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We show that the characteristic p⊥ spectrum yields valu-
able information for the test of models for the production of
narrow graviton resonances in the TeV range at LHC. Fur-
thermore, it is demonstrated that in those scenarios the par-
ton showering formalism agrees with the prediction of NLO
matrix element calculations.
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I. INTRODUCTION

The search for particles beyond the Standard Model is
one of the key issues of the upcoming ATLAS and CMS
experiments at LHC. If these particles are generated from
quarks and gluons, characteristic signatures are expected
from genuine QCD effects such as parton showering. As
a specific example we study the narrow graviton reso-
nances predicted by the Randall-Sundrum model [1]. As
opposed to the concept of Large Extra Dimensions [2],
where a continuous spectrum of Kaluza-Klein states is
predicted, the Randall-Sundrum model predicts a series
of narrow heavy graviton resonances. Both models lead
to a modification of the gravitation potential at small
distances R. While in case of two large extra dimen-
sions the precision reachable at LHC (R = 4.5 µm [3]) is
roughly comparable to present mechanical experiments
(R = 218 µm [4]), signatures for the Randall-Sundrum
type of gravitons can only be seen in TeV-scale collider
experiments.

Recently, in the context of the Randall-Sundrum model
the signatures of narrow graviton resonances at TeV-
scale have been studied in Ref. [5]. Here the processes
gg → G → e+e− and qq̄ → G → e+e− are of interest as
their leptonic final states provide a clean and simple way
to identify the heavy graviton resonance G. The main ex-
perimental signature for such a spin-2 graviton resonance
is the characteristic angular distribution of the produced
e+e− pair. As the extraction of the angular distribu-
tion is quite difficult even with high luminosity, further
characteristic signatures are desirable to make conclusive
statements.

One possibility of such a complementary signature is the
p⊥ spectrum (p⊥ is the transverse momentum with re-
spect to the beam direction) of the reconstructed gravi-

ton resonance G. The production mechanism is given by
a characteristic mixture of gg and qq̄ fusion processes.
As those processes are highly energetic, the initial-state
partons will radiate off a large amount of other partons,
leading to a p⊥ spectrum which is different for gg and qq̄
initial states. Especially, the larger color charge of the
gluon will lead to more radiation and a larger average p⊥
in the former process. So by studying the p⊥ spectrum,
one can check the ratio of qq̄ and gg events producing
the resonance in question and compare that to the predic-
tion of a certain model, in our case the Randall-Sundrum
model.

II. PHYSICAL SUBPROCESSES

The partonic subprocesses of interest to discover the
narrow graviton resonance G are gg → G → l+l− and
qq̄ → G → l+l−, as depicted in Fig. 1 a,b. The rele-
vant Standard Model background is the l+l− pair pro-
duction from virtual Z0 bosons and photons, see Fig. 1
c,d, and their interference. The interference with the nar-
row graviton resonance can be completely neglected since
the mass of the graviton, if existent, has to lie far above
the Z0 mass.
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FIG. 1. Signal and Standard Model background processes
for the graviton resonance production.

For the cross sections (a) and (b) of the processes
depicted in Fig. 1 we reproduce in accordance with
Ref. [6,7]:
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Here we define as in Ref. [6] x = t/s. We set in ac-
cordance with Ref. [5] κ =

√
2x1k/(M̄PlmG), where

k/M̄Pl = 0.01 and x1 = 3.8317 is the first zero of the
Bessel function J1(x) of order 1. Higher zeros of the
Bessel function J1(x) generate the series of heavy gravi-
ton resonances that the Randall-Sundrum model pre-
dicts. In the analysis here we will, however, restrict our-
self to the first one. The total width ΓG of the spin-2
graviton G with mass mG is determined by the sum of
the following partial decay widths [5,7]:

Γ(G → V V̄ ) = δ
κ2m3

G
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(
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V is a massive vector boson (V = Z0, W±) with mass mV

and rV = m2
V /m2

G. For identical particles δ = 1/2 and
for distinguishable particles δ = 1. f is a fermion with
mass mf and Nc its number of colors, if there are any,
otherwise Nc = 1. Furthermore, we set rf = m2

f/m2
G. In

case of the width Γ(G → V V̄ ) we reproduce the result of
Ref. [5], in all other cases the ones of Ref. [7].

