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Beta Decay studies of neutron-rich nuclei around N=40

O. Sorlin
Institut de Physique Nucl�eaire, IN2P3-CNRS, F-91406 Orsay, France

�-decay studies of neutron-rich nuclei at or around N=40 are presented in the Co, Mn
and V isotopic chains aiming to study excited states in Ni, Fe and Cr isotopes respec-
tively. Examples are taken from experimental studies achieved at Louvain La Neuve,
CERN/ISOLDE and GANIL/LISE facilities. Increases in production rates in the last �ve
years has brought a dramatic change in the spectroscopic knowledge in this region of mass
when the isospin number is increased. If the spherical N=40 subshell is well-established
for 68Ni, its e�ect is steadily decreased when proceeding towards 64Cr which lies at the
mid-distance between Z=20 and Z=28 magic shells.

1. Introduction

Near the edge of stability, the surface of the neutron-rich nuclei would be essentially
composed with a di�use neutron-matter. The di�useness should already be felt before the
drip-line, for nuclei with large N/Z ratios. Theoretical calculations from HFB and RMF
suggest that for such neutron-rich nuclei, a better description would be obtained with a
more rounded potential that can be simulated by the harmonic oscillator potential [1]. The
increase of the N=40 subshell gap naturally arises from this approach. As a consequence,
the well-pronounced shell-gap at N=50 should be reduced. The 68Ni40 nucleus exhibits a
high 2+ energy of 2.033 MeV [2], in contrast to its neighbouring isotopes 66Ni and 70Ni
whose 2+ energies are 1425 keV [3] and 1259 keV [4], respectively. The sudden increase
of the 2+ energy at N=40, correlated to a sudden drop in B(E2) [5] suggests that 68Ni
behaves like a magic nucleus. It has been shown with theoretical calculations that it can
be considered as a good core to modelize nuclei in its vicinity [6]. However, the size of
the energy gap at N=40 in Ni has been proven to be of about 1 MeV by combined results
in �-decay and isomer-decay studies (section 2). As a comparisson, the N=20 and N=28
energy gaps are of 2.79MeV and 2.01MeV deduced from the level schemes of 39Ca and
47Ca, respectively. In order to determine whether a sizeable increase of this subshell-gap
can be seen while increasing the isospin, �-decay studies has been extended to lighter-
Z isotones. Surprisingly, the removal of few protons from the 68Ni core signi�cantly
a�ects the structure of the nucleus which turns out to be quickly deformed. Experimental
indications on this region of deformation south to 68Ni are given in the following with
tentative hints to explain this phenomenon. It is obvious that, due to deformation, the
observation of the predicted increase of the spherical N=40 energy-gap is not possible in
this region. Perspectives to reach this information are indicated in the conclusion.
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2. Beta Decay of Co isotopes at Louvain La Neuve

Beta-decay of neutron-rich 66�70Co isotopes have provided a wealth of information
concerning the structure of Ni isotopes around N=40 [7{9]. These nuclei have been
produced at the Louvain La Neuve facility in a 30MeV proton-induced �ssion reaction
of a 238U target of 15mg/cm2 thickness. The target was mounted in the Ar gas cell of
the Leuven ion-guide laser-ion source (LIGLIS). The �ssion products were transported by
the gas out to the exit hole of the cell where Co isotopes were selectively ionized by two
lasers. The charged isotopes with a charge Q and mass A were subsequently separated in
A/Q by the LISOL mass separator and guided to the detection point. The detection set
up consisted of two high-purity Ge detectors (used for 's) and of three plastic detectors
(used for �'s) arranged in a compact geometry. �- and - coincidences were required
for the triggering of the acquisition system.
�-decay of 67Co has been undertaken by Weissman et al. [7] who have neasured a

half-life of 425(20)ms, in accordance with the results of [10{12]. About 92% of the �-
decay occur via Gamow Teller transition to the 5/2� state in 67Ni at 694 keV whose
spin-assignment was given by Pawlat et al. [3]. Three percent of the decay feed the 9/2+

isomer [3,4] at 1007 keV by �rst forbidden transition type. The authors conclude that the
measured half-life disagrees with all presently available calculations, which have however
a good predictability in the neighbouring neutron-rich Ni isotopes [13]. This case of 67Co
therefore remains a puzzle.
�-decay of 69Co42 has been studied by Mueller et al. [8]. They have measured a half-life

