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Abstract

A number of factors which can influence coherent beam-beam
oscillations are studied on the basis of the Vlasov equation: difference in the
intensities and single-particle tunes in the beams; difference in the phase advances
between interaction points; long-range interactions; synchro-betatron coupling due
to betatron phase advance variation in the vicinity of IP, chromatic tune modulation
and crossing angle.

The synchro-betatron coupling appears to have a principal stabilizing
effect: at synchrotron tune values in the neighborhood of half the beam-beam
parameter it provides Landau damping of the discrete spectral lines by overlapping
sidebands; the damping rate being higher with negative chromaticity. At smaller
synchrotron tune values a specific mode of the head-tail damping sets in which is
not sensitive to chromaticity.

Application to LHC shows that with the design values of parameters the
coherent beam-beam oscillations should be Landau damped, probably with the help
of negative chromaticity of a moderate absolute value.
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1 Introduction
In high-luminosity hadron colliders operating in the TeV energy range the coherent beam
dynamics is dominated by the beam-beam interaction. Its nonlinearity introduces large
spreads in the incoherent tunes, exceeding by many times the threshold value needed for
suppression of instabilities that could originate from the beam-wall interaction.

At the same time the opposing beam acts as a reactive impedance shifting tunes of
coherent oscillations. In the case of equal tunes and intensities the coherent tune shift is larger
than the maximum incoherent tune shift giving rise to the discrete spectral lines of coherent
oscillations [1].

When the discrete lines are well separated from the continuum of incoherent tunes the
beam-beam interaction not only fails to produce damping of coherent oscillations but can
even switch off other stabilizing mechanisms. Therefore it is important to better understand
what factors influence the coherent beam-beam modes, why they are seen in some situations
but clearly absent in the others.

First we analyze spectra of uncoupled modes of coherent oscillations. There is a
number of mechanisms which reduce coherence of the beam-beam oscillations bringing the
discrete spectral lines closer to (or even within) the incoherent tune spread.

A new look is taken at already known effects of unbalance in the beam intensities [2]
and split in the single particle tunes [3, 4] and their interference. The explanation is given to
the suppression of coherent beam-beam oscillations, observed in simulation [5], by π/2-phase
advance redistribution between two diametrically opposite interaction points (IPs).

Multiple long-range interactions are considered in the context of the rigid-bunch
model prediction of the possibility to reverse the coherent tune shift in the plane of separation
by cumulative action of a sufficient number of such interactions.

However, in the case of a large tune split between the beams the mode coupling can
lead to excitation of coherent beam-beam resonances of relatively low order, turning the
beam-beam interaction itself into a source of instability. Such possibility is also briefly
discussed in this paper.

The major attention is devoted to the influence of synchro-betatron coupling on the
coherent oscillations. Different mechanisms can bring about such coupling: betatron phase
advance variation along the bunches at IP, which we will refer to as just “ the finite bunch
length effect” for the sake of brevity; chromatic tune modulation; crossing angle.

 All these mechanisms produce some dephasing of betatron oscillations leading to a
reduction in coherent beam-beam tune shift. But what is even more important, the synchrotron
sidebands of incoherent tunes can overlap the discrete spectral lines providing Landau
damping.

In order to analyze the effect of these factors in the framework of the self-consistent
kinetic theory some methodical development is necessary. In Section 2 we derive the
Hamiltonian of a particle interaction with a bunch of finite length and arbitrary charge
distribution. In Section 3 we demonstrate with the help of the Lie transform method how the
so-called chromatic head-tail phase appears in the result of the single particle Hamiltonian
normalization. Derivation of the Landau damping rate due to sideband overlap (with
discussion of different approaches) is relegated to Appendix A.

It should be noted that analysis in the present paper is limited to the first order effects,
not only in the deviation of the distribution function from the equilibrium, but in the beam-
beam parameter as well. Also, throughout the paper the emittances of the beams (and optical
functions at IPs in the case of two rings) are assumed equal.
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2 Green’s function of the beam-beam potential

Let us make the conventional choice of the generalized azimuth θ = s/R as the independent
variable (so that the longitudinal momentum plays the role of the Hamiltonian) and introduce
canonically conjugated coordinates and momenta q  = (x, y, σ), p  = (px, py, δp), where in the

ultra-relativistic case σ = s - ct.
In fact we will understand θ as normalized time which is common to both beams,

whereas the arc length s is individual for each beam (certainly the mean radii R of both orbits
are assumed to be equal).

Now let us consider the interaction of two particles belonging to the counter-rotating
bunches. Due to the synchrotron motion the actual collision point (CP) is shifted w.r.t. the
interaction point (IP) of the reference particles by the amount

2
21

21

σ−σ=−= ss . (2.1)

However, limiting ourselves to first order effects in the beam-beam force, we can noticeably
simplify the problem by ascribing the interaction to the position of the reference IP (the
moment of “time” θ =θIP) by a similarity transformation [6] which is explained in Fig.1. Up to
the second order in the momenta the actual distance between the particles at CP is expressed
via their coordinates and momenta at IP (marked with an asterisk) as

)(
2

)()( 21
21

21222111 σ−σ++−=+−+=∆
∗∗

∗∗∗∗∗∗ pp
xxspxspxx . (2.2)

The variation in momenta due to the interaction is

x

r
pp p

∆γ
=δ−=δ ∗∗ 2

21 , (2.3)

where rp is the classical radius of the particles (rp > 0 if the charges of the particles have the
same sign and rp < 0 otherwise), γ is the relativistic mass factor.

By ascribing the interaction to the reference IP, we should admit a jump in the particle
coordinates (see Fig.1 right) by

2
21

121

σ−σδ−=δ=δ ∗∗∗ pxx . (2.4)

The variations (2.3), (2.4) can be obtained from the elementary interaction
Hamiltonian

CPIP

x2
*

∆x

 p1
*  p2

*

2x1
*

1

Figure 1. Sketch of the interaction of two particles.

CPIP
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δx* δp*
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(which gives a correct value of the energy exchange as well). Correspondingly, the interaction
of a particle of the k-th beam (k = 1, 2) with the whole of the counter-rotating bunch can be
described by the Hamiltonian,

pdqdpqFpqpqG
Nr

H
k

IP
kpk

bb ′′θ′′′′θ−θδ
γ

=
−− ∫ 33)3(

p
3)( ),,(),|,()( ,  (2.6)

δp(θ) is the periodic δ-function, Nk is the number of particles per bunch and F(k) is the
distribution function of the k-th beam normalized to unity.

Taking into account also the vertical plane we can write for the Green function under
the assumptions made









σ′−σ
′+

+′−+σ′−σ
′++′−−= 22 )](

2
[)](

2
[ln yyxx

pp
yy

pp
xxG .   (2.7)

By px, y we understand here the full slopes of the trajectories which may include crossing
angles (see next Section). Taking them out explicitly would cast the Green function (2.7) into
the form presented (without derivation) in Ref.[7].

3 Equilibrium state
Let us postulate that there exists the object of stability analysis, an equilibrium state. This
requires that in the absence of perturbation the motion of (almost) all the particles is stable.

We will make the even stronger assumption (not necessary in principle) that the
particle motion is regular in the relevant volume of the phase space. This is indeed a quite
strong requirement in the presence of nonlinear beam-beam force. It means that invariants of
motion I I I Ix y s= ( , , )  exist which can be used in the construction of the equilibrium

distribution function which we presume to be Gaussian:

( ) ),,(,,,exp
)2(

1 11111
30

−−−−− εεε=εεεε==ε⋅ε−
π

= syxsyxVII
V

F . (3.1)

General remark:

The invariants I should be found in a self-consistent way with account of the equilibrium beam-beam potential.
Here we encounter a minor complication since the distribution function in the original variables is not known
yet. However, the distribution function appears only in the integrand so the potential should not be very sensitive
to its form permitting an iterative procedure. Anyway, the error is in the second order in the beam-beam
parameter which we ignore in the present study.

