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Abstract

In medical radiation physics, an increasing number of Monte Carlo
codes are being used, which requires intercomparison between them to
evaluated the accuracy of the simulated results against benchmark experi-
ments. The Monte Carlo code EGS4, commonly used to simulate electron
beams from medical linear accelerators, was compared with GEANT3 and
MCNP4b. Intercomparison of electron energy spectra, angular and spatial
distribution were carried out for the Siemens KD2 linear accelerator, at
beam energies of 10 and 15 MeV for a �eld size of 10�10 cm2. Indirect
validation was performed against electron depth doses curves and beam
pro�les measured in a MP3-PTW water phantom using a Markus planar
chamber. Monte Carlo isodose lines were reconstructed and compared
to those from commercial treatment planning systems (TPS's) and with
experimental data.
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1 Introduction

Monte Carlo (MC) simulation is regarded as a precise technique for radiother-

apy and radiation dosimetry. In this �eld, Monte Carlo codes can be use to

characterize electron or photon beams produced by clinical linear accelerators.

While photon beams are used to deep-seated radiation therapy, electron beams

are used for super�cial pathologies due to their dose deposition characteristics.

EGS [1] is the most used MC code for electron beam simulation, and the

results it provides are well established against experimental data. MCNP4b [2],

due to the enhanced electron physics, is also currently used for electron beam

simulation. In the present work, EGS4 has been compared with MCNP4b and

GEANT3 [3]. This code, although used for hadron-therapy, has been less bench-

marked for conventional radiotherapy. It was found that electron transport

simulations are sensible to �ne details of accelerator geometry and to di�erent

electron transport algorithms [4]. This motivates the intercomparison between

di�erent codes. For this purpose, two di�erent intercomparison stages have

been considered. First stage comprehended spatial and angular distribution

simulations for electrons and contaminant photons along the accelerator head.

In the second stage, indirect validation of these results have been performed

against experimental central axis depth dose curves and pro�les measured in

water. However, the information provided by the simulation of the central

depth dose curves is not suÆcient to fully characterize the spatial radiation

distribution produced by the beam. In clinical practice, calculation of radi-

ation dose distributions is performed by treatment planning systems (TPS's)

through the display of isodose lines, so a two dimensional method of represen-

tation was required for more accurate results. Reconstructed isodose lines from

the simulation results of EGS4, MCNC4b and GEANT3 have been compared

with commercially available TPS's, and experimental results.

2 Materials and Methods

A Siemens KD2 in electron mode with a square applicator of 10�10 cm2 for

10 and 15 MeV nominal energies was simulated. Detail technical construction

data was kindly provided by Siemens AG Medical Engineering. During prelim-

inary simulations, energy tuning was performed for the incident electron beam.

Identical values were then use in all MC codes and electron sources were as-

sumed to be point-like and monoenergetic. Along the beam line, phase space

distributions were obtained at pre-determined planes, stored into data Ntuples

and intercompared using PAW software package [5]. Energy values for photons

and electrons cut-o�s were the same for all codes, respectively 10 and 700 keV

(total energy) in the accelerator head, and 10 keV and 521 keV in the water

phantom.

The experimental data, depth doses and pro�les, were obtained in a MP3-PTW

water phantom using a Markus planar chamber.



Water Phantom

Applicator

Secondary
Collimators

Scattering Foils

Figure 1: Siemens KD2 displayed in GEANT 3.21

2.1 GEANT3 Code

Originally designed for detector simulation in High Energy Physics, GEANT3

features cross-sections for physical processes spanning a wide energy range. In

simulations, user selection of tracking parameters were used. Maximum frac-

tional energy loss due to continuous processes in an electron step, DEEMAX,

was chosen to be a material-dependent parameter. After preliminary runs

DEEMAX was set to 0.3% { 0.5% (high-Z materials) and 1% (low-Z materials).

Built-in variance reduction techniques, such as electron range rejection, were

switched o� for this set of results. By default, GEANT3 simulates hadron-

photon-lepton coupled transport. In order to decrease total CPU time only

relevant electromagnetic process to low energy photon-electron simulation were

included: photoeletric e�ect, Compton scattering, pair production, positron

annihilation and bremstralhung photon production. Energy loss straggling for

charged particles was accounted by explicit generation of Æ-rays. Below the

threshold for charged secondaries particle production, continuous energy uc-

tuations were sampled from a restricted Landau distribution. In GEANT3 an

interactive graphics interface, capable of displaying 3D geometrical setup (see

�gure 1) and particle transport on real-time is also available.

2.2 EGS4 User Code

The accelerator head was modeled with an EGS4 User Code, using a general

purpose geometry package previously developed [6]. This User Code contains

also several auxiliary subroutines used for I/O operations, histogram booking

and scoring.

The PRESTA electron transport algorithm was switched o�. Maximum

fractional energy loss due to continuous processes, ESTEPE, was set to 0.5%



in the accelerator and 1% in the water phantom. Since EGS4 does not account

for continuous energy loss straggling, lower thresholds were used for secondary

particle production (AE and AP). This option is required to account for the

correct energy distribution on the �nal electron beam. Thresholds values were

set to 521 keV (total energy) for electrons (AE) and 10 keV for photons (AP).