of 220(20)ms, in agreement with the values of 270(50)ms [14] and 190(40)ms [12]. Part
of the level-scheme of its decay is shown in Fig. 1 which contains the major ingredients
that will be discussed in the following. This nucleus, of probable 7/2� con�guration given
by the proton hole in f7=2, contains a pair of neutrons in g9=2. In the ��-decay of 69Cu,
a neutron is converted to a proton which subsequently couple to the odd proton to form
69Ni. It is seen in the decay-scheme that the neutron is preferentially taken from the f5=2
orbital, keeping the two neutrons in g9=2 paired on. About 50% of the decay is feeding the
5/2� �rst state in 69Ni. This level deexcites by a 594 keV transition to a 1/2� state whose
presence was �rst suggested by Grzywacz et al. [4]. This state due to a hole con�guration
in p1=2 corresponds to a rearragement in the fp shell which cools down the nucleus. The
detailed study of this 1/2� �-decay isomer has been achieved by Mueller et al. [8] and
by Prisciandaro et al. [11]. From these studies, it is found that 77% of the decay of this
state occur to a 3/2� excited state at 1298 keV in 69Cu. The natural con�guration of
69Cu corresponds to one proton of the 2p3=2 orbital added to a 68Ni core. It is therefore
expected that its g.s. con�guration is 3/2� by coupling the extra-proton to the 0+ core
which is thought to be mainly given by a �(p1=2)

2 con�guration. The excited state at 1298
keV is expected to be due to the coupling of the extra-proton to the 0+2 core mainly given
by �(g9=2)

2 con�guration. Since the 1/2� isomer in 69Ni decays preferentially through this
excited 3/2�, this suggests that the g9=2 neutron-pair is still not broken in the decay. From
this whole �-decay sequence, 69Co!69 Ni!69 Cu, it is fascinating to notice that the g9=2
neutron-pair is preferentially preserved. This e�ect is due to the strong pairing energy
gained by coupling two neutrons in the g9=2 orbital. In order to evidence the impact of
this high pairing energy, the authors of [8] noticed that the di�erence in energy between
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Figure 1. Partial �-decay scheme of 69Co.

the 9/2+ and 1/2� states in 69Ni is only of 321 keV. The g.s. con�guration corresponds
to the natural feeding of a neutron in the g9=2 orbital, right above the N=40 gap. The
1/2� con�guration corresponds to the promotion of a neutron from the p1=2 orbital which
subsequently couples to the single neutron in g9=2. As a consequence, the energy of the
N=40 gap is 321 keV higher than the energy gained by coupling a pair of neutrons in
g9=2 as compared to p1=2. The size of the energy gap across N=40 can be estimated to
1.007 MeV by the di�erence in single-particle levels p1=2 and g9=2 extracted from 67Ni [3].

3. Beta Decay studies of Mn isotopes at CERN

Neutron-rich Mn isotopes with masses up to A=69 have been produced in spallation
of uranium target of 51 g/cm2 thickness induced by 1 GeV protons of the CERN Proton
Synchrotron Booster. Manganese isotopes have been extracted from the target after
having been ionized by a chemically selective laser ion source. Mass-separatedMn isotopes
have been transmitted to either a �-delayed neutron counter or to a two-HPGe -ray
spectroscopy set-up. The counting time in each system was adjusted to the proton pulse
beam of 1.0s duration separated by multiple of 1.2 seconds. Decay curves have been
obtained by Hannawald et al. [15] with the �-neutron coincidence requirement.
New half-lives of 89(4), 88(4) and 66(4)ms have been determined for 64Mn, 65Mn and

66Mn respectively. These values are in good accordance with the lately measured half-
lives of [12] obtained at GANIL with a di�erent method. With the use of the -ray
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spectroscopy set-up, 2+ energies of 64Fe (746keV) and 66Fe (573 keV) have been extracted
from the �-decays of 64Mn and 66Mn. Contrary to the Ni isotopic chain, the Fe chain
exhibits a sharp drop in 2+ energies after reaching a maximum at 62Fe36 (Fig. 6). It is
clear from the di�erence in 2+ energy between 68Ni (2.003MeV) and 66Fe (573keV) that
the removal of two protons from 68Ni has dramatically a�ected the structure of the core
nucleus. The authors mention that the strong proton-neutron interaction between the
two proton holes in f7=2 and the neutrons in g9=2 states is responsible for the lowering of
the energy of spherical g9=2 orbital. With the lowering of this base orbital, downsloping
levels as �[440]1/2+ or �[404]9/2+ (respectively prolate or oblate states) are more likely
occupied than the spherical ones. This triggers deformation at N=40. This could be also
viewed in the way that the proton core is less rigid when \wounded" by the removal of
two protons. It could subsequently slightly be deformed. The large spacial recovering
of proton (f7=2) and neutron (g9=2) orbitals, both of large orbital momentum, leads to a
global modi�cation of the nucleus. To get an idea on the deformation of 66Fe, Hannawald
et al. [15] compare its 2+-energy (573keV) to those of 72Zn (652keV) and 76Ge (563keV).
For these latter nuclei, deformation parameters of �2=0.23 [16] and 0.26 respectively [17],
have been extracted from the measurement of their B(E2). By extrapolating the 2+-energy
deformation systematics to 66Fe with the empirical law obtained from [18,19]:

�2 = cst�
q
A�0:69=E(2+); (1)

they obtain a deformation parameter of �2 close to 0.26 [15].