3.1 Nonlinear normal forms
Before starting search for the nonlinear invariants, I, let us introduce linear normal form
variables, a, related to coordinates and momenta by formulas1 (see e.g. Ref.[8], p.294)

c.c.,
2

c.c.,
2

... c.c.,
2

c.c.,
2

+
β

=δ+β=σ

+
β
α−=+β= φφ

s

s
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s

x
x

x

x
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a
i

a

ae
i

paex
ii

(3.2)

                                                          
1 Here and afterwards we write down formulas for the horizontal plane only.
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where αx, βx are the Twiss parameters of the lattice, φx= µx(θ) - νx0⋅θ, µx and νx0 being the
betatron phase advance and the single particle tune, |/| sMs R να=β , αM and νs  being the

momentum compaction factor and the synchrotron tune (νs < 0 above transition).
The linear normal form variables satisfy the Hamilton equations

syxjU
a

a
d

d
U

a
a

d

d

j
j

j
j ,,,, =

∂
∂−=

θ∂
∂=

θ
, (3.3)

where the bar means complex conjugation, with imaginary Hamiltonian

,,, 110010 iHUaaiUUUU
j

jjj =ν=+= ∑ (3.4)

where H1 comprises contribution from the lattice nonlinearities and the beam-beam potential.
Our aim is to find new, nonlinear normal form variables, jj aTA ˆ= , such that the

transformed Hamiltonian V would have the form

∑ν=
j

jjj AAiV (3.5)

with new tunes νj, possibly depending on the integrals of motion,
2|| jj AI = , (3.6)

we are looking for. Introducing the phase angles via relations
j

jj

i
eIA
ψ

= (3.7)

we would obtain the solution of the Hamilton equations in the form I j = const, ψj = νjθ.
There is an efficient method of the Hamiltonian normalization, called Deprit’s

algorithm, via a Lie-transform. We refer the reader to the excellent book [8] for details and
give here only a few formulas necessary for the following.

The new Hamiltonian to the first order in U1 is

,,, 110010 >=<ν=+= ∑ UVAAiVVVV jj
j

j (3.8)

where the brackets mean implementation of the following recipe: substitute (3.7) for aj and
then perform averaging over ψj and θ.

The first order generating function of the Lie-transform w1 satisfies the homology
equation

11011 ],[ UVVww −=+
θ∂
∂

, (3.9)

where the Poisson brackets were introduced,

)(],[ ∑ ∂
∂

∂
∂−

∂
∂

∂
∂≡

j jjjj A

g

A

f

A

g

A

f
gf , (3.10)

and U1 must be again formally understood as a function of the new variables, A.
As long as w1 commutes with U1 (e.g. when U1 contains just one term) no higher order

terms arise and the operator of the inverse Lie-transform can be given in the closed form

],[)(ˆ,ˆ )(ˆ 11 gfgfLeT
wL −≡= −− . (3.11)
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3.2 Head-tail phase
Let us show how the so-called head-tail phase (see e.g. Ref.[9]) appears from the term in the
Hamiltonian which describes the chromatic dependence of the betatron tune and in the
original variables has the form

xxss

s

x
xpx aaaa

i
IH )(

2
)0(

1 −
β
ν′=δν′= , (3.12)

where νx′ = dνx/dδp.
In this case V1= 0 and eq.(3.9) gives

xxss

ss

x AAAAiw )(
2

1 +
νβ

ν′= . (3.13)

The inverse Lie-transform (3.11) reproduces the well-known result for the head-tail phase

]exp[)](
2

exp[ˆ 1 σ
α
ν′−≈+
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ν′−== −

R

i
AAAA

i
ATa

M

x
xxss

ss

x
xx . (3.14)

3.3 Normalized action-angle variables
In the following we will use the new action-angle variables I I I Ix y s= ( , , ) , ψ ψ ψ ψ= ( , , )x y s

related to the normal forms by eqs.(3.6), (3.7). In these variables the normalized Hamiltonian
can be written as

,2,1,)( )()(
0

)(
0 =+⋅ν= kHIIK k

bb
kk (3.15)

where we made provision for different parameters of the two beams, the subscript “0” at the
Hamiltonian now means the steady state value (absence of coherent perturbations).

In the steady state the action-angle variables satisfy the following equations of motion

)()()()(
0

)( ,)(,0 k
bb

k
bb

k
bb

kk H
I

II
∂
∂=νν+ν≡ν=ψ= �� . (3.16)

Allowing for the horizontal crossing angle, 2α, and beam-beam offsets dx (and dy in the
formulas for the vertical plane) we can express the physical coordinates and momenta of
particles in k-th beam at a given interaction point via the new variables as follows

,cos/2,sin2

],)(cos[/2

],)(sin[22/)1(

)(

)(1

ssspsss

IP
k

xxxxx

IP
k

xxxxx
k

II

Ip

Idx

ψβ=δψβ=σ

χσ−θφ+ψβ+α=

χσ−θφ+ψβ+−=
∗

∗−

(3.17)

where we have assumed the betatron function to have no slope at the IP (αx
* = 0), and

introduced the chromaticity related parameter

)/( RMx αν′=χ . (3.18)

4 The Vlasov equation
Let us consider now a small perturbation of the steady state and present the distribution
function of the k-th beam as the sum

)(
10

)( kk FFF += . (4.1)

Correspondingly, we have for the Hamiltonian
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where the Green function is given by eq.(2.7) in which coordinates and momenta should be
expressed via the action-angle variables with the help of eqs.(3.17). The superscript k has
appeared since there is an explicit dependence of the Green function on the beam number in
the case of finite offsets and/or phase advance deviations.

Linearizing the Liouville equations for the two beams (k=1,2)

0],[ )()()( =+
∂θ
∂ kkk KFF   (4.3)

w.r.t. F1 we come to (the system of) the Vlasov equations

);,()(
1

1
0

)(
1

)()(
1 θψ

ψ∂
∂⋅ε−=

ψ∂
∂⋅ν+

∂θ
∂ − IKFFF kkkk . (4.4)

Allowing for unequal intensities (without loss of generality we may assume the first beam to
be the weaker one, rξ = N1/N2 ≤ 1) let us introduce the vector of normalized distribution
functions
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1
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and rewrite eq.(4) in the matrix form

ff ⋅θ=
θ∂
∂

)(Âi , (4.6)

where the following operators were introduced
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In the following we will refer to Â  as the Vlasov operator and call its second term the
coherent part (in contradistinction to the first term which incorporates the incoherent beam-
beam tune shifts).

Let us have a look into the properties of the Green function in more detail. Recalling
(3.17) and allowing for a finite crossing angle we can present the horizontal distance (2.2)
between the particles as2

),(]})(sin[

])(sin[{)1(2)1(
)3(

)(21

σ′−σα+ϕ+σ′χ−θφ+ψ′′−

−ϕ−χσ−θφ+ψ+σ+−=∆
−

−

IP
k

xxx

IP
k

xxxxx
k

J

Jbdx
(4.8)

 where the following notations were introduced

                                                          
2 Please note the different signs at ϕ, which we will refer to as “the beam-beam head-tail phase”.
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.arctan

),sinsin(
22

,,,,/,

b

JJb

syxiIJ

ssss
x

s

x

iiiiii

−=ϕ

ψ′′−ψ
β
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β
σ′−σ=

=ε=εβ=σ
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In the round beam case, the phase ϕ is the same for both transverse planes which makes it
similar to the case of horizontal oscillations in flat beams in respect to the finite bunch length
effect.

General remark:

It can be easily verified that the Green function has the following symmetry

),|,(),|,( )3()( ψψ′′=ψ′′ψ − JJGJJG kk (4.10)

so that the matrix operator in the coherent part of Â  is self-adjoint. The operator D̂  is also self-adjoint on

periodic functions of ψ. However their composition is not necessarily self-adjoint since in general these
operators do not commute. Therefore the spectrum of the Vlasov operator Â  is not necessarily real which
implies possible instability due to the beam-beam interaction.

4.1 Fourier expansion in the angle variables
To reduce the dimensionality of the problem let us perform a Fourier expansion in the angle
variables

),()exp(),,( θψ⋅=θψ ∑ ImiI m
m

ff , (4.11)

where m = (mx, my, ms) are 3-tuples of integer numbers. Then from eq.(6) we obtain the
following system of integral equations for the Fourier amplitudes

∑∑
′
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′

′− ⋅
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∂
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m
i fff
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 (4.12)

where the integral operators are now defined as follows

.),|,(
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1
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,)(),(]2/)(exp[ˆ
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2

0
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∫ ∑
π
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dd
mimi

eJJGJJG
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mm

k
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i
ii

k
mm

(4.13)

The Fourier components of the Green function can be expressed via integrals of
products of the Bessel functions. The corresponding expression for an arbitrary aspect ratio
σy/σx  and a finite crossing angle in the horizontal plane (but without account of the bunch
length effects, ϕ = χ= 0) was given in Ref.[4]. Here we will derive the expression including
the bunch length effects in the most easily tractable case of horizontal oscillations (my = 0) in
horizontally flat beams (σx �σy).