III. EVENT GENERATOR IMPLEMENTATION

In order to study graviton production in a reason-
ably realistic framework, a single excited graviton G has
been introduced to the Pythia 6.1 event generator [8].
The G mass and the dimensionless coupling parameter
κmG =

√
2x1k/M̄Pl can be set freely. Partial decay

widths are given as above, and add up to a total width
used for the resonance Breit-Wigner. The production
processes gg → G and qq̄ → G are included, with relevant
angular distribution for the subsequent decays of G to a
fermion pair (while other decays currently are isotropic
only). The basic process is embedded in the standard
Pythia framework of initial- and final-state QCD parton
showers, underlying event activity (multiple interactions
and beam remnants), fragmentation to hadrons and un-
stable particle decays. For G decays to lepton pairs, the
most notable effect may be the initial-state radiation of
gluons off the incoming quarks and gluons, that gives a
p⊥ recoil to the produced G.

IV. SIMULATION OF THE CHARACTERISTIC
P⊥ SPECTRUM

We present as an example a simulation for the ATLAS
experiment at LHC with Ecm = 14 TeV. In the following

we have to investigate how well the hypothetical gravi-
ton mass can be reconstructed from the lepton pairs. A
comprehensive study using the ATLFAST program [9]
has been performed in Ref. [5] for e+e− pairs. Here we
want to add the experimental width for µ+µ− pairs. For
the graviton masses we use the same mass window as in
Ref. [5], i.e 500 GeV < mG < 2200 GeV. As mentioned
in Ref. [5] it will not be possible to detect gravitons with
masses larger than about 2200 GeV at the ATLAS exper-
iment in the scenario discussed here. On the other hand,
already existing bounds limit the minimum graviton mass
to mG > 500 GeV [10]. It should be noted that the choice
for the coupling constant lies on the lower edge, in fact
the allowed region favors rather k/M̄Pl = 0.1 than 0.01
[10] leading to a cross section which would be two order
of magnitudes larger than the one we have assumed here,
but then the graviton resonances would be no longer nar-
row. In this sense our estimates are conservative. As we
are only interested in the principle effect we use here an
approximative parameterization for the resolution of the
ATLAS detector. For the electrons the following formula
is used (see Ref. [11] pp. 114-115):(

σ(E)
E

)2

electrons

≈ (0.1)2 GeV
E

+ (0.005)2 . (3)

For the the muons, the combined ATLAS detector reso-
lution for p⊥ measurement, using both the muon spec-
trometer and the inner tracking detectors, is about 2%
below p⊥ = 100 GeV, about 4% at 300 GeV and about
7% at 1000 GeV (see Ref. [11] p. 242).

FIG. 2. Graphical representation of the mass resolution Γm

of the ATLAS detector for narrow graviton resonances with
mass mG reconstructed from e+e− and µ+µ− pairs for the
ATLAS detector.

Furthermore, in order to have realistic trigger condi-
tions, we take e+e− pairs into account only if both of
them have a pseudorapidity |η| < 2.5. Both of them
must in addition have a transverse energy larger than 20
GeV, or one of the two electrons has to have an E⊥ of at
least 30 GeV (see Ref. [11] p. 392). For the muon pairs we
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adopt corresponding conditions: both of them must have
a pseudorapidity |η| < 2.4, and both must have a trans-
verse momentum p⊥ larger than 6 GeV or one of them
must have a p⊥ of at least 20 GeV (see Ref. [11] p. 392).
The number of muon-pair events is thus originally larger
than the number of electron-pair events. The limited de-
tector resolution leads to a smearing of the reconstructed
graviton mass which can be fitted by a Gaussian distri-
bution. The width of this Gaussian distribution defines
the experimental width Γm. Fig. 2 shows the experi-
mental graviton-mass resolution Γm reconstructed from
e+e− and µ+µ− pairs using the parameterizations given
above. The values presented here for the e+e− pairs agree
roughly with the ones shown in Ref. [5] using the ATL-
FAST routine.

FIG. 3. p⊥ spectrum for mG = 500 GeV (top) and
mG = 2000 GeV (bottom). In the figure is shown
the Standard Model background from γ, Z0 production
(dashed-dotted) line, the gg contribution (dashed line) and
the qq̄ contribution (solid line).