4. Beta decay studies of V and Cr isotopes at GANIL

4.1. experimental procedure

The neutron-rich Ti-Co isotopes have been produced at GANIL by the fragmentation
of a 60.4 A.MeV 86Kr34+ beam of 1.2 e�A onto a 58Ni target with a thickness of 140
�m. A carbon foil of 9.5 mg.cm�2 was placed behind the production target to act as a
stripper. Fragments of interest were separated by the LISE3 achromatic spectrometer. A
wedge-shaped Be foil of 219 �m-thickness was placed in the intermediate focal plane of the
spectrometer in order to reduce the rate of nuclei close to stability. Two magnetic rigidity
settings of the spectrometer were used to select nuclei with increasing neutron-richness.
The nuclei transmitted in the higher magnetic rigidity setting are shown in Fig. 2. The
selected nuclei were identi�ed by means of 4 consecutive 300, 300, 500, 500 �m silicon
detectors placed close to the �nal focal plane of LISE3. They were implanted in the last
detector divided in twelve 2 mm-wide, 24 mm-height vertical strips. In each strip, the
energy and time for heavy ions as well as for the �-particles coming from their decay
were measured. Each time a nucleus was implanted, the primary beam was switched
o� during 1.5 seconds to prevent the implantation of other nuclei which would act as
�-contaminants. A �-event was considered as valid if occuring in the same strip #i as
the precursor nucleus or in one of the neighbouring strips #i-1 and #i+1. The �tting
procedure to determine the half-lives and the complete results obtained in the region of
mass can be found in [12].
Five Ge detectors were placed in a cross geometry around the implantation detector

for the detection of the main  transitions. For instance, the strong -lines observed in
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Figure 2. Identi�cation of the nuclei produced in one of the setting of the spectrometer.

the decay of 64Mn and 60V have been attributed to the 2+ ! 0+ transitions in even-even
nuclei 64Fe and 60Cr, respectively. Also, delayed 's in the 80-�s time-range after the
implantation of a nucleus have been observed. These 's characterize the presence of an
isomer produced in the fragmentation process which survived along the 400 ns ight-time
in the spectrometer. Isomeric transitions from excited states of 59Cr, 60V, 64Mn and 67Fe
have been observed in agreement with the values reported in [4,20]. Their observation
con�rms the identi�cation of the nuclei transmitted in the present experiment.

4.2. results

Decay curves obtained in the V chain are shown in Fig. 3. For 59V, a half-life of 75(7)ms
has been found. This half-life is in good accordance with the value of 70(40)ms [21],
but not with the 130(20)ms obtained by Ameil et al. [22] with a smaller number of
nuclei implanted and a higher beta-background. The �-decay of 59V of probable �f7=2
con�guration mainly occurs through a pure Gamow-Teller transition to a �f5=2 state,
which subsequently deexcites by emitting two -lines at 102(1) and 208(1) keV [12]. Due
to beta-decay selection rules, the feeding of the �g9=2 isomer at 503(1) keV observed by
Grzywacz et al. [4] in 59Cr is extremely hindered since it requires both a change of parity
and of one unit in orbital momentum. The decay of this isomer, of 96(20)�s, occurs by the
emission of three 's of 102, 193 and 208 keV [4]. By comparing the two experiments, the
isomeric transition can be clearly attributed to the -line at 193 keV, which is \missing"
in the � decay. On the basis of energy and half-life of this transition, it is attributed
to an M2 isomer. A tentative level scheme of 59Cr is drawn in the right part of Fig. 4.
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Figure 3. Decay curves of V and Cr isotopes. Numbers refer to half-lives.

