) ∼=
σδA

1 + j

[
Be(1+j)(r−b)/δ − Ce−(1+j)(r−b)/δ

]
e−jkz (2.6)

whenτ � b. The coefficientsα, T and the amplitude factorsB, C can be
determined by requiring continuity ofEz andHθ at r = b andr = b + τ .
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After considerable algebra the transmission coefficient is found to be

T =
1

cosh [(1 + j)τ/δ] + D sinh [(1 + j)τ/δ]
≈ 1

1 + (1 + j)Dτ/δ
(2.7)

where the approximation is valid forτ � δ. With the abbreviation

ξ = −(1 + j)
jβγ

Z0σδ
=

1− j

2
β2γkδ (2.8)

the parameterD can be written

D = −ξI1K1 + I0K0/ξ

I1K0 + I0K1
(2.9)

whereIn = In(νb) while Kn = Kn(ν(b + τ)). Becauseτ � b, all Bessel
functions may be evaluated atνb. Then we can use the Wronskian[10]
K0(x)I1(x) + I0(x)K1(x) = 1/x to simplify the denominator of Eq. (2.9):

D = −νb[ξI1K1 + I0K0/ξ] ≈ −νb

[
ξ

2
− ln(νb)

ξ

]
. (2.10)

Now we approximateT for kb � γ, i.e. for not too high frequencies or
for ultra-relativistic beam energies, Eq. (2.7) becomes

T =
1

1− β2k2bτ

2
+

2j
β2γ2

bτ

δ2
ln

kb

γ

. (2.11)

The conducting shell shields the beam from the region outside when the
transmission coefficient is small,|T | � 1. We thus get theshielding condi-
tion

τ

δ
� 2δ

b

[
(βkδ)4 +

(
2

βγ

)4

ln2(kb/γ)

]− 1
2

, (2.12)

Forkδ � 2
√

ln(νb)/β2γ, this condition simplifies to

τ

δ
� β2γ2

2 ln(kb/γ)
δ

b
, (2.13)

On the other hand,kδ > 2
√

ln(νb)/γ for largeγ, and the condition becomes
τ � 2/(k2

0b), independent of the skin depth. Depending on the values of
βγ andkb, shielding can then be achieved with a layer whose thickness is
smaller than the skin depth. The ability of a conducting layer thin compared
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to the skin depth to shield electro-magnetic fields has been known for many
years[2, 3]. This astonishing feature can be explained by the fact thatpart of
the field is reflected by the conducting layer, while the transmitted part
undergoes a succession of reflections from both interfaces atr = b and
r = b + τ . Whenτ → 0, the accumulated result is complete transmission.
However, for finiteτ , the successive reflections are shifted in phase and
damped so as to lead to the result in Eq. (2.11).

A major simplification of the analysis can be made whenτ � δ. Then
the tangential electric field in the conducting layer can be considered to be
constant inr, implying a current densityσEz within the conductor. The
discontinuity in the tangential magnetic field through the layer is then given
by

δHθ = τσEz. (2.14)

In this limit, which is used in the rest of this paper, it is not necessary to
consider the variation ofEz or the current density within the conductor.

3 Space charge and resistive wall impedances

We now consider an outer beam pipe of radiusd, conductivityσd, and skin
depthδd = (2/ωµσd)1/2, shielded by a cylindrical layer atr = b of con-
ductivity σb, skin depthδb = (2/ωµσb)1/2, and thicknessτ � δ at r = b
(see Fig.1). The source fields in Eqs. (2.2) are modified as in Eqs. (2.3) to
include both the effects of the conducting layer and the beam pipe. With the
still undetermined reflection coefficientα they can be written:

Ez(r, z) = A[K0(νr) + αI0(νr)]e−jkz,

Z0Hθ(r, z) = −jβγA[K1(νr)− αI1(νr)]e−jkz (3.1)

for r < b. With the undetermined transmission coefficientp one can write
the fields forr > b:

Ez(r, z) = pA [K0(νr) + αdI0(νr)] e−jkz,

Z0Hθ(r, z) = −jβγpA [K1(νr)− αdI1(νr)] e−jkz (3.2)

The second reflection coefficientαd at the outer layerr = d can be ob-
tained directly by applying the “Leontovich boundary condition”Ez =
−
√

jωµ/σHθ there. This yields

αd = −K0(νd) + rK1(νd)
I0(νd)− rI1(νd)

= −K0(νd)
I0(νd)

− ξd , (3.3)
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wherer = (1− j)β2γkδ/2. For |r| � 1, one gets approximately

ξd =
1− j

2
β2γ2

I2
0 (νd)

δd

d
(3.4)

We requireEz(r, z) to be continuous atr = b, which yields one condition
for α andp

