
A New Approach to the Metatheory of

Correct Programming

Rationale

Valerie Novitzká,

University of Technology in Ko¹ice,

Slovakia

novitzka@tuke.sk

Abstract

In this paper we are giving arguments for the �rst attempt of
constructing a new metatheory of correct programming. The following

papers [25, 26, 27] contain more details for this argumentation.

1 Introduction

The correct solving of problems of persons, families, communities, societies
and the whole mankind is the most important driving power of the evolution
of the culture in the world. But what is generally the correct problem sol-
ving? George Pólya has written two excelent books [29, 30] about problem
solving in mathematics, but this approximation was psychological or at most
philosophically anthropological. A more logical method of correct problem
solving in experimental sciences was written by Karl Popper in [31]. But
the general and correct problem solving was not an object of research nor in
philosophical anthropology, nor in logic, mathematics and metamathematics.
Why, this question will be already the object of research in the next future.

In the half of 20th century it has been developed an excelent tool for
general and correct problem solving - the computer, in that time of von Neu-
mann architecture. Programming of such a computer was really a problem

1

ex
t-

20
01

-0
15

10
/

02
/

20
01

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25306788?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solving. But, and it is interesting, this aspect of computer programming was
investigated only a little. The only book dealing with human aspects of prob-
lem solving by computers was [40]. Up to now, computer programming is
not interpreted as a problem solving process, but as a possible economically
e�ective writing of less or more long sequences of instructions; at the begin-
ing in the machine language, now in some kind of programming languages,
i.e. procedural, logical or functional.

A programmer writes his programs respecting several not precise com-
mands. Such commands are: make from a repeated sequences of instructions
cycles, macros, functions or procedures; possibly do not use any kind of goto
statements; form some kind of intelectually managable program units as mo-
dules; create large scale programs from modules with methods of top-down
or bottom-up. These commands form actually some deontology of program-

ming, while the teleology of programming is the reliability of programs. Also
the contents of this notion is not precisely de�ned. Summary, we can say,
that the theory of programming now consists of deontology and teleology of
programming as mentioned above. We have to note that from philosophi-
cal standpoint such a theory of programming is not a true theory, only some
"cryptotheory". For instance, a similar cryptotheory was physics before New-
ton.

Also practical programmers already need a systematic, consistent and
complete theory of programming, which consists of a logical language for
precise formulating fundamental principles as axioms and deduction rules for
proving theorems about programming process. These theorems form a true
deontology of programming, which programmers can applicate in their work
according to need. Finally, the programmers need to prove the correctness
of programs as an appropriate teleology of programming. Such a theory
of programming has to be formulated in philosophical anthropology, logics,
mathematics and metamathematics [32, 33].

In this paper we will deal only with the language, in which we can for-
mulate the scienti�cally right theory of programming. We call this language
metatheory of correct programming. In this Rationale we will state the reason
of our decisions which we make in selection of mathematical and metama-
thematical elements of our metatheory of correct programming.

2



2 About correctness of computer programs

We have already stated that the teleology of computer programming is the
correctness of programs. We note, that this correctness is not a simple tele-
ological property. In that case the teleological correctness is essential for
computer programs, because it makes from a sequence of declarations, ex-
pressions and statements a true program. We note, that program which is
not correct is not a true program. A sequence of declarations, expressions
and statements, which are not proved as correct, is not a program solving
a human problem but only a guess and already Platon has proved that the
guess has no meaning for human knowledge.

What is correctness of computer programs? Usually, one says that a
computer program is correct when it trully solves the problem formulated by
speci�cation. The speci�cation is what the program has to do. The program
itself is the description of the method how to solve speci�ed problem. The
program trully solves the speci�ed problem when it is itself in some manner
identical with the speci�ed problem. But how to specify the problem to be
solved by computer? How to program the method of problem solving? And
how to insure, that the program trully solves the speci�ed problem? We
note, that the last question is the most di�cult one. The main result of our
following paper [25] is mainly the mathematical formulation of the answer
for this last question.

In the seventies of the 20th century it has been recognized that the a
posteriori veri�cation of a ready Pascal program, by help of axiomatic se-
mantics, is practically too di�cult [36]. Moreover, nobody in that time
investigated the correctness of compilers generally and Pascal compilers es-
pecially. Therefore, our startpoint could not be a veri�cation of a written,
i.e. ready programs, the so called a posteriori veri�cation.

