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Abstract

A number of factors which can influence coherent beam-beam
oscillations are studied on the basis of the Vlasov equation: difference in the
intensities and single-particle tunes in the beams; difference in the phase advances
between interaction points; long-range interactions; synchro-betatron coupling due
to betatron phase advance variation in the vicinity of IP, chromatic tune modulation
and crossing angle.

The synchro-betatron coupling appears to have a principal stabilizing
effect; at synchrotron tune values in the neighborhood of half the beam-beam
parameter it provides Landau damping of the discrete spectral lines by overlapping
sidebands; the damping rate being higher with negative chromaticity. At smaller
synchrotron tune values a specific mode of the head-tail damping sets in which is
not sensitive to chromaticity.

Application to LHC shows that with the design values of parameters the
coherent beam-beam oscillations should be Landau damped, probably with the help
of negative chromaticity of a moderate absolute value.
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1 Introduction

In high-luminosity hadron colliders operating in the TeV energy range the coherent beam
dynamics is dominated by the beam-beam interaction. Its nonlinearity introduces large
spreads in the incoherent tunes, exceeding by many times the threshold value needed for
suppression of instabilities that could originate from the beam-wall interaction.

At the same time the opposing beam acts as a reactive impedance shifting tunes of
coherent oscillations. In the case of equal tunes and intensities the coherent tune shift is larger
than the maximum incoherent tune shift giving rise to the discrete spectral lines of coherent
oscillations [1].

When the discrete lines are well separated from the continuum of incoherent tunes the
beam-beam interaction not only fails to produce damping of coherent oscillations but can
even switch off other stabilizing mechanisms. Therefore it is important to better understand
what factors influence the coherent beam-beam modes, why they are seen in some situations
but clearly absent in the others.

First we analyze spectra of uncoupled modes of coherent oscillations. There is a
number of mechanisms which reduce coherence of the beam-beam oscillations bringing the
discrete spectral lines closer to (or even within) the incoherent tune spread.

A new look is taken at already known effects of unbalance in the beam intensities [2]
and split in the single particle tunes [3, 4] and their interference. The explanation is given to
the suppression of coherent beam-beam oscillations, observed in simulationTj&;pnase
advance redistribution between two diametrically opposite interaction points (IPs).

Multiple long-range interactions are considered in the context of the rigid-bunch
model prediction of the possibility to reverse the coherent tune shift in the plane of separation
by cumulative action of a sufficient number of such interactions.

However, in the case of a large tune split between the beams the mode coupling can
lead to excitation of coherent beam-beam resonances of relatively low order, turning the
beam-beam interaction itself into a source of instability. Such possibility is also briefly
discussed in this paper.

The major attention is devoted to the influence of synchro-betatron coupling on the
coherent oscillations. Different mechanisms can bring about such coupling: betatron phase
advance variation along the bunches at IP, which we will refer to as just “ the finite bunch
length effect” for the sake of brevity; chromatic tune modulation; crossing angle.

All these mechanisms produce some dephasing of betatron oscillations leading to a
reduction in coherent beam-beam tune shift. But what is even more important, the synchrotron
sidebands of incoherent tunes can overlap the discrete spectral lines providing Landau
damping.

In order to analyze the effect thfese factors in the framework of the self-consistent
kinetic theory some methodical development is necessary. In Section 2 we derive the
Hamiltonian ofa particleinteraction with a bunch of finite length and arbitrary charge
distribution. In Section 3 we demonstrate with the help of the Lie transform method how the
so-called chromatic head-tail phase appears in the result of the single particle Hamiltonian
normalization. Derivation of the Landau damping rate due to sideband overlap (with
discussion of different approaches) is relegated to Appendix A.

It should be noted that analysis in the present paper is limited to the first order effects,
not only in the deviation of the distribution function from the equilibrium, but in the beam-
beam parameter as well. Also, throughout the paper the emittances of the beams (and optical
functions at IPs in the case of two rings) are assumed equal.
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Figure 1. Sketch of the interaction of two particles.

2 Green’s function of the beam-beam potential

Let us make the conventional choice of the generalized azitatiR as the independent
variable (so that the longitudinal momentum plays the role of the Hamiltonian) and introduce

canonically conjugated coordinates and momenta(x, y, 6), p = (px Py, &), where in the

ultra-relativistic case =s- ct.

In fact we will understand® as normalized time which is common to both beams,
whereas the arc lengthis individual for each beam (certainly the mean rRdif both orbits
are assumed to be equal).

Now let us consider the interaction of two particles belonging to the counter-rotating
bunches. Due to the synchrotron motion the actual collision point (CP) is shifted w.r.t. the
interaction point (IP) of the reference particles by the amount

S =-S,= ﬁ . (2.1)
2
However, limiting ourselves to first order effects in the beam-beam force, we can noticeably
simplify the problem by ascribing the interaction to the position of the reference IP (the
moment of “time”® =6;p) by a similarity transformation [6] which is explained in Fig.1. Up to
the second order in the momenta the actual distance between the particles at CP is expressed
via their coordinates and momenta at IP (marked with an asterisk) as

0, 0 0L 0 oo, PP,
AX=(X +PS) (X +P,S,) =X — X, + > (0,-0,). (2.2)
The variation in momenta due to the interaction is
2r
BD:—B D:_p’ 2.3
pr'= 00, = (2.3)

wherer,, is the classical radius of the particles> 0O if the charges of the particles have the
same sign anth < 0 otherwise)y is the relativistic mass factor.
By ascribing the interaction to the reference IP, we should admit a jump in the particle
coordinates (see Fig.1 right) by
5% = 8x0 = —6pf% . (2.4)
The variations (2.3), (2.4) can be obtained from the elementary interaction
Hamiltonian



H=-2%50-0_)In[x —x, + P P2 pZ(o ~3,)] (2.5)
y IP Xl 2 .

(which gives a correct value of the energy exchange as well). Correspondingly, the interaction
of a particle of th&k-th beam K = 1, 2) with the whole of the counter-rotating bunch can be
described by the Hamiltonian,

“(d, p,6)d*qd®p (2.6)

H = y3 ©5,(6-9,)[G(a, Pld, PIF
dp(6) is the periodicd-function, Nk is the number of particles per bunch arl is the
distribution function of thé-th beam normalized to unity.

Taking into account also the vertical plane we can write for the Green function under
the assumptions made

p+

me K+ PPy -y + LA o)]% 2.7)

By px,y Wwe understand here the full slopes of the trajectories which may incladsing
angles (see next Section). Taking them out explicitly would cast the Green function (2.7) into
the form presented (without derivation) in Ref.[7].

3 Equilibrium state

Let us postulate that there exists the object of stability analysis, an equilibrium state. This
requires that in the absence of perturbati@motion of (almost) all the particles is stable

We will make the even stronger assumption (not necessary in principle)héhat
particle motion is regularin the relevant volume of the phase space. This is indeed a quite
strong requirement in the presence of nonlinear beam-beam force. It means that invariants of
motion | =(I,,l 1) exist which can be used in the construction of the equilibrium

distribution function which we presume to be Gaussian:
Fo= (21_[)3\/ eXF( s_l [I) £= <I_>, V = €4EEs, g__l = (8;1, 8;1, 8;1 . (3.1)

General remark:

The invariantd should be found in a self-consistent way with account of the equilibrium beam-beam potential.
Here we encounter a minor complication since the distribution function in the original variables is not known
yet. However, the distribution function appears only in the integrand so the potential should not be very sensitive
to its form permitting an iterative procedure. Anyway, the error is in the second order in the beam-beam
parameter which we ignore in the present study.

3.1  Nonlinear normal forms
Before starting search for the nonlinear invariahtdet us introducdinear normal form
variables a, related to coordinates and momenta by fornuee e.g. Ref.[8], p.294)

i =y,
X = /&e'(pxaX +c.C., P, = Le¥a, +ec..
2 2B,

0:,/&as+c.c., 5 = a,+c.c.,
2 " 2B,

! Here and afterwards we write down formulas for the horizontal plane only.

(3.2)




where a,, Bx are the Twiss parameters of the lattige; u(0) - vo®, U andv,, being the
betatron phase advance and the single particle inga, R/v |, au and vs being the
momentum compaction factor and the synchrotron tuweQdabove transition).

The linear normal form variables satisfy the Hamilton equations

d 0 d 0 ,
—a =—U, —a =-—U, |=XxY,sS, 3.3
e’ oa  d8 ) oa Y (3:3)
where the bar means complex conjugation, with imaginary Hamiltonian
U=U,+U;, U, :iZVjoajaj, U, =iH,, (3.4)
J

whereH; comprises contribution from the lattice nonlinearities and the beam-beam potential.
Our aim is to find newnonlinear normal form variablesA, =faj, such that the

transformed Hamiltoniak would have the form

V=iy v AA (3.5)
J

with new tunew;, possibly depending on the integrals of motion,
| =lA P, (3.6)

we are looking for. Introducing the phase angles via relations
iy,
Aj :\/ﬂe J (37)

we would obtain the solution of the Hamilton equations in the fgeeonst,y; = v;6.