Making use of the identity

const
||

)ln( ||22 +−=+ ∫
∞

∞−

−
k

dk
eyx kyikx (4.14)

and performing integration over the betatron phase angles we get
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Neglecting second order effects in σs/βx
∗  we can perform the integration over the synchrotron

phase angles as well:
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ss
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′++χσ′−ω
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β

′++χσ−ω
σ
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=′

∗′

∗

−

′

(4.16)

where

xs σασ=ω / (4.17)

is (half) the reduced crossing angle.

5 Spectrum of uncoupled modes
Discarding for a moment the second term in the r.h.s. of eq.(4.12) we can write for the
solution of this equation

)exp(~ )()( θν⋅− kk
m mif . (5.1)

The beam-beam force contains all Fourier harmonics n in θ and, being nonlinear, can couple a
given mode m to all m′ such that

.2,1,)3()( =⋅+≈⋅′ − kvmnvm kk (5.2)

In order to neglect coupling let us suppose that the working point is chosen so that
condition (5.2) does not hold for any sufficiently low m′ (no exact criterion to be given) and
ignore possible complications due to low synchrotron tune. Then we may retain in the
coherent part of the r.h.s. of eq.(4.12) only one term with m′ = m.

General remark

Retaining just one term with m′ = m in the Fourier expansion of the Green function, we effectively replace it

with a function of the difference argument, )](exp[ ψ′−ψ⋅miG mm
, so that the integral operators )(ˆ kG defined by

the last of eqs.(4.7) become commutative with the differential operator D̂  to make the Vlasov operator Â  self-

adjoint. As a consequence its spectrum should be real, which means no instability due to beam-beam interaction
without mode coupling (i.e. outside resonances).

Now let us extract the integer parts n(k) (allowing for unequal values) from the single
particle tunes and decompose the fractional parts into the mean υ and the difference ±ξ∆
(taking out the normalization parameter ξ defined later):

∆ξ−+υ+=ν kkk n )1()()(
0 , (5.3)

and then introduce new slowly varying vector functions
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into the reduced eq.(4.12). Retaining in the Fourier expansion of the δ-function only terms
),(,2/)](exp[ )2()1(

00 nnmnin IP −⋅≡πθ−θ±  which do not vanish on averaging over θ, we obtain

mmm Ai uu ⋅ξ=
θ∂
∂ ˆ , (5.5)

where the reduced Vlasov operator














πγξ
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2)/(0
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m
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GeNNr
m

m

m
A in

in
    (5.6)

is self-adjoint by virtue of eqs.(4.10) and (4.13).
Following Yokoya et al. [1] we will solve eq.(5.5) by expansion in the eigenfunctions

of the operator mÂ :

λλ λ=⋅mÂ . (5.7)

As noted earlier the eigenvalues λ are real. The question remains whether there exist
discrete spectral lines (not Landau damped by the beam-beam tunespread) which may go
unstable due to interaction with the external impedances. The main interest in this respect is
presented by the dipole modes, for definiteness we will consider the horizontal one which is
described by the terms with m = (±1, 0, 0) in expansion (4.11). Then it is natural to take for ξ
the horizontal beam-beam parameter (negative in the p-p case) for the first (weak) beam

,
)1)(1(2)(2 2

2

ffff

2

σ

∗

+ω+πγε
−=

σ+σπγσ
β

−=ξ
r

NrNr

x

p

yexex

xp (5.8)

where eff
2/12

eff /,)1( xyxx r σσ=ω+σ=σ σ ,  ω being given by eq.(4.16).

5.1 Spectral density of dipole oscillations
Introducing the scalar product of two vector functions

∫ +=+≡ Jdgfgfgfgf 3)2()2()1()1()2()2()1()1( )(),(),(),( gf , (5.9)

where the bar means complex conjugation, we can normalize the eigenfunctions nλ (the

index n makes provision for possible degeneracy of eigenvalues) in such a way that

mnnm δδ= λµµλ ),( , (5.10)

where δλµ is the Kronecker symbol if λ belongs to the discrete spectrum, P, and the Dirac δ-
function if λ belongs to the continuous spectrum, C. If P is not empty, then integrals over the
spectrum are the Stieltjes integrals performed with the help of the integrating function w(λ)
with the following properties

.,,0/)(

,,1/)(

,,1)0()0(

PC

C

P

∉λ=λλ
∈λ=λλ

∈λ=−λ−+λ

ddw

ddw

ww

(5.11)

Important characteristics of the dipole eigenmodes are the coefficients
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2,1),,()( )(
0

)( =ΨΨ=λ λ kc k
n

k
n , (5.12)

where
2/)(

0
syx

x

JJJ
eJ

++−
=Ψ , (5.13)

which give (the first one after multiplication by rξ
1/2) the relative amplitude of the eigenmode

excitation by a dipole kick delivered to the corresponding beam. They also give (the first one
after multiplication by rξ

-1/2) the amplitude of the center-of-mass oscillation of the beams
when the corresponding eigenmode is excited with unit amplitude.

The spectral density of the center-of-mass oscillations observed in beam k after a
dipole kick at beam j can be expressed via these coefficients and the integrating function as

λ
λλλ=λ ∑−

ξ d

dw
ccrs

n

j
n

k
n

jk
kj

)(
)()()( )()(2/)( (5.14)

In what follows we will present the spectral density by histograms obtained by integrating
(5.14) over small intervals (∆λ = 0.025÷0.05).

In the presence of external impedances (assumed identical for both beams) the induced
(complex) tune shift (assumed small w.r.t. ξ) for a mode with discrete eigenvalue λ0∈ P is
equal to the tune shift which the strong beam would experience alone times the factor

2
0

)2(2
0

)1( )]([)]([ λ+λ= ξ ccrrbb . (5.15)

This factor can be quite small reducing the instability growth rate (if any) to a negligible value
even in the absence of Landau damping.

5.2 Effect of tune split and unequal intensities
Let us introduce the Yokoya factor, which is the maximum discrete eigenvalue (in units of ξ)

}max{λ=Y , (5.16)

and remind the results which pertain to the simplest case of a single IP, equal intensities and
tunes [1]. Due to symmetry between the beams the range of definition of operator (6) splits
into the direct sum of two invariant subspaces corresponding to Σ-modes f f f( ) ( ) ( )1 2= = +

and π-modes f f f( ) ( ) ( )1 2= − = − . The spectrum of each family comprises the continuum,
C = (0, 1), and a number of discrete eigenvalues. The Σ-modes of dipole oscillations (m = 1)
have one discrete eigenvalue, λ = 0, the corresponding eigenfunction (multiplied by 21/2)
coincides with Ψ0 given by eq.(13). The maximum discrete eigenvalue of the dipole π-modes
appears to depend on the aspect ratio rσ: it is Y = 1.214 for round beams (rσ = 1) and Y = 1.330
for flat beams (rσ� 1). The number of discrete eigenvalues also depends on the aspect ratio,
for flat beams there are two more discrete eigenvalues [4]: λ2 = 1.026 , λ3 = 1.002. However,
they are physically insignificant since their spectral weight (15) is small (0.035 and 0.003
compared to 0.524 for the first eigenvalue).

Breaking the symmetry between the beams weakens the coherence of their oscillations
reducing the Yokoya factor, Y. With decreasing intensity ratio, rξ, the largest discrete
eigenvalue merges with the continuum at rξ ≈ 0.6 [2]. However, the discrete mode with λ = 0
survives. Fig.2 (left column) shows the spectral density seen in the weak beam, s11, at rξ = 1,
0.65 and 0.3 (round beams case). It is interesting to note that even at rξ = 0.3 the spectrum has
a pronounced peak at λ ≈ 0.8 (in s22 it can also be seen but is less sharp).

An efficient method to damp both discrete modes is splitting the tunes in the two
beams as proposed in Ref.[3]. It was shown that for flat beams a half split |∆| ≈ 0.75 (in units
of ξ) is needed for the damping [4]. Approximately the same tune split is necessary in the case
of round beams as well.



13

Fig.2 (top right) shows the spectral
density s22 of dipole oscillations in round
beams of equal intensities at ∆ = 0.5. The
largest discrete eigenvalue can be seen on
the verge of merging with the continuum.