The project Correct Implementation Process, CIP [4] and mainly the
ESPRIT project PROgram Development by SPECi�cation and TRAnsfor-

mation, PROSPECTRA [14] have begun investigate a new method: the
derivation of programs from their speci�cations by mathematically correct
transformations. The project PROSPECTRA was a very original and ex-
celent idea, however the procedural implementation language Ada [12] and
the corresponding simple speci�cation language ANNA (ANNotated Ada)
[16] have been not able to achieve the aim of the project and of course, also
the correctness of Ada compilers in this case was not investigated at all. A

3



similar method of correctness proof was investigated in [19, 15], where the
programming language was not a pure functional language Standard ML and
the speci�cation language Extended ML was a simple extension of the kernel
language SML. In this approach some simple derivation steps from an EML
speci�cation to a SML implementation were proved, but also in this case it
was absent the correctness proof of the SML compiler. The starting point
of our approach were the experiences with PROSPECTRA and SML/EML
projects.

The main problem of our approach was the formulation of correctness
criterion of the derivation process, i.e. the process of deriving program from
its speci�cation. According to corresponding literature [39, 37, 9, 3, 1] we
have tried to �nd this correctness criterion by help of transliteration some
already known results of multisorted universal algebras, �rst-order predicate
logic and algebraic category theory. Now, we explain the reasons why we
have chosen especially these concepts and facts for the foundations of our
metatheory as we present in [25].

We refuse to use for problem speci�cation any speci�cation language with
already de�ned concrete syntax. The reason of this decision we explain in
the following section. Here we only emphasize that in our metatheory a spec-
i�cation has for us pure mathematical form. A speci�cation is an ordered
pair Spec=(�;	�), where � is a signature containing lists of names for data
sets (sorts), names for partial and total functions with their pro�les, and
names for predicates with their arities. It is clear, that to every such de�ned
signature we can construct many �-algebras containing sorted sets of data,
partial and total functions with domains and counter domains from these
sorted sets, and predicates as general relations between elements of these
sorted sets. �-formulas from 	� are uniquely constructed from variables,
(partial and total) function names, and predicate names from the signature
�. The unique manner of �-formulas construction shall ensure that by sub-
stituting variables by data of corresponding sorts, function and predicate
names by corresponding functions and predicates according function pro�les
and predicate arities in this formula we get a sentence, which must be valid
at least in one �-algebra. We say, that a class of such �-algebras in which at
least one �-formula from 	� is valid is the meaning of speci�cation, i.e. the
semantics of speci�cation. This concept of speci�cation and semantics is not
fully new and was publicated in [2, 10, 41, 34]; but our formulation is more
precise and convenient for practical development of large scale programs.

4



In our last paper [27] of this series we de�ne speci�cation morphism, but
in the �rst of them [25] we introduce �rstly signature morphism which can be
regarded as a special case of speci�cation morphism if the set of �-formulas
is empty. Speci�cation morphism establishes relation between corresponding
entities of two signatures. We extend known concept of signature morphisms
by establishing also a relation between corresponding formulas from two spe-
ci�cations.

As we already mentioned, in derivation programs from their speci�cations
we have to preserve some kind of 'invariancy' of the speci�cation semantics
and program semantics. It is a very di�cult question, how to do it with a
mathematically correct and intelectually managable manner. We �nd that
a change of the concept of reduct can serve for our purposes. Our change
of this notion really preserves every important property of semantics of a
speci�cation during a derivation step. Our de�nition of reduct with respect
to signature morphism is really new transliteration and expansion of the
original reduct de�nition in algebra. In [27] we explain examples of derivation
steps, in which our concept of reduct really works in de�nition of correctness
criterion of a derivation step and from here in the whole derivation process.
We know that our correctness criterion only formally establishes but not
constructs in every aspect the semantics of a speci�cation after a derivation
step. This construction has to be studied further and our idea is to use type
theory [11, 17] in this investigation.

To be able precisely de�ne, for our point of view, very important concept
of institution, for continuous readability of text we introduce some auxiliary
notions from algebraic theory of categories. These concepts were only a little
more precisely reformulated for using in formal methods of computer science.
Such needed notions are category, pushout in category and functor.

During the process of derivation programs from their speci�cations by
well-de�ned derivation steps, we need to examine logical formulas in rather
di�erent algebras. This examination is enabled for us by using the concept
of institution formulated by [13] and investigated by [7, 38]. We extend this
concept only with more precise method of writing formulas.