There is an efficient method of the Hamiltonian normalization, called Deprit's
algorithm, via a Lie-transform. We refer the reader to the excellent book [8] for details and
give here only a few formulas necessary for the following.

The new Hamiltonian to the first orderlh is

V=V,+V, V, :izvjoAjKj, V, =<U, >, (3.8)
I
where the brackets mean implementation of the following recipe: substitute (3&)afud
then perform averaging oveyande.

The first order generating function of thee-transformw; satisfies the homology

equation

in +[w, Vol =V, -Uy, (3.9)
00
where the Poisson brackets were introduced,

of oag of odg
f,gl= = ——
[f.g] Z(GAJ. 0A;  0A 0A

) (3.10)

andU; mustbe again formally understood as a function of the new variahles,
As long asv; commutes withJ; (e.g. wherlJ; contains just one term) no higher order
terms arise and the operator of the inverse Lie-transform can be given in the closed form

Tr=e ™ {(f)g=f.q. (311)



3.2  Head-tail phase

Let us show how the so-called head-tail phase (see e.g. Ref.[9]) appears from the term in the
Hamiltonian which describes thehromatic dependence of the betatron tune and in the
original variables has the form

=03 10 = Ve
XTp©X ZBS

wherev,’ = dv,/ddy.
In this casé/;= 0 and eq.(3.9) gives

(a,—a))aa,, (3.12)

W = (A+A)AA.
\/f vl

The inverse Lie-transform (3.11) reproduces the well-known result for the head-tail phase

a, =TA, =expl- \/2%;|v |(Ag+3g>]AK=/xexp[—;V'X o

(3.13)

(3.14)

3.3  Normalized action-angle variables
In the following we will use the new action-angle variables(l,,l ,1 ), ¢=(¥,,¥,, )

related to thenormal forms by egs.(3.6), (3.7). In these variables the normalized Hamiltonian
can be written as

KW =vf O +(HY), k=12, (3.15)

where we made provision for different parameters of the two beams, the subscript “0” at the
Hamiltonian now means the steady state value (absence of coherent perturbations).
In the steady state the action-angle variables satisfy the following equations of motion

[=0, =vO(1) =y’ +vy), vé?:ai.<HéE’>- (3.16)

Allowing for the horizontal crossing anglep,2and beam-beam offsetg (anddy in the
formulas for the vertical plane) we can express the physical coordinates and momenta of
particles ink-th beam at a given interaction point via the new variables as follows

X =(-D*d, /2+/2B,1, sin[p, + @ (6,) - X0,
p, =a++/21 /B cosf, + ¢ (8,,) - xal, (3.17)
=B siny,, & o =,/21,/B, cosyq,

where we have assumed the betatron function to have no slope at the #0) and
introduced the chromaticity related parameter

Xx=Vv. /(a,R). (3.18)

4 The Vlasov equation

Let us consider now a small perturbation of the steady state and present the distribution
function of thek-th beam as the sum

FO=F +FY. (4.1)

Correspondingly, we have for the Hamiltonian



(k) — K (K) (k)
K® = KO +K®,

ka)(l,@ = z r|0N3—k

IP

(4.2)

3,(8-6,p) [ GRS (1% 4)d*I 4y,

where the Green function is given by eq.(2.7) in which coordinates and momenta should be
expressed via the action-angle variables with the help of eqs.(3.17). The sup&rbaspt
appeared since there is an explicit dependence of the Green function on the beam number in
the case of finite offsets and/or phase advance deviations.

Linearizing the Liouville equations for the two bearksl(2)

0

G E0 4E®0 K0 =0 4.3
8 [ ] (4.3)
w.r.t. F; we come to (the system of) the Vlasov equations
R0 4y 0 B0 =-Fe? 0 KO (1L yi6) (4.9)
00 oy oy -

Allowing for unequal intensities (without loss of generality we may assume the first beam to
be the weaker onag=Ni/N,< 1) let us introduce the vector of normalized distribution

functions
_ . elw/2 I‘E Fl(l)
f =t EV;@ (4.5)

and rewrite eq.(4) in the matrix form

G I
|£f = A0, (4.6)

where the following operators were introduced

O 5O
~ D 0 R rp B 0 G
A—E! 0 e AE”*: @;7\/'\‘1'\‘25;3(9 e|P)§§(Z) 0 E
0

D=-i—, 4.7)

A - 1 —e T +1')/2~ (k) T W EILPET,
G f (2n)3VIe GU(LW [ y) f(,g)d’1"d "
In the following we will refer toA as the Vlasov operator and call its second term the
coherent part (in contradistinction to the first term which incorporates the incoherent beam-
beam tune shifts).

Let us have a look into the properties of the Green function in more detail. Recalling
(3.17) and allowing for a finite crossing angle we can present the horizontal distance (2.2)
between the particles@as

Dx = (-D)¥d, + 0,420+ D)3, sin[y, + ¢ (8,.) ~X0 — ] -
- J3; sin[, + ¢ (8,,) -xa' +¢]} +a(o -0,

where the following notations were introduced

(4.8)

2 please note the different signspatvhich we will refer to as “the beam-beam head-tail phase”.



o, =4Bi&, Ji =1/, i=xy,5

b= 02;350’ = (3 s, - s, (4.9)
¢ = —arctarb.

In the round beam case, the phases the same for both transverse planes which makes it
similar to the case of horizontal oscillations in flat beams in respect to the finite bunch length
effect.

General remark:

It can be easily verified that the Green function has the following symmetry

Gy W) =Gy 1. p) (4.10)

so that the matrix operator in the coherent partAofis self-adjoint. The operatop is also self-adjoint on

periodic functions ofy). However their composition is not necessarily self-adjoint since in general these
operators do not commute. Therefore the spectrum of the Vlasov operaisrnot necessarily real which
implies possible instability due to the beam-beam interaction.

4.1  Fourier expansion in the angle variables

To reduce the dimensionality of the problem let us perform a Fourier expansion in the angle
variables

f(L, w.8) =) exp(m0p) f,(1.6), (4.11)

where m= (m,, m, mg) are 3-tuples of integer numbers. Then from eq.(6) we obtain the
following system of integral equations for the Fourier amplitudes

9, _mMmo® o LT 0 G®
'@fm‘%ﬂo m@(z)Ejm+m@_Z$4/NlN26p(e—6,P);E§ OEjm, (4.12)

(2)
L mm
where the integral operators are now defined as follows

G f = [expl=3 (3, +3))/2] Gl (3,97) (3)d°"
o r e (4.13)
G(3,9) = s [GU 1w T T .
JLLULS (2-‘-[) ) = LI

The Fourier components of the Green function can be expressed via integrals of
products of the Bessel functions. The corresponding expression for an arbitrary aspect ratio
o,/ox and a finite crossing angle in the horizontal plane (but without account of the bunch
length effectsp = x=0) was given in Ref.[4]. Here we will derive the expression including
the bunch length effects in the most easily tractable case of horizontal oscillatjen®)(in
horizontally flat beamsd >> o).

Making use of the identity

In(x* +y?) = —J’eikx_lkyl % +const (4.14)

and performing integration over the betatron phase angles we get



3-i)
G, (3,37 = M) (8p) i J(GIP)IIKIJ m (K3 3o (K33 Ly (3,30,

J‘J‘dw qure—imslIJs+lmslle—l(mx+m§<)¢—ix(ﬁb<0—m§<0') x (4.15)

Lmsm’s(‘]s’ s) (2 )2

pl( 1)!™kd, - |kd, | +iak(c - o)
0,21+ b?)

Neglecting second order effectsag,” we can perform the integration over the synchrotron
phase angles as well:

|( 1)"kd, — |kd, |
Loy, (3,30 = 13, [(k~v2Zmxo, + ™ Mg ) 3]
o 0,42 ‘/_B (4.16)
3, [(0k = \/_mxo+\/— 0)\/_]
where
w=00,/0, (4.17)

is (half)thereduced crossing angle.

5 Spectrum of uncoupled modes

Discarding for a moment the second term in the r.h.s. of eq.(4.12) we can write for the
solution of this equation
f ~expEimm™e). (5.1)

The beam-beam force contains all Fourier harmamio® and, being nonlinear, can couple a
given modemto allm' such that

m V9 =n+ma®v, k=12 (5.2)

In order to neglect coupling let us suppose that the working point is chosen so that
condition (5.2) does not hold for any sufficiently loa/ (no exact criterion to be given) and
ignore possible complications due to low synchrotron tune. Then we may retain in the
coherent part of the r.h.s. of eq.(4.12) only one term mith m.