It takes into account the experimental constraints from both isomer decay of 59mCr and
�-decay of 59V. This peculiar study shows the complementarity between the two methods
to determine level scheme and assign spins of very exotic nuclei.
The presence of this 9/2+ state so low in energy (503 keV above the g.s.) is surprising for

a nucleus containing 35 neutrons, the \natural" feeding of this shell occuring in principle
above 40 neutrons. As a comparison, this state is at 1065, 1291, and 861 keV in the
isotones 65Zn, 63Ni, and in the recently studied 61Fe [4] respectively. This decrease in
energy of the g9=2 orbital with respect to the g.s. while making holes in 68Ni has been
already suggested by Hannawald et al [15] for explaining the onset of deformation in 66Fe
(see also the discussion in section 3). It is noticeable that the decrease in energy of this
g9=2 orbital at N=35 is strongly correlated with the decrease in the 2

+-energy in even-even
N=36 nuclei, as illustrated in Fig. 5.
P. M�oller [23] predicts that, in this Cr, V region of mass, the potential-energy surfaces

are very soft with two shallow minima of di�erent shapes separated by barriers of only
100 keV height. As an example, the ground state con�guration of 59V is predicted to
be prolate (�2=0.15) but the oblate minimum (�2=-0.1) is only 120 keV higher in energy.
Similar shape-coexistence behaviour is found in the 59Cr daughter nucleus. In 59Cr, a
prolate g.s. is expected (�2=0.183), the oblate con�guration (�2=-0.133) is found 480
keV above. From the observed 1/2� g.s. con�guration and the 9/2+ isomer in 59Cr at a
low energy of 503 keV, we can speculate that oblate shape is probably minimun in the
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potential-energy surface of this nucleus. Indeed, the 35th neutron occupies a 1/2� shell for
an oblate shape (see for instance the FY-levels single-neutron energies of �g. 7 of ref. [21]
calculated for 58V). Also, only in the case of an oblate shape, the down-sloping [404]9/2+

orbital is likely to be occupied by neutrons. The levels deduced in Fig. 4 beneath 503
keV could result from a mixture of prolate and oblate states. While moving to 60Cr, the
g.s. con�guration may have a large contribution of �(g9=2)

2 con�gurations. In fact, the
energy required to promote two neutrons in g9=2 (1.006 MeV) is very similar to the gain
in pairing energy when coupling two neutrons in g9=2 as compared to p1=2 (1.3 MeV from
[24]).
From the decay of 60V, of 122(18)ms half-life, a strong transition has been observed at

646(1) keV, corresponding probably to the 2+ ! 0+ transition in 60Cr. This 2+ energy
is much lower than that of the isotones 66Zn, 64Ni and 62Fe at 1039, 1345 and 877 keV
respectively (see Fig. 4,5). This energy decrease indicates that Cr nuclei develop more
collectivity than Fe ones. This isotope resides at a half occupancy of �f7=2 shell, and the
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four protons above Z=20 are �lling two downsloping orbitals in the Nilsson picture as
the deformation parameter is increased. We remind the case of the 48Cr isotope whose
deformation has been clearly established [26]. Its 2+ energy is at 752 keV. Also, an
energy gap at a large oblate deformation is expected at a neutron number N=36. This
gap would favor oblate shape, as it is observed in 74Kr [27]. The 60Cr exhibits both
a proton and neutron number associated with deformed prolate and oblate structures,
respectively. There is therefore a strong -though qualitative- support for the presence of
a shape coexistence in 60Cr

61V and 62V half-lives have been measured for the �rst time [12]. With the very weak
number of implanted nuclei in this experiment (776 and 51 for 61V and 62V), no -line has
been found in their beta-decay. A very recent experiment at GANIL has produced about
1000 62V using the fragmentation of a 76Ge beam instead of a 86Kr one. The strongest
-line observed in its decay has an energy of 446keV. This line can be attributed to the
2+ energy of 62Cr (see Fig. 6). This very preliminary results, if con�rmed, establishes the
increase of deformation of Cr towards N=40 subshell. On the basis of the low 2+ energies
in 60;62Cr and the signi�cant drop of 2+ energy in 66Fe40 [15], it is very likely that 64Cr
would be the most deformed N=40 nucleus (see below for further discussions on 64Cr).
The decay curves of 61�64Cr extracted from [12] are presented in Fig. 3. For 61�63Cr,