In our following paper [26] of this series we develop abstract syntax and
semantics of a speci�cation language, which enables to specify very di�cult
problems to be solved by large scale programs. To enable the investigation
of such speci�cations from the standpoint of their mathematical and meta-
mathematical properties, we need consequently de�ne such an instantiation

5



of institution, in which the logical system is described with every detail. We
have chosen the most simple and the most known logical system, the �rst-
order predicate logic and we construct in details this instantiation, which
can be applicated in investigations of mathematical and metamathematical
properties of speci�cations during derivation process.

We suppose, that in the next future it will be elaborated also other in-
stantiations with new logical systems, from which the best will be the logical
system for problem solving.

3 Speci�cations

There are many speci�cation languages; and there are still more program-
ming languages. But only a few groups of programmers are writing speci�ca-
tions and mostly for only trivial problems. Every such group uses, from some
precisely undetermined point of view, 'sympathetic' speci�cation language.
Why? There is no exactly founded answer to this question.

The situation is still worse for programming languages. Still among prac-
tical programmers of large scale programs there is no generally accepted
programming language. Warning example of a well-prepared and still not
generally used programming language is Ada. Many specialists prepared the
requirements for this language (the last was Steelmann requirements). Many
groups of specialists tried to satisfy these requirements with many own pro-
posals of such a language. From these proposals was selected the ground
version of Ada for which it was written a very detailed Rationale. This �rst
version was further elaborated by many experts to a so called best procedural
(now already object-oriented) language. Also it was worked out a substantial
part of denotational semantics, which, however, did not contain the seman-
tics of tasks. A speci�cation language ANNA, ANNotated Ada was also
constructed to this language, but the newest Ada is used only by a little
group of people and ANNA was already forgotten. We do not try to explain
the causes of this situation in programming practice. We note only, that the
concrete syntax of speci�cation languages and also the concrete syntax of pro-
gramming languages were not formulated from the standpoint of systematic,
complete and consistent theory of programming, but only from too subjec-
tive anthropological (mainly psychological) view on some constructions of
arti�cial formal languages, in that case speci�cation and programming ones.

6



We do not want to repeat mistakes of our respected predecessors in the
de�nition of speci�cation (and also programming) languages. It is the reason
why we do not formulate until now a concrete syntax of our speci�cation and
programming language. In our paper [26] we accepted the results of the
ESPRIT Working Group CoFI (Common Framework Initiative) [35, 8, 20,
21], but we tried to formulate an abstract syntax in such a manner, that we
have to be able to formulate also the semantics of the language frame so, that
this semantics satis�es our requirements: to preserve the correctness during
transformation process from speci�cations to programs. In our paper [26] we
have only a little to generalize the abstract syntax of CoFI language CASL, to
enable a more exible formulation of production rules of new language items.
But we do not �x the manner of this generalisation, because the formulation
of concrete syntax and also a speci�c requirements of correct programming
steps of large scale programs may need some new formulation of production
rules, which we yet now cannot predict.

In [26] we really work out a fully new method of de�ning the semantics
of abstract syntax items. This description of mathematical semantics enab-
les also to investigate every speci�cation in the whole derivation process of
programs from their speci�cations from mathematics and metamathematics
point of view, because we need to know in every correct derivation step also
the important mathematical properties of the original and �nal speci�cations
and their corresponding semantics just in the framework of the instantiation
of institution. So we founded an intelectually managable method of con-
structing a correct derivation step during the process of programming. A
programmer can apply precise theorems and their logical consequences on
the speci�cation and its semantics.

4 Transformations

Already Cartesius in [6] understood, that a di�cult problem cannot be solved
at once as a whole problem. It has to be divided into many subproblems;
these subproblems have to be solved independently; and �nally, the answers
for subproblems have to be synthesised into an answer of the whole problem.
The design of our speci�cation language respects these methodical rules as
it is clear from the de�nition of abstract syntax and semantics presented in
[26].