General remark

Retaining just one term withh =m in the Fourier expansion of the Green function, we effectively replace it
with a function of the difference argumei®,, exp[m{y -y')], so that the integral operato@™" defined by

the last of egs.(4.7) become commutative with the differential ope@tw make the Vlasov operatdAk self-

adjoint. As a consequence its spectrum should be real, which means no instability due to beam-beam interaction
without mode coupling (i.e. outside resonances).

Now let us extract the integer par® (allowing for unequal values) from the single
particle tunes and decompose the fractional parts into the meem the differenceA
(taking out the normalization parametedefined later):

v =n® +u+(-1)kEA, (5.3)

and then introduce new slowly varying vector functions

10



im{n' +v)6 0
um = g 0 eimmn(2)+9)e H]m (54)

into the reduced eq.(4.12). Retaining in the Fourier expansion @imection only terms
exp[+in,(6-8,,)]/2m, n, =m(n® -n®), which do not vanish on averaging o@emwe obtain

0
|£u —EAnEJ (5.5)

where the reduced Vlasov operator

_i-a+v /%) s bNNH 0 @GR )
Eﬂ mEaA+v<2’/z)E+ = o

ey (f oGy

is self-adjoint by virtue of egs.(4.10) and (4.13).
Following Yokoya et al. [1] we will solve eq.(5.5) by expansion in the eigenfunctions
of the operatorA_ :

A, OF, =\¥, . (5.7)

As noted earlier the eigenvaluksare real. The question remains whether there exist
discrete spectral lines (not Landau damped by the beam-beam tunespread) which may go
unstable due to interaction with the external impedances. The main interest in this respect is
presented by the dipole modes, for definiteness we will consider the horizontal one which is
described by the terms with = (1, O, 0) in expansion (4.11). Then it is natural to take, for
the horizontal beam-beam parameter (negative ip4{hease) for the first (weak) beam

r,N,B, __ r,N,
2T[y x eff (Gxeff Gy) 2ny§(1+ 002)(1+ ro) ’

E:

(5.8)

whereo,, =0, (1+w’)"?, 1, =0,/0,, wbeing given by eq.(4.16).

xeff 1

5.1  Spectral density of dipole oscillations
Introducing the scalar product of two vector functions

(f,g) = (f (l)’g(l)) +(f (2),9(2)) :J'(f'(l)g(l) + f(2)g(2)) d3J ’ (5.9)

where the bar means complex conjugation, we can normalize the eigenfurt¥tjoftbe
index n makes provision for possible degeneracy of eigenvalues) in such a way that

(T)\m’ ) 5)41 mn? (510)

whered,, is the Kronecker symbol X belongs to the discrete spectruty,and the Dira®-
function if A belongs to the continuous spectruin If P is not empty, then integrals over the
spectrum are the Stieltjes integrals performed with the help of the integrating fun@tijon
with the following properties

WA +0)—w(A-0)=1 AOP,
dw(\)/d\ =1, ADIC, (5.11)
dw(A)/dA =0, AOC, P.

Important characteristics of the dipole eigenmodes are the coefficients

11



V() = (Wo, W), k=12, (5.12)
where

-(J,+J +J)/2
W, = [T T (5.13)

which give (the first one after multiplication py*'%) the relative amplitude of the eigenmode
excitation by a dipole kick delivered to the corresponding beam. They also give (the first one
after multiplication byr{l’z) the amplitude of the center-of-mass oscillation of the beams
when the corresponding eigenmode is excited with unit amplitude.

The spectral density of the center-of-mass oscillations observed in lbedier a
dipole kick at beamcan be expressed via these coefficients and the integrating function as

i - dw(A
S0 =S el ) T (5.14)

In what follows we will present the spectral density by histograms obtained by integrating
(5.14) over small intervaldj = 0.025-0.05).

In the presence of external impedances (assumed identical for both beams) the induced
(complex) tune shift (assumed small w.E}.for a mode with discrete eigenvaldglIP is
equal to the tune shift which the strong beam would experience alone times the factor

Mo = 1 [€D (A)I” +[cP (A)]”. (5.15)

This factor can be quite small reducing the instability growth rate (if any) to a negligible value
even in the absence of Landau damping.

5.2  Effect of tune split and unequal intensities
Let us introduce the Yokoya factor, which is the maximum discrete eigenvalue (in W)its of

Y = max{\} , (5.16)

and remind the results which pertain to the simplest case of a single IP, equal intensities and
tunes [1]. Due to symmetry between the beams the range of definition of operator (6) splits
into the direct sum of two invariant subspaces correspondingmodesf® =f (2 =f®

and Temodes f @ = -f @ =), The spectrum of each family comprises the continuum,
C=(0, 1), and a number of discrete eigenvalues.2Fhedes of dipole oscillationsn(= 1)

have one discrete eigenvalie= 0, the corresponding eigenfunction (multiplied bY)2
coincides withW, given by eq.(13). The maximum discrete eigenvalue of the dipoledes
appears to depend on the aspect irgtid is Y = 1.214 for round beams,= 1) andY = 1.330

for flat beamsi(; << 1). The number of discrete eigenvalues also depends on the aspect ratio,
for flat beams there are two more discrete eigenvalue@j4]1.026 ,A3;= 1.002. However,

they are physically insignificant since their spectral weight (15) is small (0.035 and 0.003
compared to 0.524 for the first eigenvalue).

Breaking the symmetry between the beams weakens the coherence of their oscillations
reducing the Yokoya factory. With decreasing intensity ratiag, the largest discrete
eigenvalue merges with the continuunrgat 0.6 [2]. However, the discrete mode wil= 0
survives. Fig.2 (left column) shows the spectral density seen in the weakdgatr;: = 1,

0.65 and 0.3 (round beams case). It is interesting to note that ayen@8 the spectrum has
a pronounced peak At= 0.8 (ins,,it can also be seen but is less sharp).

An efficient method to damp both discrete modes is splitting the tunes in the two
beams as proposed in Ref.[3]. It was shown that for flat beams a hal\lsplL 75 (in units
of &) is needed for the damping [4]. Approximately the same tune split is necessary in the case
of round beams as well.

12



Fig.2 (top right) shows the spectral

:l; A=0 A=05 2 densitys,;of dipole oscillations in round
015 | .. Dbeams of equal intensities At= 0.5. The
0.10 re=1.00 .o largest discrete eigenvalue can be seen on
0.06 | o theverge of merg_ing with the continuum.
0.00 0.00 However, in the casef unequal

o 05t o0t intensities the effect of the tune split
Zi | Zi depends on the sign &f If the tune split
o1 re=0.65 . counteracts the beam-beam tuneshift for
- v  [he strong beam(< 0) then even smaller
0.00 - o absolute values of the tune spld|,|are

0. 0.5 1 0. 0.5 1 - -

necessary for the damping. In the opposite

0.20 0.20 .
o | | .. case Q>0) the discrete mode can
010 Fe=0.30 .o reappear even if it had been damped due

- I J||| o O unequal intensities (see Fig.2, bottom
0.00 | s, . o Hight).

05t Due to this interference of

Figure 2. Spectral density of dipole oscillations different damping mechanisms it seems

S«(A): left column - in the weak beam in the casefo safer to make the tune split even larger

no tunesplit; right column - in the strong beam in than necessary in the cas# equal

Fhe case off[unesplltazlat indicated values of the intensities, e.g. by placing the working

Intensity ratio. . . .

points for the two beams in different cells

in the tune diagram. However, in such a case some coherent beam-beam resonances of
relatively low order can be encountered, as will be discussed in Section 7.

5.3  Effect of redistribution of phase advances

Some new possibilities to damp the coherent modes arise if a given pair of bunches collide at

two IPs, whose position without loss of generality may be assumeddip8, 1t If the IPs

are identical (equal optical functions, crossing angles, offsets) then there are two methods to

achieve complete cancellation of the effect of coherent interaction at these IPs.

=T The first method can be

implemented in machines with separate
rings for the two beams. Its idea is obvious
from the form of the second term in the
r.h.s. of eq.(5.6). If the integer tune spijt

¢ = -8y ¢ =3u is an odd number then contributions from
the two IPs to the sum have opposite
signs, annihilating each other. In the result
only the incoherent part of operatoy,

remains,  which produces  purely
continuous spectrum.