It has to be stated that in all cases the experimen-
tal width exceeds by far the physical width given by
the lifetime of the graviton resonance [5]. But this is
inessential for the forthcoming simulations as the results
depend only weakly on the precise value of the exper-
imental width and, furthermore, in this paper we only
intend to show the principal effect. As a result, it is seen
that the resolution for the electrons is nearly an order of

magnitude better than for the muons, therefore, in the
following we will concentrate ourselves on the electrons
only. Only in cases where the statistical error will over-
whelm the experimental resolution the muons might pro-
vide additional evidence. As a next step we simulate the
p⊥ spectrum for the two hypothetical graviton masses
mG = 500 GeV and mG = 2000 GeV. For the simula-
tions we use the width from Fig. 2. The p⊥ distribution
is created from initial-state parton showering only. The
final-state parton shower complicates the situation only
through photon bremsstrahlung. We have checked that
these latter effects are small.

Fig. 3 shows the p⊥ spectrum for mG = 500 GeV (top)
and mG = 2000 GeV (bottom) split in the contribu-
tions gg → G → e+e−, qq̄ → G → e+e− and the Stan-
dard Model background qq̄ → Z/γ → e+e−. To reduce
the Standard Model background a window of 3 × Γm

around the resonance maximum is taken. It is seen that
for smaller resonance masses the contribution from gg
fusion becomes dominant, but in both cases the max-
imum of the p⊥ spectrum for the processes with a qq̄
initial state (including the SM background) lies at con-
siderable smaller values than the one for the gg-fusion
process. Therefore, the characteristic shape of the p⊥
spectrum allows to draw conclusions about the ratio of
qq̄ versus gg-processes and provides a cross check whether
the underlying theoretical model is correct.

FIG. 4. Average p⊥, i.e.
√
〈p2
⊥〉, versus the graviton mass

mG. The open circles show the average p⊥ for the qq̄ → G
process, the full circles for the the gg → G process, and the
open squares for the Standard Model background qq̄ → Z/γ.
The triangles show the total average p⊥ for all processes in-
cluding the Standard Model background, with error bars for
a luminosity of L = 100 fb−1.

To quantify this we regard in Fig. 4 the average p⊥, i.e.√〈p2
⊥〉. The triangles show the total average p⊥, where

all processes including the SM background contribute.
For the errors we use the parameterization in Eq. 3 for
the electrons plus a statistical error given by the root of
the number of events. For the simulation we assume a
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luminosity of L = 100 fb−1. This is the high luminos-
ity planned for the ATLAS detector [11]. One sees that
even for the highest mass values for the graviton mass,
i.e. mG = 2200 GeV the pure qq̄ fusion hypothesis lies
outside the 1 σ range of the combined qq̄ and gg fusion
hypothesis. Furthermore, one observes that for values
smaller than mG = 1200 GeV the gg fusion is so domi-
nant that the total average p⊥ nearly coincides with the
one of gg fusion only. The average p⊥ of the Standard
Model background alone lies a bit above the qq̄ → G pro-
cesses. The difference between the two qq̄-induced pro-
cesses mainly comes from the qq̄ → Z/γ parton shower
being matched to first order matrix elements at large p⊥
[8]. A careful study of the p⊥ spectrum as a whole will
be very helpful to distinguish possible Randall-Sundrum
graviton resonances from pure qq̄ based exotic resonances
like a Z ′.

The characteristic features of the p⊥ spectrum may also
be at help to enhance the angular distribution of the
gg → G → e+e− channel relative to the qq̄ → G → e+e−

channel by cutting out e+e− pairs with low p⊥. The full
information content is available in the doubly differential
distribution of p⊥ and e+e− decay angle together (Eq. 1).
A complete analysis of this issue, e.g. using a likelihood
analysis is, however, beyond the scope of this article.

V. MATRIX ELEMENTS VERSUS SHOWERING
FORMALISM

The p⊥ spectrum described in the previous chapter has
been generated by the parton showering formalism. As
this is only an approximation, it is important to check
how well it models the description by a full matrix ele-
ment calculation. For this purpose we consider the next
to leading order graviton production matrix elements.

k1

k2

k j

k2

k1k1

k2

k j

k jk1

k2

k1 k j

k2

k jk1

k2

k1

k2
k2

k j

k1

k j

k j

g

g

Gq

q

q

q

g

gg

g G

g
G

g g g

gg G

g

g

G

g

G

q

q

q

q

g

G

G

FIG. 5. NLO amplitudes for the resonance production of
gravitons G, with the subprocesses gg → Gg (top) and
qq̄ → Gg (bottom).