For dose calculations, in the water phantom, AE was set to 512 keV [7].

2.3 MCNP4b Code

Concerning this work the enhanced electron physics, to the level of ITS-3, is

the most important aspect of the MCNP4b. It takes into account collision

energy loss straggling (Landau), angular distributions with partial sub-step

to boundary, forward scattering and energy indexing. The tabular region is

increased in resolution and an analytic asymptotic form of treatment is used

for large energy losses. Material and energy dependent cut-o�s are applied to

obtain the correct mean energy loss; the Gaussian width is empirically corrected

following Seltzer [8]. To obtain the dose values that allowed to draw the isodose

curves the water phantom was divided into small cells using the lattice capacities

of MCNP. Due to the very small dimensions of the scoring cells, particularly

along the beam axis, special attention has been put on the number of the

electron sub-steps. For this purpose, ESTEP parameter was set at 15 and 25

for electron source energy of 10 MeV and 15 MeV, respectively.

3 Results and Discussion

3.1 Accelerator simulation

Phase space distributions were obtained at the end of scattering foils, secondary

collimator and electron applicator. Intercomparison has focused electron and

photon energy spectra and polar angular distributions. Plots were normalized

to total number of simulated events. Overall agreement is good at the di�erent

planes. Electron energy and polar angular distribution at the phantom surface

are present in �gure 2.

3.2 Phantom Simulation

Although the agreement between EGS4, MCNP4b and GEANT3 was achieved

in a great extent along the beam line, �nal validation was performed in water.

Central axis depth doses and pro�les at several depths have been simulated and

compared with experimental data. Scoring volumes were chosen with dimen-

sions similar to the Markus planar chamber. In �gure 3, 10 and 15 MeV depth

dose curves are shown. Each curve was normalized at maximum dose on the

central axis. Agreement in depth dose curves achieved by EGS4 and GEANT3,

for the two energies, were at the 1% level. It was found that MCNP4b slightly

underestimates dose deposition at larger depths, demonstrating an adjustment

to experimental points identical to the one obtained by Jeraj et al [9]. For

isodose reconstruction, dose values were scored on a 3D cross-plane grid, �lled
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Figure 2: (a) Electron energy spectra and (b) polar angular distribution at
phantom surface, for a 10�10 cm2 square �eld at 10 MeV nominal energy

with voxels. Using a linear interpolation algorithm available in PAW, points

with equal dose were join. The curves were normalized to 100% at depth of

maximum dose on the central axis. Monte Carlo isodose lines were then com-

pared with experimental data. From �gure 4(a), EGS4 and GEANT3 were

found to be in close agreement with each other and the experimental points.

Disagreement for MCNP4b at the 10% isodose line is related with di�erences

shown in the simulated central axis depth dose curve. For all MC codes lateral

adjustment is less than 1 mm, denoting a good agreement with experimental

beam pro�les and a clearly de�nition of the �eld edges.

Data for 10 and 15 MeV isodose lines were calculated with two current

commercial TPS, PLATO (version 2.2.15 from Nucletron) and TMS (version

5.0A from HELAX). These lines were then reconstructed with PAW algorithm.

Isodose curves from PLATO and TMS were compared with GEANT3. The

good agreement at the central axis seen in �gure 4(b), indicates that electron

depth dose curves are usually very well calculated by TPS's. However, a quite

di�erent behavior is demonstrated at the �eld edges, namely concerning one of

the systems and mainly for the lower level isodose curves (below 50%). Indeed,

for the PLATO system, the process of commissioning and validation includes,

after the input of the basic data (depth dose curves and output factors for each

�eld size), the adjustment of the initial angular spread parameter. This param-

eter has been adjusted for each energy, in order that the best �t corresponds to

the higher level isodose curves - calculated isodose widths at the maximum dose

depth, should coincide as much as possible with the experimental and simulated

ones (arrows) downgrading the adjustment for lower isodose lines.
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Figure 3: Comparison between experimental and simulated central axis depth
doses for 10 MeV (a) and 15 MeV (b) nominal energy

4 Conclusions

From the comparison with the Monte Carlo code EGS4, it was found that

GEANT3 is a reliable system with excellent capabilities for clinical electron

beam simulations. Unclari�ed di�erences in depth dose curves calculated with

MCNP4b a�ect the adjustment of lower isodose lines. However, comparisons

along the accelerator head at di�erent levels reveals a good agreement with

GEANT3 and EGS4. This kind of study is very important for the therapeutic

use of electron beams. Indeed, quite frequently in clinical practice, several

electron �elds are used together covering extended regions of the patient skin

(for instance along a scar). For decision on �eld separation, a good dosimetric

description at the beam edges and shallow depths is crucial in order to determine

the homogeneous dose distribution. The isodose con�guration calculated in

super�cial depths by treatment planning systems, would predict an erroneous

overdosage for two adjacent beams at the skin level. On the other hand, both

experimental and MC results show an isodose con�guration at the beam edges

enabling the adjacency of two �elds without overdosage in depth.
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Figure 4: (a) 10 MeV Monte Carlo reconstructed isodose curves compared with
experimental data. (b) Isodose curves from PLATO and TMS compared with
GEANT3
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