Another method involves phase
advance redistribution between the two

8=0 IPs and is applicable in one ring machines
Figure 3. Scheme of phase advance as well. Normally® =1t is the symmetry
redistribution between two interaction points. point: Ulo=r=Tv so that@s-=0 (let us

note that@e-0=0 by definition). It is
possible, however, to break this symmetry by redistributing the betatron phase advance as
shown in Fig.3 without changing the total value. Assuming the one ring case we have
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S(+) S(_) (pil) |9:Tr: _(pE(Z) |6:Tr: 6I"lx ' (517)
0.20 0.20
‘ \ 0.15

015 As can be seen from expression

0.10 copy= 1 0.10 (4.15), the Green function for dipole
0.0 ‘ oos  oscillations m=m/=1) has the
0.00 55 T 5 it I—-=o.00 exponential factor which equals unity at
0.20 0.20 B, =0 and

0.15 ‘ l 0.15

_ i D2 i
010 CODU= 05 010 M (B0 —67) _ gr2idm, (5.18)

0.05 0.05 i
0.00 L...uu||||||||| 0.00 at Bp=T10 If O =102 then again the
0. 1 0. 0.5 1

05 contributions from the two IPs annihilate

| each other.
010 coDil,= 0.25 010 It is worthwhile to see whether
005 ||I|I| 005 such a large variation in the phase advance
0.00 . il I 0.00 is really necessary. Let us consider an

v " arbitrary dux and limit ourselves to the

0.20 J 0.20

0.15 0.15

0.20 0.20 .
o | | ... case of no tunesplit, no offsets nor
010 codj,= 0 010 crossing angle, of negligible bunch length

0.05 ||I|I|| ||I|I|| 0.05 and equal intensities in flat beams. Then
0w s - - s —Jo.o we have from eq.(4.15) for the Green
' ' ' ' ' ' function diagonal elements (extending the

Figure 4. Spectra of quask-modes (left) and quasi analysis on arbitrarymy=m/ =m> 0
memodes (right) at increasing (from top to bottom) ms = my= 0) '

values ofdu .

Gin(J,3") = expRimgl? (8,)] G,,(J, J5),

G (3.,37) = L HMING, ) %"/2 (5.19)
e _m%ax(\]x,\]’x)

The reduced Vlasov operator with regard of eq.(5.17) has the form

2imép, | A
A = 2Q, —(1+e” )G,
A, =m E_ 1+ e 2 & 2 E (5.20)
where
Q) =W-e")/], (5.21)

is the normalized incoherent tuneshift per IP, the opeéjnois associated with its kernel as
shown in the first of egs.(4.13).

The matrix operator (5.20) can be rendered real (and symmetric in symbolic form) by
one more transformation

Bs—imép)(/Z 0
vV, = H eim6HX/2 E]Am. (5.22)

0

Due to the symmetry, the eigenmodes again split into two families: di+asddes:
o =0@ =07, and quasitemodes: v = - =44, for which we obtain decoupled

m
eigenvalue problems:

%ug? =(Q, Fcosdu G, ) v® . (5.23)
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Fig.4 shows the evolution of the spectrum of the dipole oscillatiors X) with
increasin®py. As the contribution of the integral operator to the r.h.s. of eq.(5.23) decreases,
the discrete eigenvalues merge with the continuum.dd= 75" only the continuous

spectrum is left for both quast andZ-modes.

; Yy | %
Incoherent motion %
y Xo
—
. d{—
@ 0O, .
d
?
__q a_g9 -9
= =11 Fds= —
[ g, Td T JRds= g%
Coherent T=mode V| %
RO
Xo y Xo
—— ——
®— 0O, 4 —
. , X X
d
®©
Xo
-9 _49_¢ q
F.ds= =—=—2X ==
JROs= 4o Ta a2 JRds=gz2%

Figure 5. Schematic picture of incoherent and
coherent effects of long-range interactions fo
pencil beams:q = 26°NJy.

6 Long-range interactions

So far we considered head-on interactions
of just two bunches at one or two identical

IPs. In LHC each bunch will experience

numerous parasitic long-range interactions
[11], the particular number (more than 100
including those in IP2 and IP8) depends
on the bunch position in the train.

An important feature of the long-
range interactions is their relatively large
contribution to the coherent tune shift as
illustrated with Fig.5. Simple
considerations show that the Yokoya
factor for long-range interactions alone
would beY =2 with both horizontal and
vertical separation. The tune shift has the
opposite sign of that from the head-on
interactions, if the beams are separated in
the plane of oscillations (horizontal in our
case), and the same sign if separation
takes place in the other (vertical) plane.
One may expect that a sufficient number
N.r Of long-range interactions in the first
case can compensate for the head-on tune
shift, bringing the horizontal coherent tune
within the incoherent tune spread. With
Nir increasing further the coherent line

should reappear on the other side of the range of incoherent tunes.
To consider the effect of multiple interactions we have to generalize the basic

formulae of Sections 4 and 5.

6.1 Multi-bunch modes

To simplify the problem we will ignore the gaps between the bunch trains and assume
bunches in both beams to be distributed equidistantly over the machine circumference. Let us

numerate consecutively all possible interaction poirksf@@ K bunches/beam) starting from,
say, IP1. TherBp =1 (IP-1)/K. Nonexistent IPs can be discarded with the help of the
parameter;, equal to 1 for actual IPs and zero otherwise.

Now we should mark a particular bunch with a double index klgg{ mean thes-th
bunch of theék-th beam. The index of its conjugate (i.e. the bunch it encounters) at a given IP

can be written as

{k,B}» ={3-k,1+Mod[B-1-(-1)*(IP-1),K]} ,

(6.1)

where Modp,m]e(0, m-1) is the non-negative remainder on divisiom dofy m.
The multi-bunch normal modes can be introduced by the relations [1]
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g® :%?e‘m”B’Kf{"’B}, n=0,..,K-1. (6.2)
=1

The inverse transformation gives the distribution function of individual bunches:

£ kB = ZeZWnB/KggK>, B=1..K. (6.3)

Applying transformation (6.2) to the Vlasov equations (4.4) we obtain a system of
independent equations of the form (4.6) for vectors

(€]
g, = %g‘a E 6.4)

the corresponding Vlasov operator being

O R 2K 2ni0p A (1)
A — (D 0 -1 M o / - 0 e"rG
Ah - % 0 !(2) @%_8 Eglpz:lrllP 7 N1N26p(e eIP)%_Znielpé(z) 0 E (65)
General remark:

The second matrix operator in the r.h.s. of eq.(6.5) is self-adjoint far, #flerefore the presence of many
bunches per beam can not by itself lead to instability (as long as the equilibrium state exists), the only source of
instability is still the coupling of different Fourier harmonics of the distribution function in the phase angles.

Let us continue with an uncoupled angular mad#enoting the corresponding Vlasov
operator asA, . There is an additional exponential phase factor in its coherent part coming
from the Green function (see eq.(4.15)). However, if all actual interaction points have regular
betatron phase advances,

r]|P(_p(k)(eu3) =0, (6.6)

then they contribute in phase into the coherent paﬁgvgffor somen (for n=0 at least). For
suchn the spectrum of operatoism has the largest span and the maximum number of

discrete eigenvalues (for a given. For othem, called intermediate modes, the contributions
from different interaction points into the coherent part cancel each other (partially or
completely) leaving in the result only the continuous spectra.

For parasitic interaction points close to the nominal IPs, condition (6.6) does not hold
since

u

@’ (@) =pP(8) - v M= arcta“E—?' ®2(0) =-¢’(6), u=xy, (6.7)

u

where we have chosen the position of the nominal [P &+ 0. Assuming
0”(0,) =-¢?(6,) =, everywhere (as in a one-ring machine) we will obtain the total

exponential phase factors in the coherent pa@gf
exp[£2i(nB,, + mLep )]. (6.8)

Though@s is not a linear function d » still there is a possibility that for sonmethe
majority of interaction points contribute (almost) in phase. Let us assume that sMidis
and lump all long-range and head-on interactions together setting all phase factors (6.8) equal
unity. In this way we will obtain an upper bound on the effect of the long-range interactions.
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Figure 6. Normalized incoherent tune shiftvyg,/ &4 °" vs. J, /(1+J,) for one head-on
and N.r =0, 4, 8, 12 long-range interactions (indicated with increasing solidity of the
line) at d =50, separation in the case of horizontal (left), vertical (center) and

alternating (right) crossing.
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for one head-on and (from top to bottom)N,r =0, 4, 8, 12 long-range interactions in the

same cases of separation as in Fig. 6.

6.2

Effect of lumped long-range interactions

A further simplification comes from the fact that at the locations of long-range interactions
the beta-functions are large rendering negligible the effects of the finite bunch length and
crossing angle. In the present section we ignore these effects for both long-range and head-on
interactions and consider the case of flat beams with equal tunes and intensities.