Fig. 5 shows the NLO contributions to graviton pro-
duction for the processes g(k1) + g(k2) → g(kj) + G and
q(k1) + q̄(k2) → g(kj) + G. For the Mandelstam vari-
ables we define s = (k1 + k2)2, t = (k1 − kj)2, and
u = (k2 − kj)2, see Fig. 6, where kj denotes the mo-
mentum of the outgoing parton jet. Then we have the

relation m2
G = s+t+u. In the following we use the short-

hand notation k = k1+k2. The gluon polarization tensor
is noted by εAρ(kj) and the graviton polarization tensor
by εµν(kgr), where kgr = k − kj is the graviton’s four-
momentum. For the processes qq̄ → Gg the amplitude
reads:

Mqq̄→Gg =
i

2
gκv̄(k2)tA

[
1
t
γµ(k/1

− k/j
)γρk2ν

+
1
u

γρ(k/2
− k/j

)γµk1ν − 2
s
γσ

(
k · kjgµρgνσ

+gρσkjµkν − gµσkjνkρ − gµρkjσkν

)

+gµργν

]
u(k1)εAρ(kj)εµν(kgr) . (4)

Here we reproduce the results of Ref. [7]. For the differ-
ential cross section we obtain in agreement with Ref. [6]:
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=
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+
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+
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c
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The cross sections for the processes qg → qG and q̄g →
q̄G can be obtained from this by a simple rotation of the
Mandelstam variables:

dσqg→Gq

dt
=

dσq̄g→Gq̄

dt
=

αsκ
2

64s2Nc
F (t, s, u) . (6)

j

G G

g

gq

j q(q) q(q)q1 1

22

FIG. 6. Definition of the Mandelstam variables for the pro-
cesses qq̄ → gG (left) and qg → qG, q̄g → q̄G (right).

For the amplitude of the process gg → Gg one gets
using gauge invariance (where the gauge dependent terms
of the inner gluon propagator vanish identically):

Mgg→Gg =
κg

2
fABC

{
1
t
G σ

αβ (kj ,−k1, k1 − kj)
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×[k2 · (k1 − kj)Cµν,ρσ + Dµν,ρσ(k2, k1 − kj)]

+
1
u

G σ
ρα (−k2, kj , k2 − kj)

×[k1 · (k2 − kj)Cµν,βσ + Dµν,βσ(k1, k2 − kj)]

+
1
s
G σ

βρ (−k1,−k2, k1 + k2)

×[−kj · (k1 + k2)Cµν,ασ + Dµν,ασ(−kj , k1 + k2)]
+[Cµν,ρβ(k2 − k1)α + Cµν,ρα(−kj − k2)β

+Cµν,βα(k1 + kj)ρ + Fµν,ρβα(k2, k1,−kj)]

}

×εαA(kj)εβB(k1)ερC(k2)εµν(kgr) . (7)

Here the following definitions are used:

Cµν,ρσ = 2gµσgνρ

Dµν,ρσ(k1, k2) = −2(gµσk1νk2ρ + gµρk1σk2ν

−gρσk1µk2ν)
Fµν,ρσλ(k1, k2, k3) = 2(gµλgρσ(k1 − k2)ν

+gµρgσλ(k2 − k3)ν

+gµσgλρ(k3 − k1)ν)
Gρσλ(k1, k2, k3) = gρσ(k1 − k2)λ + gσλ(k2 − k3)ρ

+gλρ(k3 − k1)σ . (8)

Furthermore, for the spin-sums over the polarization ten-
sors one gets:

5∑
s=1

εs
µν(kg)ε∗sρσ(kg) = η̃µρη̃νσ + η̃µσ η̃νρ − 2

3
η̃µν η̃ρσ

η̃µν = gµν − kgµkgµ

m2
G

3∑
s=1

εsA
µ (ki)ε∗sB

ν (ki) = δAB

(
−gµν +

kiµniν + kiνniµ

ki · ni

)

ni · ni = 0; (i = 1, 2, j) . (9)