K0(νb) + αI0(νb) = p[K0(νb) + αdI0(νb)]. (3.5)

The change inHθ at r = b must satisfy Eq. (2.14), leading to the second
condition forα andp:

p [αdI1(νb)−K1(νb)]− [αI1(νb)−K1(νb)] =
η

νb
[K0(νb) + αI0(νb)] ,

(3.6)
where

η =
2jτb

β2γ2δ2
b

. (3.7)

The longitudinal impedance is usually defined as the integral over (the
Fourier transform of) the axial electric field component along the axisr = 0.
When it is obtained by integrating at the annular radiusr = a this will only
suppress the constant term of unity in the g-factorg = 1 + 2 ln(b/a). This
term actually reduces to 1/2 if one correctly averages over the beam cross
section. Ignoring these small differences, the impedance can be written

Z‖(ω) = − 1
Q

∫ ∞

−∞
dzEz(a, z)ejkz. (3.8)

Solving Eqs. (3.5) and (3.6) forα andp and assumingk0d � βγ (low
frequency and/or highγ), we thus find for the impedance divided by the
azimuthal mode numbern = ω/ω0

Z‖(ω)
nZ0

∼= − j

βγ2

[
ln

b

a
+

ln(d/b) − ξd

1− η[ln(d/b) − ξd]

]
. (3.9)

The impedanceZ‖/n, computed without low-frequency approximations,
is shown in Fig.2. In the absence of a shielding layer(η = 0) the impedance
in Eq. (3.9) reduces to the standard form of space charge plus resistive wall
impedance. The dependence on the beam pipe radius and conductivity be-
comes negligible when

|η|| ln(d/b)− ξd| � 1, (3.10)
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in which limit Z‖(ω) = ZSC
‖ (ω) + ZRW

‖ (ω), with

ZSC
‖ (ω)

nZ0
= − j

βγ2
ln

b

a
(3.11)

and

ZRW
‖ (ω) = −βδ2

b nZ0

2τb
=

βZ0

ω0µbτσb
=

2πR

2πbτσb
= Rshield. (3.12)

The rhs of Eq. (3.12) is simply the resistance of the conducting shield in the
axial direction. We shall later see that the result(ZRW

‖ (ω) = Rshield) is also
true for a shield of finite length.

For δd � d/β2γ2 or |ξd| � ln(d/b), the shielding condition Eq. (3.10)
can be written

τ

δb
� β2γ2

2 ln(d/b)
δb

b
, (3.13)

corresponding to the shielding of the space charge fields. For high energy
machines, however, usuallyδd � d/β2γ2 or |ξd| � ln(d/b), the condition
becomes

τ

δb
� δb

b
· d

δd
, (3.14)

corresponding to the shielding of the resistive wall impedance.

4 Shielding by a wire cage

In the previous section, we considered the shielding capability of a thin con-
ducting layer atr = b. However, in order to reduce eddy currents due to
a rapidly changing magnetic field, one would prefer to shield withN thin
wires of conductivityσ, radiusrw, located at~rp (rp = b, θp = 2πp/N ),
wherep goes from 0 toN − 1 (see Fig.3).

In the absence of any shielding, the EM fields inside a conducting vac-
uum chamber atr = d can be written, fora ≤ r ≤ d:

Ez(r, z) = AG0(νr)e−jkz

Z0Hθ(r, z) = jβγAG′
0(νr)e−jkz, (4.1)

where

G0(νr) = K0(νr) + αdI0(νr),

G′
0(νr) = −K1(νr) + αdI1(νr), (4.2)

7



with αd chosen to satisfy the boundary condition at the beam pipe radius
r = d, see Eq. (3.3).

We now add the fields which are due to a currentIw in each of theN
wires. For this we replaceG0(νr) in Eq. (4.1) by

G0(νr) + I
N−1∑
p=0

K0 (ν|~r − ~rp|) , (4.3)

whereI = QI0(νa) is a dimensionless current. The electric field corre-
sponding to the term proportional toI in Eq. (4.2) does not yet satisfy the
required boundary condition atr = d. In order to do this, we use the addition
theorem[12]

K0 (ν|~r − ~rp|) =




∞∑
n=−∞

In(νr)Kn(νb) cos n(θ − θp) for r < b

∞∑
n=−∞

Kn(νr)In(νb) cos n(θ − θp) for r > b


 (4.4)

We may replaceKn(νr) in Eq. (4.4) byGn(νr), where

Gn(νr) = Kn(νr) + αdnIn(νr). (4.5)

Hereαd in Eq. (3.3) is generalized for the n-th harmonic to

αdn = −Kn(νd)
In(νd)

− ξdn, (4.6)

with

ξdn = (1− j)
β2γ2

2I2
n(νd)