To make some features more visible we take a moderate separation af the
parasitic IPs, thus only 8 interactions are needed to produce the same tune shift as ~ 30 long-
range interactions at %% separation, as foreseen in LHC [11, 12]. Fig. 6 shows the
incoherent horizontal tune shift (normalized®y*°" for one head-on and.r =0, 4, 8, 12
long-range interactions at horizontal (left), vertical (center) and alternating (right) separation.
The spectra of horizontatoscillations obtained in these cases are presented in Fig.7.

In the case of horizontal separation the spectrum behaviour with incrédsing
more complicated than predicted on the basis of the rigid bunch model. Instead of sweeping
across the incoherent tunespread (and being damped while within it) the original discrete line
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stays to the right of the continuum range (see Fig.7, left column). At the same time another

line appears on the left side so that there are two distretede lines in a situation when one

might expect no such lines at all.

W, x (143 The corresponding eigenfunctions atl g=12
(multiplied by the square root of the Jacobian of the
transformation to variable = J,/(1+J,)) are shown

W2 in Fig.8. The second mode involves mainly tail
W, particles \_/vith largel, whose incoherent tune shifts
are negative.
On the contrary, in the first mode mainly the
core particles participate. From comparison with

02 04 o6 08 3,4,y Fig.13 one can deduce that with increadig the
range of participating particles is contracted to

Figure 8. Two discrete Temode eigen- smaller J, but their perturbation amplitude (given

functions at Nig =12; the corresponding 1, tha gigenfunction value) grows. In the result the

eigenvalues beind; = 0.613A;=-0.928. 0| 4tive influence of the head-on interaction on the
core particles increases upkeeping the mode tune at

the expense of coherence of oscillations described by the coefficient (5.15).

This coefficient (given by the height of the line in the spectrum diagram) is rather
small for both discrete lines & r = 8 rendering more than a 4-fold reduction in the
instability growth rate w.r.t. the single beam case.

The situation is different with separation in the other plane (vertical in our case). As
can be seen in Fig.7, central column, theode spectral weight is rapidly increasing with
N_r. For vertical oscillations such an increase takes place at horizontal separation. This means
that if the beams are separated in one plane at all parasitic IPs, then the coherent stability in
the other plane may be deteriorated.

This problem can be solved by implementing the alternating separation proposed in
Ref.[13] (in the vertical plane around IP1 and in the horizontal plane around I#Beor
versg. Fig.7 (right column) shows even a slight reduction in the horizortabde spectral
weight. The same is true for the vertitainode since both planes are equal in this case.

However there is a conflict between the effects of alternating separation and integer
tune split (or phase advance redistribution) on the long-range contribution to coherent tune
shift. To answer what is the net effect of a simultaneous implementation of these methods,
calculations with the actual distribution of phase advaggetould be carried out.

3

7 Coherent beam-beam resonances

Several working points are considered for the LHC operation such that particles can encounter
incoherent resonances only of order 13 or higher [11]. Since the coherent tuneshifts of high
order modes do not exceed the incoherent ones, the cobe@ntbeam resonances in the
case of equal single particle tunes are possible only inside stopbands of the corresponding
incoherent resonances and therefore present no new danger.

The situation is different if the fractional tunes of the two beams are placed in different
cells of the tune diagram in order to suppress the coherent dipole modes. Then the resonance
condition (5.2) involving tunes of both beams can be satisfied for a quite low resonance order
m= my + m,| + 'y + 'y|. With the horizontal tune values considered for LHC [11]

Vya= 0.232,v2= 0.310,v3= 0.385 (7.1)
the following resonances can be encountered
3V +Ve =1.006; 2y +Vye =1.005; vy +2Vv,3 = 1.002. (7.2)
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Let us consider in more detail resonances of the’type
my +mu? =n, (7.3)

with my= my=my=my=0 in the casev}®-v,!)|>>[E|. Then we may retain just two
components of the distribution functions in egs.(4.11) combining them in the vector

£
ey

Assuming ¢”(8,,) =-¢“(6,) =¢_ and extracting the corresponding exponential from the

(7.4)

Green function (4.14), we obtain the following equation

i9y= E M ml\/az Eem'e'PHm(pX'Pér(rl]l),-mz E]/ (7.5)
90 E‘ mz\/EZ Ee—lnrelp—lm(p)dpégzn)]z’ n n, - mzvg(z) E ) .

wherem =m, + mp. For oddm the coupling terms are zero unless there is an aifse0.

Dividing thej-th component of the vectorby m| we can render the matrix operator
in the r.h.s. of eq.(7.5) Hermitian iy < 0 (difference resonance) or anti-Hermitian if
my[iy > 0 (sum resonance). In the latter case it may have complex eigenvalues which means
instability.

Due to exponential factors at the integral operators, in the case of two IPs there is a
possibility of cancellation of their contribution to the excitation of even-order resonances in
the absence of phase advance erkgis, To obtain an upper bound of the growth rate let us
allow for the errors to be large enough for constructive contribution from the IPs and neglect
the finite bunch length effect.

In the case of flat beams without crossing angle the Green function for even-order
resonancem= 4 andm, = 1 takes on a simple form,

O 0, J, <J,,
A1-z P (1-22), z=J,/3. <1,

where P"(x) is the associated Legendre function.

Fig.9 shows the maximum imaginary part
IMAma of the eigenvalues (in units of the total incoherent
tune shiftt™Y) onm = 4 resonance (solid line) as a
function of the normalized distance
n —nv
A - rrnz(mt)xo .

The expression for then=3 resonance
L Green function in the case of flat beams with small
0.4 06 08 1 A offset was given in Ref.[4]. The results obtained for
dy/o,= 0.2 are shown in Fig.9 with dotted line.
High growth rates (even with account of
partial cancellation of the IPs contributions) on

Gpim(J4d5) = (7.6)

0.15
0.1

(7.7)

0.05

Figure 9. Growth rate on coherent
resonances (see text for details).

3 The particular casen= m, was earlier considered on the basis of the Vlasov equation in Ref.[14].
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resonances (2) can create problems in operation with fractional tunes in different cells.
Therefore the integer tune split discussed in Section 5.3 is a more viable option.

It should be mentioned that in the round beam case the coherent resonances were
studied analytically, with the help ofMathematicanotebook [15] which employs expansion
in the Laguerre polynomials, and numerically [16] by tracking an ensemble of particles with
the beam-beam force obtained from a Gaussian fit of their distribution. However, the accuracy
of both methods for high orders)> 4, is questionable since in the first case a very large
number of polynomials is necessary whereas in the second case the multipole components of
the beam-beam force are not properly represented.

8 Influence of synchrotron motion on coherent beam-beamodes
So far we ignored the synchrotron oscillations which
_ _ |F Temode can couple to the transverse motion owing to finite
ms=0 continuum . . .
bunch length, crossing angle and/or dispersion
function. The synchro-betatron coupling affects the
coherent beam-beam modes in two ways. First, an
m=1 additional degree of freedom weakens the coherence
N of oscillations reducing the Yokoya factor and the
Vs spectral weight of discrete lines. Second, if the
ms=2 synchrotron tune is comparable with the beam-beam
parameter, the synchrotron sidebands of the
%_J

continuum modes can overlap discrete lines, as
illustrated by Fig.10, and provide their Landau
Figure 10. Princ_iple of damping damping.
by synchrotron sidebands of the .
continuum modes. A general treatment of Landau damping by the
sidebands is given in Appendix A. Here we consider
the effects of particular coupling mechanisms in the
case of flat beams with equal tunes and equal intensities colliding without offsets at one IP.
Let us return to the Vlasov equation in the form (4.12) leaving in ittbelyorizontal
dipole mode and itssynchrotron satellites of relatively low ordér m(l)= (1, 0,1),
| =0,%1,£2, ... which have tunes in the close neighborhood,p&o that only the constant
1/2mt can be retained in the Fourier expansion of &fenction. Owing to the assumed
equality of the beams and absence of offsets we can intr@d@relT-modes

1

ut = Eeivxoe O fay = Ty (8.1)
and obtain for them independent systems of equations

1940 =[Q() +1Q] U F (L+1e, /¢ )Zél o uf?, (8.2)

& 00 - ° ° ’

whereQx= vypp/§ is the normalized beam-beam tunesl@f=vs/¢, the kernel of the integral
operator is given by egs.(4.15) with the additional factorofLin the case of finite crossing
angle. In the following we will sat/es— 0 which is justified in all practical cases.