However, in the case of unequal
intensities the effect of the tune split
depends on the sign of ∆. If the tune split
counteracts the beam-beam tuneshift for
the strong beam (∆ < 0) then even smaller
absolute values of the tune split, |∆|, are
necessary for the damping. In the opposite
case (∆ > 0) the discrete mode can
reappear even if it had been damped due
to unequal intensities (see Fig.2, bottom
right).

Due to this interference of
different damping mechanisms it seems
safer to make the tune split even larger
than necessary in the case of equal
intensities, e.g. by placing the working
points for the two beams in different cells

in the tune diagram. However, in such a case some coherent beam-beam resonances of
relatively low order can be encountered, as will be discussed in Section 7.

5.3 Effect of redistribution of phase advances
Some new possibilities to damp the coherent modes arise if a given pair of bunches collide at
two IPs, whose position without loss of generality may be assumed to be θIP = 0, π. If the IPs
are identical (equal optical functions, crossing angles, offsets) then there are two methods to
achieve complete cancellation of the effect of coherent interaction at these IPs.

The first method can be
implemented in machines with separate
rings for the two beams. Its idea is obvious
from the form of the second term in the
r.h.s. of eq.(5.6). If the integer tune split n0

is an odd number then contributions from
the two IPs to the sum have opposite
signs, annihilating each other. In the result
only the incoherent part of operator mÂ

remains, which produces purely
continuous spectrum.

Another method involves phase
advance redistribution between the two
IPs and is applicable in one ring machines
as well. Normally θ = π is the symmetry
point: µ|θ = π= πν so that φ|θ = π= 0 (let us
note that φ|θ = 0= 0 by definition). It is

possible, however, to break this symmetry by redistributing the betatron phase advance as
shown in Fig.3 without changing the total value. Assuming the one ring case we have
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Figure 2.  Spectral density of dipole oscillations
skk(λ): left column - in the weak beam in the case of
no tunesplit; right column - in the strong beam in
the case of tunesplit 2∆ = 1 at indicated values of the
intensity ratio.

θ = π

φ(2) = - δµ

θ = 0

φ(1) = δµ

Figure 3. Scheme of phase advance
redistribution between two interaction points.
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xxx δµ=φ−=φ π=θπ=θ || )2()1( . (5.17)

As can be seen from expression
(4.15), the Green function for dipole
oscillations (mx = mx′ = 1) has the
exponential factor which equals unity at
θIP = 0 and

xxxx iim
ee

δµ±φ−φ± = 2)( )2()1(

(5.18)

at θIP = π. If δµx = π/2 then again the
contributions from the two IPs annihilate
each other.

It is worthwhile to see whether
such a large variation in the phase advance
is really necessary. Let us consider an
arbitrary δµx and limit ourselves to the
case of no tunesplit, no offsets nor
crossing angle, of negligible bunch length
and equal intensities in flat beams. Then
we have from eq.(4.15) for the Green
function diagonal elements (extending the
analysis on arbitrary mx = mx′ = m > 0,
ms = ms′= 0)

2/

)()(
,

),max(

),min(1
),(

),,()](2exp[),(
m

xx

xx
xxm

xxmIP
k

x
k
mm

JJ

JJ

m
JJG

JJGimJJG







′
′

≡′

′θφ=′

(5.19)

The reduced Vlasov operator with regard of eq.(5.17) has the form
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QGe

GeQ
mA im
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, (5.20)

where

x
J

x JeJQ x /)1()( −−= (5.21)

is the normalized incoherent tuneshift per IP, the operator mĜ  is associated with its kernel as

shown in the first of eqs.(4.13).
The matrix operator (5.20) can be rendered real (and symmetric in symbolic form) by

one more transformation

m
x

x

m im

im

e

e uv ⋅









= δµ

δµ−

2/

2/

0

0 . (5.22)

Due to the symmetry, the eigenmodes again split into two families: quasi Σ-modes:
)()2()1( +≡= mmm ��� , and quasi π-modes: )()2()1( −≡−= mmm ��� , for which we obtain decoupled

eigenvalue problems:
)()( )ˆcos( ±± δµ=λ

mmxxm GQ
m

�� � . (5.23)
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Fig.4 shows the evolution of the spectrum of the dipole oscillations (m = 1) with
increasing δµx. As the contribution of the integral operator to the r.h.s. of eq.(5.23) decreases,
the discrete eigenvalues merge with the continuum. At δµx ≈ 75° only the continuous
spectrum is left for both quasi π- and Σ-modes.

6 Long-range interactions
So far we considered head-on interactions
of just two bunches at one or two identical
IPs. In LHC each bunch will experience
numerous parasitic long-range interactions
[11], the particular number (more than 100
including those in IP2 and IP8) depends
on the bunch position in the train.

An important feature of the long-
range interactions is their relatively large
contribution to the coherent tune shift as
illustrated with Fig.5. Simple
considerations show that the Yokoya
factor for long-range interactions alone
would be Y = 2 with both horizontal and
vertical separation. The tune shift has the
opposite sign of that from the head-on
interactions, if the beams are separated in
the plane of oscillations (horizontal in our
case), and the same sign if separation
takes place in the other (vertical) plane.
One may expect that a sufficient number
NLR of long-range interactions in the first
case can compensate for the head-on tune
shift, bringing the horizontal coherent tune
within the incoherent tune spread. With
NLR increasing further the coherent line

should reappear on the other side of the range of incoherent tunes.
To consider the effect of multiple interactions we have to generalize the basic

formulae of Sections 4 and 5.

6.1 Multi-bunch modes
To simplify the problem we will ignore the gaps between the bunch trains and assume
bunches in both beams to be distributed equidistantly over the machine circumference. Let us
numerate consecutively all possible interaction points (2K for K bunches/beam) starting from,
say, IP1. Then θIP = π (IP-1)/K. Nonexistent IPs can be discarded with the help of the
parameter �IP equal to 1 for actual IPs and zero otherwise.

Now we should mark a particular bunch with a double index, let {k, �} mean the �-th
bunch of the k-th beam. The index of its conjugate (i.e. the bunch it encounters) at a given IP
can be written as

]}),1()1(1[Mod1,3{},{ KIPkk k
IP −−−−β+−=β , (6.1)

where Mod[n,m]�(0, m-1) is the non-negative remainder on division of n by m.
The multi-bunch normal modes can be introduced by the relations [1]

Coherent  π-mode

Incoherent motion
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Figure 5.  Schematic picture of incoherent and
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The inverse transformation gives the distribution function of individual bunches:
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Applying transformation (6.2) to the Vlasov equations (4.4) we obtain a system of
independent equations of the form (4.6) for vectors
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the corresponding Vlasov operator being
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General remark:

The second matrix operator in the r.h.s. of eq.(6.5) is self-adjoint for all n, therefore the presence of many
bunches per beam can not by itself lead to instability (as long as the equilibrium state exists), the only source of
instability is still the coupling of different Fourier harmonics of the distribution function in the phase angles.

Let us continue with an uncoupled angular mode m denoting the corresponding Vlasov
operator as mnA ,

ˆ . There is an additional exponential phase factor in its coherent part coming

from the Green function (see eq.(4.15)). However, if all actual interaction points have regular
betatron phase advances,

0)()( =θφη IP
k

IP , (6.6)

then they contribute in phase into the coherent part of mnA ,
ˆ  for some n (for n = 0 at least). For

such n the spectrum of operator mnA ,
ˆ  has the largest span and the maximum number of

discrete eigenvalues (for a given m). For other n, called intermediate modes, the contributions
from different interaction points into the coherent part cancel each other (partially or
completely) leaving in the result only the continuous spectra.

For parasitic interaction points close to the nominal IPs, condition (6.6) does not hold
since

yxu
R

uu
u

uuu ,),()(,arctan)()( )1()2()1()1()1( =θφ−=θφ
β
θ≈θ⋅ν−θµ≡θφ ∗ , (6.7)

where we have chosen the position of the nominal IP for θ = 0. Assuming

IPIPIP φ=θφ−=θφ )()( )2()1(  everywhere (as in a one-ring machine) we will obtain the total

exponential phase factors in the coherent part of mnA ,
ˆ

)](2exp[
IPIP mni φ⋅+θ± . (6.8)

Though φIP is not a linear function of θ IP still there is a possibility that for some n the
majority of interaction points contribute (almost) in phase. Let us assume that such n exists
and lump all long-range and head-on interactions together setting all phase factors (6.8) equal
unity. In this way we will obtain an upper bound on the effect of the long-range interactions.
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6.2 Effect of lumped long-range interactions
A further simplification comes from the fact that at the locations of long-range interactions
the beta-functions are large rendering negligible the effects of the finite bunch length and
crossing angle. In the present section we ignore these effects for both long-range and head-on
interactions and consider the case of flat beams with equal tunes and intensities.