δd

d
. (4.7)

We furthermore require that the wire current be consistent with the elec-
tric field in each wire, leading to

Iw = πr2
wσEz(b, z, θp). (4.8)

After considerable algebra, assumingkd � βγ as for the cylindrical shell,
we obtain the impedance in the form analogous to that of Eq. (3.9):

Z‖(ω)
nZ0

= − j

βγ2

[
ln

b

a
+

(ξd − ln d/b)(1 −∆)
ηw(ln d/b− ξd)− (1−∆)

]
. (4.9)

Here

ηw =
jNr2

w

β2γ2δ2
b

,

∆ =
jr2

w

β2γ2δ2
d

ln

[
b

Nrw

(
1− b2N

d2N

)]
. (4.10)
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Forrw � βγδd we can neglect∆ in Eq. (4.9), providedN � 1 andd−b >
b/N , i.e. when the radial extent beyond the wires is larger than the spacing
between wires. In that case the condition is fulfilled as the harmonics due to
the wire periodicity decay rapidly with|r − b|. Furthermore

ηw =
j

π

πNr2
w

β2γ2δ2
=

j

π

Awires

β2γ2δ2
(4.11)

and

η =
j2τb

β2γ2δ2
=

j

π

Ashell

β2γ2δ2
, (4.12)

allowing us to reach the important conclusion that
only the net area of conductors counts for the penetration of fields

in a regular array of wires .
The same result is valid for narrow conducting stripes on a thin ceramic

cylinder, which is often the most practical implementation of shielding.

5 Cavity of finite length

In analogy to the analysis without a shield[13], we write an integral equation
for the longitudinal electric fieldEz in a cavity of lengthg and of outer radius
d, coaxial with an infinite beam pipe of radiusb (see Fig.4):

Ez(r, z) = A

[
K0(νr)− K0(νb)

I0(νb)
I0(νr)

]
e−jkz

+
∫ ∞

−∞
dqe−jqzA(q)

J0(κr)
J0(κb)

, r ≤ b, (5.1)

where the propagation constant is

κ2 = k2 − q2. (5.2)

The term proportional toI0(νr) is included so that the first term in brackets
vanishes atr = b. Then the term includingA(q) has a non-vanishing value
only for 0 < z < g, whereEz(b, z) = f(z) is different from zero.
The integration contour in theq-plane is taken above (below) the poles where
J0(κb) = 0 on the positive (negative) realq-axis to ensure outgoing waves
(generated by the cavity) in the beam pipe. A Fourier transform of Eq. (5.1)
at r = b leads to

A(q) =
1
2π

∫ g

0
dz′f(z′)ejqz′

. (5.3)
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Use of Maxwell’s equations then leads to

Z0Hθ(b, z) = − jβγA

νbI0(νb)
ejkz − jk0b

2π

∫ g

0
dz′f(z′)Kp(z − z′), (5.4)

where the pipe kernelKp(ζ) can be written as a sum over the zeros of
J0(ps):

Kp(ζ) =
2πj

b

∞∑
s=1

ejbs|ζ|/b

bs
. (5.5)

Here

bs =
(
k2
0b

2 − p2
s

)1/2
= −j

(
p2

s − k2
0b

2
)1/2

= −jβs. (5.6)

We now write the magnetic field in the cavity regionb + τ < r ≤ d
in terms off(z), which is the electric field atr = b, in the presence of a
conducting layer atr = b of thicknessτ � δ. Thus

Z0Hθ(b + τ, z) = −jk0b

2π

∫ g

0
dz′f(z′)Kc(z, z′) (5.7)

where the cavity kernelKc(z, z′) is given by

Kc(z, z′) = 4π2
∑

`

h`(z)h`(z′)
k2
0 − k2

`

, (5.8)

wherek` = ω`/βc andh`(z) is the normalized magnetic field atr = b + τ
for the modè in the annular cavity occupyingb + τ ≤ r ≤ d, 0 < z < g.

We now require that the discontinuity inHθ across the thin shield satisfy
Eq. (2.14). This leads to the integral equation

∫ g

0
dz′F (z′)[Kp(z − z′) + Kc(z, z′)] = e−jkz − 4πjτ

k2δ2b
F (z) (5.9)

where

f(z) = − jQZ0

k0b2I0(νb)
F (z). (5.10)

Once Eq. (5.9) is solved forF (z), we obtain the cavity impedance

Zcav
‖ (ω)

Z0
=

j

k0b2

∫ g

0
dzF (z)ejkz , (5.11)

when we confine our attention to low frequencies wherek0 � βγ/b.
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The cavity kernels can be evaluated approximately for the casek0g � β
and k(d − b) � β. Then they are independent ofz and z′, and can be
written[14]