8.1  Effect of finite bunch length and chromaticity
If there are neither offsets nor crossing angle the Green function (4.15) can be factorized into
a product of transverse and longitudinal parts,

G, (J,3)=6G(J,,I,) 0, (I d5), (8.3)
whereG; is given by eq.(5.19) witm= 1 and
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' 1 1 o Il WsHl 'Ps=2idp=ix(0-0") _
Li(Js o) :—szqusquse s+l Ys—2i¢p-ix(0-0") _

—2je J[( ~X)0,y/23, ]J[( = X)0,y/23]dt - (8.4)
-3, (xosﬁ ) Jll(xcrs\/z_Js )

In the following we will repeatedly address the case of short bunches when one may put

¢ =-(0-0")2B," (8.5)
and obtain an approximation,
L (3e 30 = J[(B ~X)04/23,13, [( - X)0.y23.]. (8.6)

8.1.1 High synchrotron tune

Let us first consider the case of large synchrotron tu@glsy>|1, when coupling terms in
eg.(8.2) can be neglected. Then the Fourier components (8.1) of the distribution function can
be expanded as

u®(J,6) = z a7 (35,0) v” (3, (8.7)

with v being the eigenfunctions of the Fredholm operator
AP (3) = [L, (3,3 €50 (3)d). (8.:8)
0

Assuming for a particular term in expansion (&) ~ exp(i£\0) (the indexi being omitted
for brevity) we arrive at the following eigenvalue problem

Ao =[Q,(J,) +1Q,] a® T Ga® . (8.9)

A —— 4 Thus the mentioned weakening of
08 | coherence of oscillations duefinite bunch
' s length is determined by the largest
0 - x longitudinal eigenvalue A Comparison
with the case of the phase advance
04 oV E,X=0 redistribution (see eq.(5.23) and Fig.4)
i « Vg > &, X = 1P* | shows that for suppression of the discrete
02 | m-vg- 0 ' modes\< 0.25 is needed.
s 1 Making use of approximation (8.6)
R I we obtain for the longitudinal eigenvalue in
' ' " 0s/B*  the case of small bunch length
Figure 11. Longitudinal eigenvalue vs. bunch length )\” _ e_Kz ||(K2), (8.10)
where
K= (iD -X)0s, (8.11)

B,

l1(x) is the modified Bessel function of ordeiThe corresponding eigenfunction is

0(3) = e73/2 3 (k4/23). (8.12)

M
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Figure 12. Spectra oz-modes (left) andr-modes
(right) at os/B*= 0.15,x = 0 and indicated values
of the normalized synchrotron tune.

Ws. Then we obtain instead of eq.(2)

& 0o

P 0 @ i 0\ @& A y®
——uv = -1IQ,.—)u” F¥G,Lu
(Qx Qsaws) 1

We see that the discrete modes
suppression condition A{<0.25) is
naturally satisfied forl #0 hence the
synchrotron  satellites  have  only
continuous spectraC; = (IQs, 1+1Qy). It
should be noted that besides (8.10) there
is another eigenvalue\;= 0, of infinite
(but countable) multiplicity for any, so
that the continuous spectra are infinitely
degenerate.

In the case of arbitrary bunch
length the eigenvalue problem (8.8) has
to be solved numerically with the exact
kernel (8.6). Fig.11 shows the largest
eigenvalueA for 1 =0 as function of
cys/BxD at two values of normalized
chromaticity: x =0 and x = 1B," (the
corresponding value for LHC g/ = 3).
We see that positive chromaticity
counteracts the finite bunch length effect
on the discrete modes.

8.1.2 Low synchrotron tune

In the opposite limit of low synchrotron
tunes, |Q¢{<< 1, when coupling to the
synchrotron satellites can not be ignored,
it is convenient to return back to
functions of the synchrotron phase angle

(8.13)

where the longitudinal integral operator was introduced

00 27T X . , ,
Co(3a, ) = [ [ 27X, g1 yiyda .
00

(8.14)

In the limit Qs — O the expansion of the type (8.7) is again possible (without ihdex

in the eigenfunctions of the operatBr Its eigenvalue\; does not depend on chromaticity at
all (since the corresponding term in the exponent of the kernel can be transformed away) and

depends owy/B,” only very weakly.

In the case (8.5) of short bunches we obtain the eigenfunction

(3 ):ei(l/sﬂ—x)o—Jslz

(8.15)

which corresponds to the eigenvalNg= 1. Again, there is also an infinitely degenerate

eigenvalue) = 0, whose implication will be discussed in more detail in the next subsection.
Numerical results obtained with the exact operator (8.14) are presented in Fig.11 with

filled squares. Practically no effect of finite bunch length B~ on the coherent tuneshift can

be seen in the considered lin@s— 0. Instead, the beam-beam interaction imposes the
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coherenbeam-beam head-tail phage&ven by the imaginary part of the exponent in eq.(8.15).
Its effect on the so-called slow head-tail instability will be discussed in Appendix B.

8.1.3 Intermediate synchrotron tune

In the practically most important case of a synchrotron tune comparable with the beam-beam
parameterQs ~ 1, coupling with synchrotron satellites can not be ignored any more and one
has to solve the complete Vlasov equation in the form (8.2) or (8.13).

Fig.12 presents spectra of the dip@le and troscillations obtained ay/By'= 0.15
with account of coupling with= 11, +2 satellites. The small pikes seen in theode spectra
are a consequence of the limited number of mesh points in the action variables space.

As expected, overlapping by synchrotron sidebands has damping effect on the discrete
modes which manifests itself in the line widening. The width ofrtmeode discrete line
recovered from the numerical dataCat= 0.5 is about 0.03 (in units &j. Calculations with
different number of satellites show that it is the first sideband which produces damping in
short bunches whereas@3"~ 1 the effect of the second sideband becomes important.

It is possible to proceed further analytically in the case (8.5) of small bunch length.
Performing the substitution

u®(3,,) = VPG y,) (8.16)
in eq.(13) with subsequent expansion in the Fourier seripsvire get
10 qw - “@ s rgde 2O S0 Uy +a%
TR CICOAATRELH CEL G0 +KQ,/J, @1

where the (small) coupling paramekewas defined by eq.(8.11). We can see that the (quasi)
dipole modes) = 0, are directly coupled only to the first satellites. Just one of them with
| =¥ sgnQs can be retained.

To employ the formalism developed in Appendix A we should give explicit
expressions for the eigenfunctions of the diagonal operators.
The discreteZ-mode (the upper sign in

i eg.(8.17)) corresponds to the eigenfunction (5.13)

! Temode with eigenvalue A\o=0. The eigenfunctions

08 representing discrete-modes (of which only that

0.6 with Ap= 1.33 bears physical significance) have the

0.4 Z-mode same exponential dependence Jr(and J, in the

0.2 flat beam case). The numerically found -
dependence of the eigenfunction corresponding to

0.2 0.4 0.6 ®% 3sa+3) Ao=1.33is shown in Fig.13.
From eq.(8.17) it is clearly seen that modes
Figure 13. J-dependence of the with |+ 0 have only continuous spectra,
e?genfunctions corresponding to the C= (|Qs, 1 +|Qs), each eigenvalue being twice
discrete modes. infinitely degenerate since the Hilbert space formed
by functions of J,J9 is invariant under the

operatorA =Q,(J,) +1Q,. TheJ, - degeneracy is insignificant since the coupling operator

B=KQ./J./2 (8.18)

does not remove it. Ignoring it, we may write for the eigenfunctions corresponding to an
eigenvalue\IC

23



1 —(J,+J3)/2
=——— - 98J,-J)e Y ¥ L _(J), 8.19
AN |dQX/dJX |1/2 ( X O) n( s) ( )
A whereJp is solution of the equation
e N Q(3) +1Q, =X, (8.20)
o oms Ln(X) is the Laguerre polynomial of order
' S -mode The expression (A.15) for the line width
0.01 can be easily generalized in the case of
degeneracy:
0. 005 o R
A(N) = nZ)|J'lPOB¢Md3J F. (8.21)
0.2 0.4 0.6 0.8 1 Qs n=

Figure 14. Width of discrete spectral

lines in the result of coupling to the first

synchrotron sideband at Kk = 0.15.

Inserting the particular expressions (8.18),
(8.19) we finally obtain

AA) =——K"QZ

™D w2 |

5 (8.22)

x = Jo,
Jy=3s=0

where the factob results from the continuum degeneracy,
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Figure 15. Spectra of Z-modes (left) and -
modes (right) at the reduced crossing angle
2w=1.5 and indicated values of the normalized

synchrotron tune.
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(8.23)

(a)n = a(a+1)...(a+n-1), @) =1, being
the Pochhammer symbol.

Fig.14 shows the dependence on
Qs of the width of the discrete- and Z-
mode lines obtained from eq.(22) at
K = 0.15. There is a reasonable agreement
with the direct solution of the eigenvalue
problem for eq.(8.2).

It is noteworthy that calculations in
the case of round beams give quite close
results to those presented in Fig.14.

8.2  Effect of finite crossing angle

A finite crossing angle also reduces the
coherent tuneshift and provides coupling
with the synchrotron satellites (only even-
order ones in the absence of horizontal
offset).