For the partonic cross section for the process gg → Gg
we obtain then in agreement with Ref. [6]:

dσgg→Gg

dt
=

Ncκ
2αs

4s2(N2
c − 1)

[
− 4(s + t + u)

+
(s2 + t2 + u2 + st + su + tu)2

stu

]
, (10)

which shows the symmetry under the exchange of all
three gluons with each other. These cross sections are
implemented into the event generator Pythia 6.1 as well.
Next we consider the ratio of the NLO matrix elements
versus the LO matrix elements plus parton showering.
For p⊥ values larger than 100 GeV where soft effects and
NNLO contributions are negligible this ratio should ac-
tually become equal to one in a certain range. Below

100 GeV a resummation procedure would have to be ap-
plied to tame the p⊥ → 0 divergence of the NLO matrix
elements, as is already implicit in the shower formalism.
The situation is slightly complicated by the fact that the
basic subprocesses that initiate the parton showering pro-
cesses are only qq̄ → G and gg → G, see Fig. 1, whereas
the NLO matrix elements contain processes with qg and
q̄g initial parton states as well.

G

g

q

q

q

q

g

G

(b)(a)

FIG. 7. Assignment of qg → qG (q̄g → q̄G) processes in
the parton shower formalism. The figure shows a qg → qG
process containing a qq̄ → G vertex (a) and a gg → G vertex
(b).

The shower branchings effectively induce such initial
states, see Fig. 7, so there is no fundamental conflict, but
more a practical issue of comparing different classification
schemes. In general, one would have to share the qg/q̄g
NLO contributions between the qq̄ and the gg shower
processes.

FIG. 8. Comparison of matrix elements versus parton
showering for the qq̄ graviton production. Displayed is ra-
tio of the NLO qq̄ → Gg cross section versus the LO cross
section qq̄ → G plus parton showering.

We note however, that a qg → qG graph with a
gg → G vertex (Fig. 7b) would receive contributions from
t-channel gluon exchange, while the same graph with a
qq̄ → G vertex (Fig. 7a) would instead contain u-channel
quark exchange. The fact that the qg → qG cross section
is strongly peaked at small t, and not at small u, indicates
that qg → qG predominantly contributes to the gg → G
graph and only little to qq̄ → G. Fig. 8 shows the ratio
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σ(qq̄ → Gg)/σ(qq̄ → G + PS) versus p⊥. It is seen that
for p⊥ lower than 400 GeV we find a good agreement be-
tween NLO matrix elements and the LO+parton shower,
as the ratio here is nearly equal to one, as predicted by
the reasoning above.

FIG. 9. Comparison of matrix elements versus parton
showering for graviton production involving gluons. Dis-
played is the ratio σ(gg → Gg)/σ(gg → G + PS) (top) and
(σ(gg → Gg) + σ(gq → Gq) + σ(gq̄ → Gq̄))/σ(gg → G + PS)
(bottom).

Fig. 9 shows that it is also reasonable to assign the
qg/q̄g mixed initial states to the gg → G plus shower pro-
cesses: If we only consider the ratio σ(gg → Gg)/σ(ggG+
PS) one sees that in the range 100 GeV < p⊥ < 400 GeV
the matrix elements account for only 50% of the whole
cross section coming from parton showering at some val-
ues of p⊥. If one adds the quark-gluon matrix elements,
however, the ratio is nearly equal to one up to 600 GeV.
Therefore we find that the parton showering formalism is
in good agreement with the cross section given by NLO
matrix elements in the p⊥ range between 100 GeV and
400 GeV. Below 100 GeV the shower formalism should
give a trustworthy p⊥ spectrum. Then the range we need
for the analysis of the narrow graviton resonances is cov-
ered, see Fig. 4.

VI. SUMMARY

The p⊥ spectrum is a supportive signature for the de-
tection of narrow graviton resonances at LHC. It gives
additional hints on the underlying production processes
and may help to verify or to exclude certain scenarios
such as the Randall-Sundrum model, because it is sensi-
tive to a characteristic mixture of gg and qq̄ processes in
graviton production unique for the corresponding model.
Furthermore, we have shown that the parton showering
formalism at TeV collider energies still gives a correct ap-
proximation of the predictions of matrix element calcula-
tions, so that the approximations in the parton showering
formalism are justified also in this kind of processes yet
experimentally untested.
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