To make some features more visible we take a moderate separation of 5σx at the
parasitic IPs, thus only 8 interactions are needed to produce the same tune shift as ~ 30 long-
range interactions at 9.5σx separation, as foreseen in LHC [11, 12]. Fig. 6 shows the
incoherent horizontal tune shift (normalized by ξx

(head-on)) for one head-on and NLR =0, 4, 8, 12
long-range interactions at horizontal (left), vertical (center) and alternating (right) separation.
The spectra of horizontal π-oscillations obtained in these cases are presented in Fig.7.

In the case of horizontal separation the spectrum behaviour with increasing NLR is
more complicated than predicted on the basis of the rigid bunch model. Instead of sweeping
across the incoherent tunespread (and being damped while within it) the original discrete line
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Figure 6. Normalized incoherent tune shift νxbb / ξx
(head-on) vs. Jx /(1+Jx) for one head-on

and NLR = 0, 4, 8, 12 long-range interactions (indicated with increasing solidity of the
line) at d = 5σx separation in the case of horizontal (left), vertical (center) and
alternating (right) crossing.

-1. -0.5 0.5 1.

0.1

0.2

0.3

0.4

0.5 1. 1.5 2.

0.1

0.2

0.3

0.4

-0.25 0.25 0.75 1.25

0.1

0.2

0.3

0.4

-1. -0.5 0.5 1.

0.1

0.2

0.3

0.4

0.5 1. 1.5 2.

0.1

0.2

0.3

0.4

-0.25 0.25 0.75 1.25

0.1

0.2

0.3

0.4

-1. -0.5 0.5 1.

0.1

0.2

0.3

0.4

0.5 1. 1.5 2.

0.1

0.2

0.3

0.4

-0.25 0.25 0.75 1.25

0.1

0.2

0.3

0.4

-1. -0.5 0.5 1.

0.1

0.2

0.3

0.4

0.5 1. 1.5 2.

0.1

0.2

0.3

0.4

-0.25 0.25 0.75 1.25

0.1

0.2

0.3

0.4

Figure 7. Spectral density of π-oscillations vs. coherent tune shift, normalized by ξx
(head-on),

for one head-on and (from top to bottom) NLR = 0, 4, 8, 12 long-range interactions in the
same cases of separation as in Fig. 6.
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stays to the right of the continuum range (see Fig.7, left column). At the same time another
line appears on the left side so that there are two discrete π-mode lines in a situation when one
might expect no such lines at all.

The corresponding eigenfunctions at NLR=12
(multiplied by the square root of the Jacobian of the
transformation to variable u = Jx/(1+Jx)) are shown
in Fig.8. The second mode involves mainly tail
particles with large Jx whose incoherent tune shifts
are negative.

On the contrary, in the first mode mainly the
core particles participate. From comparison with
Fig.13 one can deduce that with increasing NLR the
range of participating particles is contracted to
smaller Jx but their perturbation amplitude (given
by the eigenfunction value) grows. In the result the
relative influence of the head-on interaction on the
core particles increases upkeeping the mode tune at

the expense of coherence of oscillations described by the coefficient (5.15).
This coefficient (given by the height of the line in the spectrum diagram) is rather

small for both discrete lines at NLR = 8 rendering more than a 4-fold reduction in the
instability growth rate w.r.t. the single beam case.

 The situation is different with separation in the other plane (vertical in our case). As
can be seen in Fig.7, central column, the π-mode spectral weight is rapidly increasing with
NLR. For vertical oscillations such an increase takes place at horizontal separation. This means
that if the beams are separated in one plane at all parasitic IPs, then the coherent stability in
the other plane may be deteriorated.

This problem can be solved by implementing the alternating separation proposed in
Ref.[13] (in the vertical plane around IP1 and in the horizontal plane around IP5 or vice
versa). Fig.7 (right column) shows even a slight reduction in the horizontal π-mode spectral
weight. The same is true for the vertical π-mode since both planes are equal in this case.

However there is a conflict between the effects of alternating separation and integer
tune split (or phase advance redistribution) on the long-range contribution to coherent tune
shift. To answer what is the net effect of a simultaneous implementation of these methods,
calculations with the actual distribution of phase advances φIP should be carried out.

7 Coherent beam-beam resonances
Several working points are considered for the LHC operation such that particles can encounter
incoherent resonances only of order 13 or higher [11]. Since the coherent tuneshifts of high
order modes do not exceed the incoherent ones, the coherent beam-beam resonances in the
case of equal single particle tunes are possible only inside stopbands of the corresponding
incoherent resonances and therefore present no new danger.

The situation is different if the fractional tunes of the two beams are placed in different
cells of the tune diagram in order to suppress the coherent dipole modes. Then the resonance
condition (5.2) involving tunes of both beams can be satisfied for a quite low resonance order
m = |mx| + |my| + |m′x| + |m′y|. With the horizontal tune values considered for LHC [11]

νx1 = 0.232, νx2 = 0.310, νx3 = 0.385 (7.1)

the following resonances can be encountered

3 νx1  + νx2  = 1.006;    2 νx2  + νx3  = 1.005;   νx1  + 2 νx3   = 1.002. (7.2)
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functions at NLR = 12; the corresponding
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Let us consider in more detail resonances of the type3

rxx nmm =ν+ν )2(
2

)1(
1 (7.3)

with my1= my2= ms1= ms2= 0 in the case |νx
(2)

 -νx
(1)| �|ξ|. Then we may retain just two

components of the distribution functions in eqs.(4.11) combining them in the vector
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Assuming 
IPIPIP φ=θφ−=θφ )()( )2()1(  and extracting the corresponding exponential from the

Green function (4.14), we obtain the following equation
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where m = m1 + m2. For odd m the coupling terms are zero unless there is an offset dx ≠ 0.
Dividing the j-th component of the vector v by |mj| we can render the matrix operator

in the r.h.s. of eq.(7.5) Hermitian if m1⋅m2 < 0 (difference resonance) or anti-Hermitian if
m1⋅m2 > 0 (sum resonance). In the latter case it may have complex eigenvalues which means
instability.

Due to exponential factors at the integral operators, in the case of two IPs there is a
possibility of cancellation of their contribution to the excitation of even-order resonances in
the absence of phase advance errors, φxIP. To obtain an upper bound of the growth rate let us
allow for the errors to be large enough for constructive contribution from the IPs and neglect
the finite bunch length effect.

In the case of flat beams without crossing angle the Green function for even-order
resonances m ≥ 4 and m1 = 1 takes on a simple form,
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where )(P xm
n is the associated Legendre function.

Fig.9 shows the maximum imaginary part
of the eigenvalues (in units of the total incoherent
tune shift ξ(tot)) on m = 4 resonance (solid line) as a
function of the normalized distance

(tot)
0

ξ
ν−=∆

m

mn xr . (7.7)

The expression for the m = 3 resonance
Green function in the case of flat beams with small
offset was given in Ref.[4]. The results obtained for
dx/σx= 0.2 are shown in Fig.9 with dotted line.

High growth rates (even with account of
partial cancellation of the IPs contributions) on

                                                          
3 The particular case m1= m2 was earlier considered on the basis of the Vlasov equation in Ref.[14].
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Figure 9. Growth rate on coherent
resonances (see text for details).
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resonances (2) can create problems in operation with fractional tunes in different cells.
Therefore the integer tune split discussed in Section 5.3 is a more viable option.

It should be mentioned that in the round beam case the coherent resonances were
studied analytically, with the help of a Mathematica notebook [15] which employs expansion
in the Laguerre polynomials, and numerically [16] by tracking an ensemble of particles with
the beam-beam force obtained from a Gaussian fit of their distribution. However, the accuracy
of both methods for high orders, m ≥ 4, is questionable since in the first case a very large
number of polynomials is necessary whereas in the second case the multipole components of
the beam-beam force are not properly represented.