Kc + Kp
∼=

2π
k2bg(d− b)

+
2πj

b

k0b/π∑
s=1

1
bs
− 2π

b

b/πg∑
s=kb/π

1
βs

. (5.12)

One can then solve Eq. (5.9) to obtain the cavityadmittance

Y cav
‖ (ω) ∼=

2πk0b

Z0


 −j

k2
0g(d − b)

+
k0b/π∑
s=1

1
bs

+
b/πg∑

s=k0b/π

j

βs
+

2τ
k2
0gδ2


 . (5.13)

The second and third terms in the bracket come from the pipe kernel. They
are independent of the cavity parameters, except for a weak logarithmic de-
pendence ong. The condition for effective shielding is non-dependence on
d− b which becomes

τ

δ
� δ

2(d− b)
. (5.14)

At low frequencies, the impedance (or admittance) is then dominated by the
resistance of the shield of lengthg, namely,

Zcav
‖ (ω) ∼= Rshield =

g

2πσbτ
. (5.15)

If one chooses to shield with wires of finite length, one can accomplish
this usingN wires whose total cross sectional area is equal to the cross
sectional area of a continuous layer

Nπr2
w = 2πbτ, (5.16)

as shown in Section 3. In this case,N must be large and the spacing of the
wires must be small compared tod− b to achieve effective shielding.

It has been pointed out[15] that other cavity modes will enter into the
cavity kernel at higher frequencies, requiring additional contributions to the
first term in brackets of Eq. (5.13), which will be proportional to(ω2 −
ω2

m)−1 for a cavity mode with frequencyωm/2π. Therefore the conducting
layer cannot shield the cavity whenω is close toωm. However, for a realistic
beam bunch, there is a spread of frequencies. Then only the average value
of [ω2 − ω2

m(1 + 1/Q)]−1 is important, whereQ is the quality factor of the
resonance. ForQ � 1, the integral becomes independent of Q. Then we
obtain the shielding condition

τ

δ
� gδ

(d− b)Lbunch
(5.17)
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whereLbunch is the length of the beam bunch.
As g increases, Eq. (5.17) places an ever increasing lower bound onτ/δ,

in disagreement with our prediction for infiniteg in Eqs. (3.13) and (3.14).
However, in that case we would need to solve the integral equation, Eq.
(5.9), forF (z) wheng is large. We have not been able to do so analytically,
but clearly the solution in Eq. (5.13), which applies to the caseg � β/k, is
no longer expected to be valid.

We also expect Eq. (5.17) to be valid for screening byN wires. In this
case we write it in the form

Awires �
2πbgδ2

(d− b)Lbunch
(5.18)

where we assume thatN � 1 and that the spacing between wires is small
compared withd− b. In addition these general principles should also apply
to the screening of holes by conducting wires.

6 Shielding of transverse fields

It is possible to repeat the foregoing analysis in order to explore shielding
of transverse fields. The general discussion of reflection and transmission
coefficients in Section 2 also applies to the transverse case, and should lead
to the same condition for effective shielding as in Eq. (2.12). In fact a
detailed analysis of shielding the transverse space charge impedance for the
infinite, perfectly conducting beam pipe confirms this. Unfortunately, the
analysis is made more complicated by the need to consider both TE and TM
modes in the beam pipe. We plan to present a more detailed discussion of
shielding the transverse impedance by a thin conducting layer or a wire cage
of finite conductivity in a future paper.

7 Conclusions

Shielding of electro-magnetic fields by thin conducting layers or thin wires
inside a vacuum chamber of finite resistivity have been analyzed for both
cases of infinite or finite lengths of the layer. Approximate conditions for
effective shielding as well as expressions for the longitudinal impedance
were derived. It was found that the analysis could be simplified considerably
by assuming that the axial electric field is constant across the thin conducting
layer, while the magnetic field changes by an amount equal to the current
flowing through it.
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For shields of finite length, the fields are given by an integral equation,
and an approximate expression for the admittance is given which is consid-
erably simpler than the corresponding impedance. However, the transition
from the finite to the infinite case could not be done analytically and re-
quires numerical evaluation of the integral equation under conditions when
the simplifying assumptions to not apply.

The shielding effect of a layer much thinner than the skin depth is often
puzzling; it can be explained by multiple reflections at both surfaces of the
layer, taking into account damping and phase shifting of the radial waves
inside of it. For the case of conducting wires or strips, it has been found that
only the total area is important for shielding, as long as the distance from
the shield to the outer wall is large compared to the distance between wires.
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Figure 2: Longitudinal Impedance calculated with Eq.(3.9).
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Figure 3: Geometry of wire cage

r

b e a m

c a v i t y

τ

b

z

d

g

Figure 4: Cavity of finite length
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