As shown in Ref.[7] the Yokoya
factor of the uncoupled dipoleemode
reaches its minimum value 8f= 1.21 (in
the flat beam case) at the reduced crossing
(half) anglew = 0.7 which is quite close to
the LHC design valueo= 0.75. This fact
already facilitates suppression of the
coherent Temode regardless of the
synchrotron tune value. Tlz2emode is not



affected by the finite crossing angle alone. However, both discrete lines are noticeably
damped being overlapped by the second synchrotron sidebands of the continuum modes.
Fig.15 shows spectra of tle andrroscillations ato= 0.75 and several values @{.
We can see that the crossing angke 0.75 provides approximately as strong damping as the
bunch length does at= 0.15.
Since the two damping mechanisms involve different satellites they do not interfere, at
least at small values &f. The question remains of whether such interference is possible at
large bunch lengths when~ 1.

8.3 Implications for LHC
s 7\ Z-mode In the scheme accepted for LHC there are two
\ diametrically opposite high-luminosity interaction
\ points, IP1 and IP5, at which bunches collide at a
crossing angle @= 0.3 mrad (the reduced value
\\ TEmode 2w = 1.5), in the vertical plane at one IP and in the
N horizontal plane at the other; the incoherent
N horizontal tune shifts being correspondingly
2 o  -0.0031and -0.0025 [12].
The nominal bunches experience 30 long-
e L s pvamars and o 121 RTSStc encountrs soun each . Ouing
chromaticity vs. synchrotron tune with ! . )
€|ips = 0.0025used for normalization. these encounters to the total incoherent tune shift
is only -0.0004 [12]. As shown in Section 6, they
do not significantly affect the coherent modes as well, which permits us to ignore them
altogether.

To further simplify the problem we reduce the dimensionality by assuming flat beams;
the effect of the vertical crossing angle on IP1 contribution being taken into account simply
by inserting an appropriate correction factor.

With these simplifications we compute the eigenfunctions for uncoupled modes and
then employ formula (A.15) to calculate the partial contributions freni, 2 sidebands to
the Temode line width and frorh= -1, -2 sidebands to ttlEemode line width. Fig.16 shows
discrete line widths thus obtained in units &f4 = 0.0025 vsQs at w= 0.75 andk = 0.15.

The value of the latter parameter corresponds to zero chromagicity,

The design synchrotron tune valueg(f 0.0021, oQs = 0.84) appears to be close to
the maximum Landau damping for both modes, the line width BethQ35§| for therrmode
and= 0.045f| for theZ-mode. The damping rate 6s* and= 8s* respectively) is sufficient
to suppress the resistive wall instability, whose growth rate at top energy (with account of the
magneto-resistive effect) is expected not to exce£d[17].

It is possible to enhance Landau damping by tuning the chromaticity negative. At the
given synchrotron tune the contributions to thmode line width due to crossing angle and

bunch length are approximately equal, therefore seting=-a,, R/B"= -3 will increase

0.5 1 15

Figure 16. Width of discrete spectral lines

thetemode damping rate by at least a factor of 2 (and even more fbfrttwele).

Still, to make a margin for other possible instabilities (e.g. due to electron cloud [18]),
additional methods for suppression of coherent modes can be implemented, such as tune
splitting or phase advance redistribution.
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9 Summary

We have considered a number of mechanisms which can suppress discrete spectral lines of
coherent beam-beam oscillations.

An efficient method applicable with any number of interaction points is dephasing of
betatronoscillations by splitting the tunes in the two beams by an amount larger than the
beam-beam tuneshift. However, at a small tune split the discrete spectral lines can reappear
due to unbalance in bunch population, which by itself would also have a stabilizing effect.
Another drawback of this method is the expansion of the total area occupied by both beams in
the tune diagram making it more difficult to avoid incoherent resonances.

In a two-ring machine the tunesplit can be increased so that the beams occupy
different cells in the tune diagram. Then another complication may arise dcuhecent
beam-beam resonances of relatively low order. It can be avoided by further increasing the
tunesplit up to an integer value.

With two diametrically opposite IPs it is possible to achieve complete cancellation of
the coherent beam-beam effect by means of either odd-integer tunesifitfptrase advance
redistribution.

In spite of expectations based on the rigid-bunch model, the long-range interactions do
not suppress the discretemode in the plane of separation even when the effect of a large
number of interactions is combined in phase. At the same timethede tuneshift in the
other plane may increase quite significantly making this mode more difficult to damp.

In the case of two IPs the effect of the long-range interactions on the coherent modes
can be significantly reduced with the help of the alternating crossing proposed earlier to
cancel the long-range contribution to incoherent tuneshifts. However, the benefit of
alternating crossing may be lost if at the same time one of the two above-mentioned methods
for cancellation of the effect of the nominal IPs will be implemented.

Analysis of differentmechanisms ofsynchro-betatron coupling (betatron phase
advance variation along the bunch, chromatic tune modulation, crossing angle) shows no
drastic reduction in the coherent beam-bé&ameshift.

However, if the synchrotron tune is comparable with the beam-beam parameter, the
synchrotron sidebands of the continuum modes can overlap discrete spectral lines providing
Landau damping.

In the case of short bunchegs/, << 1, theLandau damping is produced by the first
sideband whereas at/B,"~ 1 the contribution from the second sideband is also important.
Negative chromaticity is found to enhance the finite bunch length effect. The crossing angle
contributes to damping by the second sideband.

If the synchrotron tune lies outside the range necessary for these sidebands to overlap
thediscrete lines, another mechanism of damping the coherent beam-beam modes is possible,
the so-called head-tail damping. It is found that whensgmehrotron tune is small with
respect to the beam-beam parameter, the lattice chromaticity plays no role in the head-tail
effect (hence may be negative); the damping rate being determined by tlog/Batio

In the case of LHC the design synchrotron tune value rendeaiidau damping rate
close to the maximun=(6s* for thetemode and: 8s’ for the Z-mode) which is marginally
sufficient to suppress the resistive wall instability at top energy. A negative chromaticity
V'~ -3provides more than a twofold gain in the damping rate.
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Appendix A. Landau damping by sidebands

Here we obtain the formula for the width which a discrete spectral line (of dipole
oscillations) obtains due to being overlapped by bounded continuous spectrum (of a
sideband).

The spectrum boundednésmesents an important distinction from the classical case
of plasma oscillations. We will treat the problem following both the original method of
Landau [20] and a more general approach proposed by Van Kampen [21].

Let us consider the equation

9t - LiAn (A.1)
08

for vector function of variablé

ek
A= %‘; 2 E (A.3)

is a matrix of operators acting in the Gilbert space of functiont & presents a (small)
coupling perturbation, asterisk means Hermitian conjugation. We assume the diagonal

operators to be self-adjoiné,D = A; A) to have a discrete eigenvalhgwell separated from
the rest of its spectruR (the criterion will be clear afterwards):

A)Lpo =AW, (A.4)

where

and A to have a continuous spectr@ (Amin, Amaxy) overlappingho (Amin< Ao< Amax):
A®, =A®,, AOC. (A.5)

Eigenfunctions of operatorém satisfy the following orthonormality conditions

(W, Wo) = [|WofdI =1 (®,,®,)=5(A-N). (A6)
With the help of these eigenfunctions we can look for the solution of eq.(A.1) in the
form
FroW, + [, Y, dw(w
f=0 R 0 (A.7)
0 J’budbudu B
0 T H

Being interested in eigenvalues afin the vicinity ofA; we may neglect the contribution of
the Stieltjes integral ové® owing to the assumption made above.

4 As far as the author is aware of, the case of bounded spectrum was first treated by P.Zenkevich [19].
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A.1  Landau recipe
Let us follow the classical work of Landau [20] and consider the initial value problem for
ed.(1), choosing the particular initial conditions

f0|9:0 = l'IJO’ fl|9:0 = O’ (A8)
or, for the expansion coefficients
3,(0)=1, a,(0)=0, AUR,

(A.8)
b,(0)=0, AOC,
Performing the Laplace transformation
8y, :Ie‘peao(e)de. (A.9)
0
we obtain from eq.(A.1) the system
(P+iAo)ay, +if[ (W, B®, )b, dp =1,
[
(p+iN)ay, +iJ’(LIJA,L3>CDH)bupdu:O, AR, (A.10)
C
(p+iNb,, +i(®,,BW,)a,, + iI(GJA,éDtPu)aupdp =0, AOC
R
Imp Neglecting the contribution fromR to the last of eqs.(A.10) we
can write for the solution of eq.(A.1)
Oy g (A11)
> = _— P, A1l
. Rep % 21 I D(p)
cut wheree is a constant larger than the real part of any singularity
Po of the inverse of the function
D . |B, [
D(p) =ip—A, + [——dy,
(P =1p=2 lu—ip g (A.12)
B, =(¥,,BP,).