these determinations are in good agreement with those of Ameil et al. [22]. For the case
of 61Cr, a half-life of 251(22) ms is obtained. A grow-up is present in the decay curve
of 62Cr, which is not mentioned in. [22]. This behaviour can be explained if the half-life
of the daughter nucleus 62Mn is shorter than that of 62Cr. The beta-decay of 62Cr, of
187(15)ms half-life, proceeds through a 1+ level in 62Mn which subsequently �-decays to
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62Fe with a half-life of 92(13)ms. It is interesting to notice that this short decay-time of
62Mn is in contradiction with the values of 880(150)ms and 671(5)ms measured in the
decay of 62Mn by Runte et al. [28] and Hannawald et al. [15] respectively. This means
that the beta-decay of 62Cr proceeds through a di�erent state in this case. The former
experiments [28,15] may favor the production of 62Mn in a high spin state which is not fed
by �-decay of 62Cr and for which the � half-life is much longer. When re-analyzing their
data without requiring the �-neutron coincidence for the determination of the half-life
but only �-singles, a short decay-component of 84(10)ms [29] has been found on top of
the long component of 671(5)ms by Hannawald et al. From the data of ref [12], a half-life
of 113(16)ms has been deduced for 63Cr, in agreement with the value of 110(70)ms [22].
No -line has been observed far now. The 64Cr half-life, T1=2= 44(12) ms, is determined
for the �rst time. The half-life of 64Cr is of importance since this nucleus lies at the N=40
subshell closure.
It is interesting to apply QRPA calculations [30] with a choice of several deformations

parameters to the �-decay of the neutron-rich 63;64Cr isotopes. From the \best agreement"
between calculated and experimental half-lives, the deformation of nuclei can be extracted
as done in [31,21,12]. The g.s. con�guration of 63Cr is predicted to be prolate �2=0.3, the
spherical con�guration being at 290 keV higher in energy. The daughter g.s. minimum is
also predicted to be prolate with �2=0.267. By using �2=0.283, the mean value between
the predicted mother and daughter deformation, the calculated T1=2 is 109 ms, using a
Q�-value of 11.16 MeV predicted by [32]. This Q� is close to the prescription of Audi et
al. [33] of 11.225�0.752 MeV. The calculated value T1=2=109ms is in agreement with the
experimental value of T1=2=113(16)ms. From this comparison, it is deduced that 63Cr39 is
strongly deformed. For 64Cr, it is unfortunately impossible to deduce pertinent informa-
tion on the deformation from these calculations since there is large discrepancy between
calculated Q�. Values of Q�= 8.03, 9.75 and 10.49 MeV are predicted by M�oller [32],
Pearson et al. [34] and Audi et al. [33] respectively. As a consequence, half-lives obtained
with the lower Q� of 8.03 MeV are, at a given deformation parameter, about three times
longer than those obtained with the Q� of 10.49 MeV, keeping a �xed deformation param-
eter. The determination of masses in this region is therefore required in order to reduce
the uncertainties on the Q�-values. The di�erences between the mass models arise from
the way authors consider or extrapolate the subshell-closure behaviour at N=40. The 2+

energy of 64Cr, which could be obtained from the �-decay of 64V is of crucial importance
to ascertain the strong deformation of 64Cr, which is hitherto suggested by qualitative
arguments only.

5. Conclusions and perspectives

Experimental results aiming to study the N=40 subshell via the �-decay of Co, Mn and
V-Cr have been presented. They have brought a wealth of information on Ni, Fe, and
Cr isotopes at or south to the N=40 subshell closure. Complementary information from
�s-isomers and �-decay isomers studies have been included to help in the assignments for
these weakly produced nuclei. The presence of isomers principally originates from the g9=2
intruder orbital which lies right on top of the fp valence space. The implications of this
intruder orbital, provided the experimental results in Coulomb excitation [5], �s-isomers
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decay and �-decay studies, are at least threefolds:
- the di�erence in parity between fp valence space and g shell drastically reduces the

possibility of making quadrupole excitations (2+ is of positive parity) across N=40 in 68Ni.
This explains both the high 2+ energy of 68Ni and its weak B(E2) [5].
- the high pairing energy in g9=2 orbital as compared to p1=2 drastically reduces the

e�ective strength of the energy gap at N=40, the single particle energy-gap being of the
same range as pairing gap (section 2).
- for neutron-rich Cr nuclei which reside at mid-�f7=2 occupancy, deformation is favoured

by the combined e�ects of downsloping �f7=2 and �g9=2 substates as the deformation of the
nucleus is increased. As a result, nuclei south to 68Ni are progressively deformed (sections
3,4).
The predicted strengthening of the N=40 subshell-gap with the increase of isospin [1] is

probably not strong enough to overcome the deformation in 64Cr. However only qualitative
arguments supports the occurence of a strong deformation since the 2+ energy of 64Cr has
not been determined so far, and theoretical models di�er when predicting its g.s. shape
(�2=0. for [32] and �2=0.257 for [34]). In ref. [23], a deformed con�guration with �2=0.283
is expected to lie only 260keV above the g.s. con�guration.
With future radioactive beams facilities, one should be able to study 60Ca40 nucleus,

which would be the good candidate for searching the appearance of new doubly magic
nuclei arising from substantial modi�cation of mean-�eld potential with large neutron-
enrichment.
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