7



The transformation of a such hierarchical and structured speci�cation into
corresponding program cannot be accomplished by one step. For this reason
we think about a transformation as a sequence of correct derivation steps,
in which it is constructed a correct target speci�cation with its semantics
from a source speci�cation with its own semantics. We suppose that the
source and target speci�cations and their semantics are di�erent in some
point of view. So, in [27] we �rstly de�ne correctness criterion for a derivation
step and in this de�nition we use results from [25, 26]. After this de�nition
we express mathematically some frequently used practical actions of real
programmers of large scale program systems. These steps were chosen only
from practical reasons and they have no deep theoretical foundations. Simply,
the programmers use connecting, renaming, hiding, extending, etc. as we
express in [27] as examples of possibilities of our approach. In the process of
further development of our metatheory and theory of correct programming
we hope to deduct some theorems, which will be already exactly founded on
the theoretically important and also practically reasonable derivation steps.

We now should like to point to an interesting problem. It is clear, that at
the begining of derivation process we have an initial speci�cation, from which
we de�ne a new, target speci�cation in one derivation step. In the second
step, we repeat this derivation, but the result of the �rst derivation step
becomes the source speci�cation and we get in this second step another new
target speci�cation. But when does �nish derivation of a target speci�cation
from a source one and when does begin derivation of a target program from a
source speci�cation? This problem is in the literature not yet recognized. We
hypothetically suppose, that the �rst target program in derivation process
will be written in a language corresponding to the typed �-calculus; and from
this program will be re�ned step by step the executable �nal program written
in a language of �-calculus as a paradigma of functional languages [5]. But
as we already mentioned, we will formulate the concrete syntax for such a
language only when our metatheory and theory of correct programming will
be work out enough.

5 Conclusion

We have no opportunity completely describe what a man has to know and
what he/she has to understand, that he/she is able to identify a real problem

8



in our reality, that is in the nature and in the culture. But it is clear that
the identi�ed problem a man has to describe also by using the language of
mathematics. We want to say, that everybody needs a minimal knowledge
of mathematics which enables him/her to describe and solve the problems
of our world. It was the reason that the excelent matematician Rózsa Péter
has written a marvelous booklet [28] for her artist friends about important
problems of modern mathematics and metamathematics. To solve more dif-
�cult modern problems one needs not only language of mathematics and
metamathematics, but also a computer; and also he/she needs to program
the problem solving for this computer correctly. The theory of mathemat-
ics already exists; it exists also a mathematical theory about mathematics:
metamathematics. So everybody can study such amount of mathematics and
metamathematics what he/she needs. But there is no theory of computer
programming. Therefore, who want to solve his/her non trivial problem on
computers by a correct program, he/she has no opportunity to learn the cor-
rect programming theory and its metatheory in a concise and well-formed
manner. Therefore only a little part of mankind uses computers for solv-
ing their important and realistic problems. Our intention to work out the
metatheory of correct programming and to start working out a theory of cor-
rect programming is to enable for every educated man to learn the correct
programming and so to solve the real problems by computers.

We have in our mind, that our work is only modest start of the whole task
of working out this metatheory and theory. In this paper we were thinking
only about the programming of computers of von Neumann achitectures.
Already now it is clear, that such a conception of a theory has to be rather
generalised, e.g. for neural computers. This is the task of a near future and
we hope that we also begin to work it out.

References

[1] J.Adámek: Mathematical Structures and Categories, NTL, Praha, 1982

[2] E.Astesiano,H.-J.Kreowski,B.Krieg-Br�uckner,(Eds.): Algebraic Founda-
tions of System Speci�cations, Springer, 1999

[3] M.Barr,Ch.Wells: Category Theory for Computing Science, Prentice-
Hall, 1990

9



[4] F.L.Bauer,H.Ehler,B.M�oller: The Munich Project CIP, Springer, LNCS
292, 1987

[5] E.Denney: A Theory of Program Re�nement, PhD. Thesis, University
of Edinburgh, 1998

[6] R.Descartes: Disours de la méthode, Oeuvres de Descartes IV, Paris,
1908

[7] M.Cerioli: Relationships between Logical Formalisms, PhD.Thesis, Uni-
versita di Pisa-Genova-Udine, 1993

[8] CoFI Task Group on Language Design. CASL - The CoFI Algebraic
Speci�cation Language - Summary, www:brics:dk=Projects=CoFI=
Documents=CASL=Summary, 1999

[9] D.van Dalen: Logic and Structure, Springer, Berlin, 1994

[10] H.Ehrig,B.Mahr: Fundamentals of Algebraic Speci�cations 1, EATCS
Monographs on Theoretical Computer Science, Springer, 1985