8 Influence of synchrotron motion on coherent beam-beam modes
So far we ignored the synchrotron oscillations which
can couple to the transverse motion owing to finite
bunch length, crossing angle and/or dispersion
function. The synchro-betatron coupling affects the
coherent beam-beam modes in two ways. First, an
additional degree of freedom weakens the coherence
of oscillations reducing the Yokoya factor and the
spectral weight of discrete lines. Second, if the
synchrotron tune is comparable with the beam-beam
parameter, the synchrotron sidebands of the
continuum modes can overlap discrete lines, as
illustrated by Fig.10, and provide their Landau
damping.

A general treatment of Landau damping by the
sidebands is given in Appendix A. Here we consider
the effects of particular coupling mechanisms in the

case of flat beams with equal tunes and equal intensities colliding without offsets at one IP.
 Let us return to the Vlasov equation in the form (4.12) leaving in it only the horizontal
dipole mode and its synchrotron satellites of relatively low order l: m(l) = (1, 0, l),
l = 0, ±1, ±2, … which have tunes in the close neighborhood of νx, so that only the constant
1/2π can be retained in the Fourier expansion of the δ-function. Owing to the assumed
equality of the beams and absence of offsets we can introduce Σ- and π-modes
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where Qx = νxbb/ξ is the normalized beam-beam tuneshift, Qs = νs /ξ, the kernel of the integral
operator is given by eqs.(4.15) with the additional factor (1+ω2) in the case of finite crossing
angle. In the following we will set εx/εs→0 which is justified in all practical cases.

8.1 Effect of finite bunch length and chromaticity
If there are neither offsets nor crossing angle the Green function (4.15) can be factorized into
a product of transverse and longitudinal parts,

),(),(),( ,1, ssllxxll JJLJJGJJG ′⋅′=′ ′′ , (8.3)

where G1 is given by eq.(5.19) with m = 1 and

π-mode

Figure 10.  Principle of damping
by synchrotron sidebands of the
continuum modes.
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In the following we will repeatedly address the case of short bunches when one may put

ϕ ≈ -(σ - σ′)/2βx
∗  (8.5)

and obtain an approximation,
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8.1.1    High synchrotron tune
Let us first consider the case of large synchrotron tunes, |Qs| �1, when coupling terms in
eq.(8.2) can be neglected. Then the Fourier components (8.1) of the distribution function can
be expanded as
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(l) being the eigenfunctions of the Fredholm operator
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Assuming for a particular term in expansion (8.7) al
(±) ~ exp(-iξλθ) (the index i being omitted

for brevity) we arrive at the following eigenvalue problem
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Thus the mentioned weakening of
coherence of oscillations due to finite bunch
length is determined by the largest
longitudinal eigenvalue λ ||. Comparison
with the case of the phase advance
redistribution (see eq.(5.23) and Fig.4)
shows that for suppression of the discrete
modes λ || < 0.25 is needed.

Making use of approximation (8.6)
we obtain for the longitudinal eigenvalue in
the case of small bunch length
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Il(x) is the modified Bessel function of order l. The corresponding eigenfunction is

)2(J
1

)( 2/

||

JeJ ll
J κ

λ
= −� . (8.12)

Figure 11. Longitudinal eigenvalue vs. bunch length
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We see that the discrete modes
suppression condition (λ || < 0.25) is
naturally satisfied for l ≠ 0 hence the
synchrotron satellites have only
continuous spectra, Cl = (lQs, 1+ lQs). It
should be noted that besides (8.10) there
is another eigenvalue, λ || = 0, of infinite
(but countable) multiplicity for any l, so
that the continuous spectra are infinitely
degenerate.

In the case of arbitrary bunch
length the eigenvalue problem (8.8) has
to be solved numerically with the exact
kernel (8.6). Fig.11 shows the largest
eigenvalue λ || for l = 0 as function of
σs/βx

∗  at two values of normalized
chromaticity: χ = 0 and χ = 1/βx

∗  (the
corresponding value for LHC is νx′ = 3).
We see that positive chromaticity
counteracts the finite bunch length effect
on the discrete modes.

8.1.2    Low synchrotron tune
In the opposite limit of low synchrotron
tunes, |Qs|� 1, when coupling to the
synchrotron satellites can not be ignored,
it is convenient to return back to
functions of the synchrotron phase angle

ψs. Then we obtain instead of eq.(2)
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where the longitudinal integral operator was introduced
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In the limit Qs � 0 the expansion of the type (8.7) is again possible (without index l),
in the eigenfunctions of the operator L̂ . Its eigenvalue λ || does not depend on chromaticity at
all (since the corresponding term in the exponent of the kernel can be transformed away) and
depends on σs/βx

∗  only very weakly.
In the case (8.5) of short bunches we obtain the eigenfunction

2/)/1(),( sJieJ ss
−σχ−β∗≈ψ� (8.15)

which corresponds to the eigenvalue λ || = 1. Again, there is also an infinitely degenerate
eigenvalue, λ || = 0, whose implication will be discussed in more detail in the next subsection.

Numerical results obtained with the exact operator (8.14) are presented in Fig.11 with
filled squares. Practically no effect of finite bunch length σs ≤ βx

∗  on the coherent tuneshift can
be seen in the considered limit Qs � 0. Instead, the beam-beam interaction imposes the
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Figure 12. Spectra of Σ-modes (left) and π-modes
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coherent beam-beam head-tail phase given by the imaginary part of the exponent in eq.(8.15).
Its effect on the so-called slow head-tail instability will be discussed in Appendix B.

8.1.3    Intermediate synchrotron tune
In the practically most important case of a synchrotron tune comparable with the beam-beam
parameter, Qs ~ 1, coupling with synchrotron satellites can not be ignored any more and one
has to solve the complete Vlasov equation in the form (8.2) or (8.13).

Fig.12 presents spectra of the dipole Σ- and π-oscillations obtained at σs/βx
∗  = 0.15

with account of coupling with l = ±1, ±2 satellites. The small pikes seen in the π-mode spectra
are a consequence of the limited number of mesh points in the action variables space.

As expected, overlapping by synchrotron sidebands has damping effect on the discrete
modes which manifests itself in the line widening. The width of the π-mode discrete line
recovered from the numerical data at Qs = 0.5 is about 0.03 (in units of ξ). Calculations with
different number of satellites show that it is the first sideband which produces damping in
short bunches whereas at σs/βx

∗  ~ 1 the effect of the second sideband becomes important.
It is possible to proceed further analytically in the case (8.5) of small bunch length.

Performing the substitution
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in eq.(13) with subsequent expansion in the Fourier series in ψs we get
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where the (small) coupling parameter κ was defined by eq.(8.11). We can see that the (quasi)
dipole modes, l = 0, are directly coupled only to the first satellites. Just one of them with
l = � sgn Qs can be retained.

To employ the formalism developed in Appendix A we should give explicit
expressions for the eigenfunctions of the diagonal operators.

The discrete Σ-mode (the upper sign in
eq.(8.17)) corresponds to the eigenfunction (5.13)
with eigenvalue λ0 = 0. The eigenfunctions
representing discrete π-modes (of which only that
with λ0 = 1.33 bears physical significance) have the
same exponential dependence on Js (and Jy in the
flat beam case). The numerically found Jx -
dependence of the eigenfunction corresponding to
λ0 = 1.33 is shown in Fig.13.

From eq.(8.17) it is clearly seen that modes
with l � 0 have only continuous spectra,
Cl = (lQs, 1 + lQs), each eigenvalue being twice
infinitely degenerate since the Hilbert space formed
by functions of (Jy, Js) is invariant under the

operator sxxl lQJQA += )(ˆ . The Jy - degeneracy is insignificant since the coupling operator

2/ˆ
ss JQB κ= (8.18)

does not remove it. Ignoring it, we may write for the eigenfunctions corresponding to an
eigenvalue λ∈ Cl
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where J0 is solution of the equation
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Ln(x) is the Laguerre polynomial of order n.
The expression (A.15) for the line width

can be easily generalized in the case of
degeneracy:
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Inserting the particular expressions (8.18),
(8.19) we finally obtain
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where the factor D results from the continuum degeneracy,
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(α)n = α(α+1)…(α+n-1), (α)0 = 1, being
the Pochhammer symbol.

Fig.14 shows the dependence on
Qs of the width of the discrete π- and Σ-
mode lines obtained from eq.(22) at
κ = 0.15. There is a reasonable agreement
with the direct solution of the eigenvalue
problem for eq.(8.2).

It is noteworthy that calculations in
the case of round beams give quite close
results to those presented in Fig.14.