Figure 17. Contour d . .
imgegration. The integral over continuous spectrum (heilp) on

the whole) is analytical everywhere in the complex domain of
except for the cut Amax, -IiAmin) Which ends are logarithmic branching points. It is easy to
verify that D(p) has no zeros on the main list. At the same time, its analytic continuation
across the cut from the right half-plane t@Re0 has a zero.
We can obtain the exact expression by reducing (A.11) to an integral around the cut
[19]. However, it will be more instructive to use the analytic continuation technique which
has a significant heuristic potential and easily provides solution in even more complicated
cases (e.g. of degeneracy of the continuous spectrum).
According to the Sohotsky-Plemmel formula we havepfommediately to the right of
the cut
B, _ B, [ _ )
J’ —du = p.v.‘[ du+mi B, I, (A.13)
Y {u+imp
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where p.v. means the principal value of the integral, and may use this equality as an
approximation for the analytic continuation@fp) to Re < 0.
Now assuming that solution of the equation

= |B, [

A=A, —p.v.[——=d A.14

0=A—P Jc’ e W (A.14)
still belongs taC we obtain a zero dd(p) at

P= P =X, —B(,), AQN)=TB,F. (A.15)

To evaluate the integral in (A.11) let us deform the path of integration as shown in
Fig.17, threading it in and out of the cut and encircling the pabe=aiy. Taking the part of
the integral given by the residue at the pole,

3,(8) =e™®, (A.16)
we get finally the dipole component of the solution of eq.(A.1) in the form

—iXOe)—A(XO)eqJ

fo(0) =a,(B)W, =e 0 (A.17)

and can see Landau damping of the discrete mode with decrel(rf@)t

There are certain drawbacks in the above derivation. First, it is not easy to give an
estimation of the neglected contribution from the parts of the contour going to and from the
ends of the cut on different lists (see Fig.17).

Second, there is an apparent contradiction: eq.(A.16) suggestave a complex
eigenvalue,ip, = X, -iA(X,), Whereas this operator is self-adjoint by assumption and may
have only real eigenvalues.

A.2 Van Kampen approach
Let us look for eigenfunctions, of operato’ corresponding to eigenvaluksn the vicinity

of Ao in the form (A.7) again neglecting the contribution frdtn Then the expansion
coefficients satisfy the system of homogeneous equations

A —=Ap)a, —IBubudp =0,
C

K (A.18)
(A -Wb, -B,a, =0, pOC
which may have nontrivial solution if
)\—)\O+J’|B“ |2dp:O. (A.19)
L H=A

This equation looks very much like equatiofp) = O after substitutiop - -iA in (A.12) but
has an absolutely different meaning. Eq.(A.12) defidgs with the integration rule given by
the Sohotsky-Plemmel formula (A.13) whereas eq.(A.19) defines the rule of evaluation of the
improper integral for a particular valueXilC.
Generally we may write
1

— =p.V.
H=A P H=A

+h(A) 3 -7), (A.20)

whereh(A) is an arbitrary function. To satisfy eq.(A.19) we should choose it as
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h()\)z—| 2()\ Ao pvJ’
We are interested in the dependenag@) which gives the dipole component of the

eigenmodes of operatox as a function oeigenvalue\dC. To find it we make use of the
orthonormality condition for vecta@igenfunctions belonging to continuous spectrum

du) : (A.21)

(R =aa,s [ B2 g
r ) = 89(A)3g '!(U_)\)(u_)") (A.22)
=0(A -\,
where eqgs.(A.6), (A.7) and (A.18) were used to obtain the first equality. Making notice that
)\j;f] d)\' _I |H )\ r.I|
TESUR Ty
1

H-A+n|_
Inlrrg)H )\In|u - | TES(U — A),

+0[n® - (L—-A)°T h(),
(A.23)

wherea(x) = 1 forx = 0 ando(x) = 0 forx < 0, and performing integration of eq.(A.22) Xy
in the limits Q-n, A+n) wheren is an infinitesimal value, we have

AN

I(Fw F) d\" =1=2aj(\)|B, [ [ +h*(A)], (A.24)
or, recalling e_?q.(A.Zl),
al(\) = 5, | (A.25)

|2

E |
4 _ u 2
TE 1B, I +A Ao +pvf k)

We see that the position of the peak and its width are very similar to those obtained by the
first method. But there is some difference in the meaning of coeffiagigsandag(6) which
needs clarification.

A.3  Correspondence of the two methods
Let us again consider the initial conditions (A.8). Now we solve eq.(A.1) by expansion in the

eigenfunctionsr, of operatoA:

f(0) :'C[CA(G)FAd)\, c, (0) =(f(0),F,) =a,(A), (A.26)
and obtain for the dipole component
f,(8) = Jc'cx(e) a,(\) A W, = le_iw aZ(A) d\ W, (A.27)
Comparing this result with eq.(A.17) we get the sought relation
a,(6) = t[e“m a2(A) d\. (A.28)

We can proceed further assuming the wid) = 1t| B, | small and slowly varying:

A(Ag) << MiNAmax- Ao, Ao- Amin), A'(A g)<< 1. Then we may extend integration limits in
(A.28) tox o and, regardingA(A) as a constant, obtain (A.17).
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Appendix B. Beam-beam effect on the slow head-tail instability

The coherent beam-beam head-tail phase given by eq.(8.15) can completely change
the picture of the so-called slow head-tail instability (see e.g. Ref.[9]). Here we consider only
the effect of finite bunch length and chromaticity in the absence of crossing angle.

In the presence of external elements we should add the corresponding term to the
Liouville equation (4.3):

%F(k) +[FO K®] :|_'(e“) &' F,, (B.1)

where the invariant (in the absence of perturbations) attiorthe first order in thbeam-
beam parameter and chromaticity coincides with the original action. Therefore its derivative
can be expressed via the wake fields as

2
(9 =B,p b = B,p, S E [d1 0 W(0-0) XFO(LW, ) (B2)
11
(the case of horizontal dipole oscillationg,= 1,m, = 0, assumed).
Let us perform Fourier expansion in the angle variables of transverse motion but retain

dependence on the synchrotron phase apglide scalar product being now defined as

(1.9) = [(F¥g" + @ g®) d*Jay,. ®3)

Implementing (with the said exception) the transformations which lead to eq.(5.5) and
assuming equal single particle tunes we may write for the external elements contribution to
the Vlasov operator

8 0

where expressions (3.17) forcoordinate and momentum were us&éh(J) is given by
eq.(5.13). The term with the Twiss parametigrvanishes on average over the machine
circumference.

At energies in the TeV range the (complex) tuneshift induced by external impedances
is small compared to the beam-beam tuneshift. Therefore i) operator (B.4) can be considered
as a small perturbation, ii) only perturbation of discrete modes which are not already Landau
damped presents interest, iii) the beam-beam modeswittd are stable since they have no
discrete eigenvalues.

As follows from the analysis in Section 8.1 the discrete modes are not Landau damped
at either small or large values of the synchrotron tune compared to the beam-beam parameter:
Qs =MdJE|<<1 or RJ=1. In both cases the eigenfunctions can be factorized in the
transverse and longitudinal parts, the latter being given by eq.(8.15) in the first case and
ed.(8.12) with = 0 in the second case.

Applying the first order formula for perturbation of eigenvalues of a linear operator we

EACO = B, (@A+ia,)e’ Wo(D)[ d 3dY.W, (3 W, (0 — o')e X(C70) @1 l\(l) E (B.4)

obtain
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~ 2 —_ I
Y = (v, BRI, ) = £ D2, fa.dy,ddye OB (o - o) ¢
EUO(K\/I)%(K\/J_Q) X9 15 b1 (B.5)
x0 e, (k?)
[l 0_- _5")/g0
5 e (070 Q. k<1

where factoryy is defined by eq.(5.15).

We will not discuss here the head-tail instability in detail and just want to notice that
in the case of loveynchrotron tunesQ} << 1, the lattice chromaticity is excluded from the
stability criterion §lmx <0), its sign playing no role as observed in collision at the
Tevatron [22]. Instead, the head-tail phase imposed by the beam-beam interaction of finite
length bunches insures damping of the discrete dipole modes

At intermediateQs values when damping by synchrotron sidebands comes into force it
is even advantageous to make the chromaticity negative (with the absolute value compatible
with the single-particle stability) so that it adds up to the damping effect of the finite bunch
length. However, at){ > 1, when Landau damping by synchrotron sidebands is switched off,
the chromaticity should be positive.

® Let us remind the general properties of the transverse wake functidd (80 at 20 andW,(2)<0 over
some distance at<0.
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