[11] P.Gardner: Representing Logics in Type Theory, PhD.Thesis, University
of Edinburgh, 1992

[12] G.Goos,J.Hartmanis, (Eds.): The Programming Language Ada. Refer-

ence Manual, Springer, LNCS 155, 1983

[13] J.Goguen, R.Burstall: Introducing institutions, In: E.Clarke and
D.Kozen, (eds.): Logics of Programs Workshop, LNCS 164, Springer,
1984, pp.221-256

[14] M.Ho�mann.B.Krieg-Br�uckner: PROgram Development by SPECi�ca-

tion and TRAnsformation: Methodology - Language Family - System,
Springer, LNCS 680, 1993

[15] S.Kahrs,D.T.Sannella,A.Tarlecki: The De�nition of Extended ML, The-
oretical Computer Science, 1996, pp.445-484

[16] D.C.Luckham,F.W.von Henke, B.Krieg-Br�uckner, O.Owe: ANNA, a

Language for Annotating Ada Programs, Springer, LNCS 260, 1987

10



[17] J.H.McKinna: Deliverables: A Categorical Approach to Program Devel-

opment in Type Theory, PhD. Thesis, University of Edinburgh, 1992

[18] S.MacLane: Categories for the Working Mathematician, Springer, 1971

[19] R.Milner, M.Tofte, R.Harper: The De�nition of Standard ML, MIT
Press, 1990

[20] P.Mosses: CoFI: The Common Framework Initiative for algebraic spec-
i�cation and development. Proc. 7th. Intern. Joint Conference on The-

ory and Practice of Software Development, Lille, Springer, LNCS 1214,
1997, pp.115-137

[21] P.Mosses: CASL: A guided tour of its design, Techn.Rep., University of
Aarhus, 1997

[22] V.Novitzká: Formal Foundations of Correct Programming, Academic
Press Elfa, Ko¹ice, 1999

[23] V.Novitzká: Some ideas about the model theory of correct programming,
Proceedings of the 34th Spring International Conference Modelling and

Simulation of Systems, MOSIS'2000, Section Information Systems Mod-

elling, Ro¾nov pod Radho¹tìm, May 2-4, 2000, pp.197-202

[24] V.Novitzká: Foundations of Correct programming, Academic Press Elfa,
Ko¹ice, 1999

[25] V.Novitzká: Foundations of the metatheory of correct programming. A
new approach to the metatheory of correct programming I., (submitted
for publication), 2001

[26] V.Novitzká: On speci�cations in the metatheory of correct program-
ming. A new approach to the metatheory of correct programming II.,
(submitted for publication), 2001

[27] V.Novitzká: From speci�cation to program in the metatheory of correct
programming. A new approach to the metatheory of correct program-
ming III., (submitted for publication), 2001

[28] R.Péter: Játek a végtelennel, Budapest, 1974

11



[29] G.Pólya: How to Solve It?, Princeton University Press, 1946

[30] G.Pólya: Mathematics and Plausible Reasoning, Princeton University
Press, 1954

[31] K.Popper: The Logic of Scienti�c Discovery, Routledge, London, 1994

[32] H.Rasiowa,R.Sikorski: The Mathematics of Metamathematics, War-
sawa, 1963

[33] A.Robinson: On the Metamathematics of Algebra, North-Holland, Am-
sterdam, 1951

[34] D.T.Sannella,A.Tarlecki: Essential concepts of algebraic speci�cation
and program development, Formal Aspects of Computing, 9, 1997,
pp.229-269

[35] D.T.Sannella: The Common Framework Initiative for algebraic speci-
�cation and development of software, Proc. 3rd Intern. Conference of

System Informatics, Springer, 1999

[36] N.Suzuki: Stanford Pascal Veri�er, PhD. Thesis, Stanford University,
1975

[37] P.©tìpánek: Mathematical Logic, SPN, Praha, 1982

[38] A.Tarlecki: Moving between logical systems, Proceedings of ADT'96,
Oslo, 1996

[39] W.Wechler: Universal Algebra for Computer Scientists, Springer, 1991

[40] G.M.Weinberg: The Psychology of Computer Programming, Van Nos-
trad Reinhold Company, New York, 1971

[41] M.Wirsing: Structured algebraic speci�cations: a kernel language, The-
oretical Computer Science, 42, 1986, pp.123-249

12


	ratio1.dvi
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12