8.2 Effect of finite crossing angle
A finite crossing angle also reduces the
coherent tuneshift and provides coupling
with the synchrotron satellites (only even-
order ones in the absence of horizontal
offset).

As shown in Ref.[7] the Yokoya
factor of the uncoupled dipole π-mode
reaches its minimum value of Y = 1.21 (in
the flat beam case) at the reduced crossing
(half) angle ω = 0.7 which is quite close to
the LHC design value ω = 0.75. This fact
already facilitates suppression of the
coherent π-mode regardless of the
synchrotron tune value. The Σ-mode is not
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Figure 14. Width of discrete spectral
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affected by the finite crossing angle alone. However, both discrete lines are noticeably
damped being overlapped by the second synchrotron sidebands of the continuum modes.

Fig.15 shows spectra of the Σ- and π-oscillations at ω = 0.75 and several values of Qs.
We can see that the crossing angle ω = 0.75 provides approximately as strong damping as the
bunch length does at κ = 0.15.

Since the two damping mechanisms involve different satellites they do not interfere, at
least at small values of κ. The question remains of whether such interference is possible at
large bunch lengths when κ ~ 1.

8.3 Implications for LHC
In the scheme accepted for LHC there are two
diametrically opposite high-luminosity interaction
points, IP1 and IP5, at which bunches collide at a
crossing angle 2α = 0.3 mrad (the reduced value
2ω = 1.5), in the vertical plane at one IP and in the
horizontal plane at the other; the incoherent
horizontal tune shifts being correspondingly
-0.0031 and -0.0025 [12].

The nominal bunches experience 30 long-
range parasitic encounters around each IP. Owing
to alternating separation, the contribution from
these encounters to the total incoherent tune shift
is only -0.0004 [12]. As shown in Section 6, they

do not significantly affect the coherent modes as well, which permits us to ignore them
altogether.

To further simplify the problem we reduce the dimensionality by assuming flat beams;
the effect of the vertical crossing angle on IP1 contribution being taken into account simply
by inserting an appropriate correction factor.

With these simplifications we compute the eigenfunctions for uncoupled modes and
then employ formula (A.15) to calculate the partial contributions from l = 1, 2 sidebands to
the π-mode line width and from l = -1, -2 sidebands to the Σ-mode line width. Fig.16 shows
discrete line widths thus obtained in units of |ξ|IP5 = 0.0025 vs. Qs at ω = 0.75 and κ = 0.15.
The value of the latter parameter corresponds to zero chromaticity, χ = 0.

The design synchrotron tune value, (|νs| = 0.0021, or Qs = 0.84) appears to be close to
the maximum Landau damping for both modes, the line width being ≈ 0.035|ξ| for the π-mode
and ≈ 0.045|ξ| for the Σ-mode. The damping rate (≈ 6s-1 and ≈ 8s-1 respectively) is sufficient
to suppress the resistive wall instability, whose growth rate at top energy (with account of the
magneto-resistive effect) is expected not to exceed  5s-1 [17].

It is possible to enhance Landau damping by tuning the chromaticity negative. At the
given synchrotron tune the contributions to the π-mode line width due to crossing angle and
bunch length are approximately equal, therefore setting 3/, −≈βα−=ν′ ∗RMyx  will increase

the π-mode damping rate by at least a factor of 2 (and even more for the Σ-mode).
Still, to make a margin for other possible instabilities (e.g. due to electron cloud [18]),

additional methods for suppression of coherent modes can be implemented, such as tune
splitting or phase advance redistribution.
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9 Summary
We have considered a number of mechanisms which can suppress discrete spectral lines of
coherent beam-beam oscillations.

An efficient method applicable with any number of interaction points is dephasing of
betatron oscillations by splitting the tunes in the two beams by an amount larger than the
beam-beam tuneshift. However, at a small tune split the discrete spectral lines can reappear
due to unbalance in bunch population, which by itself would also have a stabilizing effect.
Another drawback of this method is the expansion of the total area occupied by both beams in
the tune diagram making it more difficult to avoid incoherent resonances.

In a two-ring machine the tunesplit can be increased so that the beams occupy
different cells in the tune diagram. Then another complication may arise due to coherent
beam-beam resonances of relatively low order. It can be avoided by further increasing the
tunesplit up to an integer value.

With two diametrically opposite IPs it is possible to achieve complete cancellation of
the coherent beam-beam effect by means of either odd-integer tunesplit or π/2-phase advance
redistribution.

In spite of expectations based on the rigid-bunch model, the long-range interactions do
not suppress the discrete π-mode in the plane of separation even when the effect of a large
number of interactions is combined in phase. At the same time the π-mode tuneshift in the
other plane may increase quite significantly making this mode more difficult to damp.

In the case of two IPs the effect of the long-range interactions on the coherent modes
can be significantly reduced with the help of the alternating crossing proposed earlier to
cancel the long-range contribution to incoherent tuneshifts. However, the benefit of
alternating crossing may be lost if at the same time one of the two above-mentioned methods
for cancellation of the effect of the nominal IPs will be implemented.

Analysis of different mechanisms of synchro-betatron coupling (betatron phase
advance variation along the bunch, chromatic tune modulation, crossing angle) shows no
drastic reduction in the coherent beam-beam tuneshift.

However, if the synchrotron tune is comparable with the beam-beam parameter, the
synchrotron sidebands of the continuum modes can overlap discrete spectral lines providing
Landau damping.

In the case of short bunches, σs/βx
∗� 1, the Landau damping is produced by the first

sideband whereas at σs/βx
∗  ~ 1 the contribution from the second sideband is also important.

Negative chromaticity is found to enhance the finite bunch length effect. The crossing angle
contributes to damping by the second sideband.

If the synchrotron tune lies outside the range necessary for these sidebands to overlap
the discrete lines, another mechanism of damping the coherent beam-beam modes is possible,
the so-called head-tail damping. It is found that when the synchrotron tune is small with
respect to the beam-beam parameter, the lattice chromaticity plays no role in the head-tail
effect (hence may be negative); the damping rate being determined by the ratio σs/βx

∗ .
In the case of LHC the design synchrotron tune value renders the Landau damping rate

close to the maximum (≈ 6s-1 for the π-mode and ≈ 8s-1 for the Σ-mode) which is marginally
sufficient to suppress the resistive wall instability at top energy. A negative chromaticity
ν′~ -3 provides more than a twofold gain in the damping rate.
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Appendix A.   Landau damping by sidebands
Here we obtain the formula for the width which a discrete spectral line (of dipole

oscillations) obtains due to being overlapped by bounded continuous spectrum (of a
sideband).

The spectrum boundedness4 presents an important distinction from the classical case
of plasma oscillations. We will treat the problem following both the original method of
Landau [20] and a more general approach proposed by Van Kampen [21].

Let us consider the equation
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is a matrix of operators acting in the Gilbert space of functions of J, B̂  presents a (small)
coupling perturbation, asterisk means Hermitian conjugation. We assume the diagonal

operators to be self-adjoint, ii AA ˆˆ =∗ ; 0Â  to have a discrete eigenvalue λ0 well separated from

the rest of its spectrum R (the criterion will be clear afterwards):

0000
ˆ Ψλ=ΨA , (A.4)

and 1Â  to have a continuous spectrum C = (λmin, λmax) overlapping λ0 (λmin< λ0< λmax):
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Eigenfunctions of operators 1,0Â  satisfy the following orthonormality conditions

)(),(,1),(
2

000 λ′−λδ=ΦΦ=Ψ≡ΨΨ λ′λ∫ dJ . (A.6)

With the help of these eigenfunctions we can look for the solution of eq.(A.1) in the
form

















µΦ

µΨ+Ψ
=

∫
∫

µµ

µµ

C

R

db

dwaa )(00

f , (A.7)

Being interested in eigenvalues of Â  in the vicinity of λ0 we may neglect the contribution of
the Stieltjes integral over R owing to the assumption made above.

                                                          
4 As far as the author is aware of, the case of bounded spectrum was first treated by P.Zenkevich [19].
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A.1 Landau recipe
Let us follow the classical work of Landau [20] and consider the initial value problem for
eq.(1), choosing the particular initial conditions

0,
01000 =Ψ=
=θ=θ

ff ,  (A.8)

or, for the expansion coefficients
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(A.8′)

Performing the Laplace transformation

∫
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θ− θθ=
0

00 )( daea p
p .  (A.9)

we obtain from eq.(A.1) the system
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Neglecting the contribution from R to the last of eqs.(A.10) we
can write for the solution of eq.(A.1)

dp
pD

e

i
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i

i

p

∫
∞+ε

∞−ε

θ

π
=θ

)(2

1
)(0 , (A.11)

where ε is a constant larger than the real part of any singularity
of the inverse of the function

.)ˆ,(
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d
ip

B
ippD
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The integral over continuous spectrum (hence D(p) on
the whole) is analytical everywhere in the complex domain of p

except for the cut (-iλmax , -iλmin) which ends are logarithmic branching points. It is easy to
verify that D(p) has no zeros on the main list. At the same time, its analytic continuation
across the cut from the right half-plane to Rep < 0 has a zero.

We can obtain the exact expression by reducing (A.11) to an integral around the cut
[19]. However, it will be more instructive to use the analytic continuation technique which
has a significant heuristic potential and easily provides solution in even more complicated
cases (e.g. of degeneracy of the continuous spectrum).

According to the Sohotsky-Plemmel formula we have for p immediately to the right of
the cut

2
Im

22

||
Im

||
p.v.

||
pBid

p

B
d

ip

B
−

µµ π+µ
+µ

=µ
−µ ∫∫

CC

, (A.13)

Rep

Imp

 p0 cut

Figure 17. Contour of
integration.
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where p.v. means the principal value of the integral, and may use this equality as an
approximation for the analytic continuation of D(p) to Rep < 0.

Now assuming that solution of the equation

∫ µ
λ−µ

−λ=λ µ

C

d
B

0

2

00 ~
||

p.v.
~

(A.14)

still belongs to C we obtain a zero of D(p) at

2
000 ||)(),

~
(

~
λπ≡λ∆λ∆−λ−≡= Bipp . (A.15)

To evaluate the integral in (A.11) let us deform the path of integration as shown in
Fig.17, threading it in and out of the cut and encircling the pole at p = p0. Taking the part of
the integral given by the residue at the pole,

θ≈θ 0
0 )(

p
ea , (A.16)

we get finally the dipole component of the solution of eq.(A.1) in the form

0
00

000

)
~

(
~

)()( Ψ≈Ψθ≈θ θλ∆−θλ−i
eaf (A.17)

and can see Landau damping of the discrete mode with decrement )
~

( 0λ∆ .
There are certain drawbacks in the above derivation. First, it is not easy to give an

estimation of the neglected contribution from the parts of the contour going to and from the
ends of the cut on different lists (see Fig.17).

Second, there is an apparent contradiction: eq.(A.16) suggests Â  have a complex
eigenvalue, )

~
(

~
000 λ∆−λ= iip , whereas this operator is self-adjoint by assumption and may

have only real eigenvalues.

A.2 Van Kampen approach
Let us look for eigenfunctions λF  of operatorÂ  corresponding to eigenvalues λ in the vicinity

of λ0 in the form (A.7) again neglecting the contribution from R. Then the expansion
coefficients satisfy the system of homogeneous equations

C
C

∈µ=−µ−λ

=µ−λ−λ

µµ

µµ∫
,0)(

,0)(

0

00

aBb

dbBa
(A.18)

which may have nontrivial solution if

∫ =µ
λ−µ

+λ−λ µ

C

0
|| 2

0 d
B

. (A.19)

This equation looks very much like equation D(p) = 0 after substitution p � -iλ in (A.12) but
has an absolutely different meaning. Eq.(A.12) defines D(p) with the integration rule given by
the Sohotsky-Plemmel formula (A.13) whereas eq.(A.19) defines the rule of evaluation of the
improper integral for a particular value of λ∈ C.

Generally we may write

)()(
1

p.v.
1 λ−µδλ+

λ−µ
=

λ−µ
h , (A.20)

where h(λ) is an arbitrary function. To satisfy eq.(A.19) we should choose it as
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We are interested in the dependence a0(λ) which gives the dipole component of the
eigenmodes of operator Â  as a function of eigenvalue λ∈ C. To find it we make use of the
orthonormality condition for vector eigenfunctions belonging to continuous spectrum
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where eqs.(A.6), (A.7) and (A.18) were used to obtain the first equality. Making notice that
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where σ(x) = 1 for x ≥ 0 and σ(x) = 0 for x < 0, and performing integration of eq.(A.22) by λ′
in the limits (λ-η, λ+η) where η is an infinitesimal value, we have

)]([||)(1),( 2222
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λ′λ∫ hBadFF , (A.24)

or, recalling eq.(A.21),
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We see that the position of the peak and its width are very similar to those obtained by the
first method. But there is some difference in the meaning of coefficients a0(λ) and a0(θ) which
needs clarification.

A.3 Correspondence of the two methods
Let us again consider the initial conditions (A.8). Now we solve eq.(A.1) by expansion in the
eigenfunctions λF  of operatorÂ :

),()),0(()0(,)()( 0 λ==λθ=θ λλλλ∫ acdc FfFf
C

(A.26)

and obtain for the dipole component
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2
0000 )()()()( Ψλλ=Ψλλθ=θ ∫∫ λθ−

λ
CC

daedacf i (A.27)

Comparing this result with eq.(A.17) we get the sought relation

∫ λλ=θ λθ−

C

daea i )()( 2
00 . (A.28)

We can proceed further assuming the width 2||)( λπ=λ∆ B  small and slowly varying:

∆(λ0)� min(λmax - λ0, λ0 - λmin),  ∆′(λ  0)� 1. Then we may extend integration limits in
(A.28) to ± ∞ and, regarding  ∆(λ) as a constant, obtain (A.17).
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Appendix B.   Beam-beam effect on the slow head-tail instability
The coherent beam-beam head-tail phase given by eq.(8.15) can completely change

the picture of the so-called slow head-tail instability (see e.g. Ref.[9]). Here we consider only
the effect of finite bunch length and chromaticity in the absence of crossing angle.

In the presence of external elements we should add the corresponding term to the
Liouville equation (4.3):

0
1(ext))()()( ],[ FIKFF kkk −ε⋅=+

∂θ
∂ � , (B.1)

where the invariant (in the absence of perturbations) action I to the first order in the beam-
beam parameter and chromaticity coincides with the original action. Therefore its derivative
can be expressed via the wake fields as
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(the case of horizontal dipole oscillations, mx = 1, my = 0, assumed).
Let us perform Fourier expansion in the angle variables of transverse motion but retain

dependence on the synchrotron phase angle ψs, the scalar product being now defined as

sdJdgfgf ψ+
π

= ∫ 3)2()2()1()1( )(
2

1
),( gf . (B.3)

Implementing (with the said exception) the transformations which lead to eq.(5.5) and
assuming equal single particle tunes we may write for the external elements contribution to
the Vlasov operator
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where expressions (3.17) for x-coordinate and momentum were used, Ψ0(J) is given by
eq.(5.13). The term with the Twiss parameter αx vanishes on average over the machine
circumference.

At energies in the TeV range the (complex) tuneshift induced by external impedances
is small compared to the beam-beam tuneshift. Therefore i) operator (B.4) can be considered
as a small perturbation, ii) only perturbation of discrete modes which are not already Landau
damped presents interest, iii) the beam-beam modes with ms ≠ 0 are stable since they have no
discrete eigenvalues.

As follows from the analysis in Section 8.1 the discrete modes are not Landau damped
at either small or large values of the synchrotron tune compared to the beam-beam parameter:
|Qs| ≡ |νs/ξ|� 1 or |Qs| ≥ 1. In both cases the eigenfunctions can be factorized in the
transverse and longitudinal parts, the latter being given by eq.(8.15) in the first case and
eq.(8.12) with l = 0 in the second case.

Applying the first order formula for perturbation of eigenvalues of a linear operator we
obtain
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where factor rbb is defined by eq.(5.15).
We will not discuss here the head-tail instability in detail and just want to notice that

in the case of low synchrotron tunes, |Qs|� 1, the lattice chromaticity is excluded from the
stability criterion (ξIm� < 0), its sign playing no role as observed in collision at the
Tevatron [22]. Instead, the head-tail phase imposed by the beam-beam interaction of finite
length bunches insures damping of the discrete dipole modes5.

At intermediate Qs values when damping by synchrotron sidebands comes into force it
is even advantageous to make the chromaticity negative (with the absolute value compatible
with the single-particle stability) so that it adds up to the damping effect of the finite bunch
length. However, at |Qs| > 1, when Landau damping by synchrotron sidebands is switched off,
the chromaticity should be positive.

                                                          
5 Let us remind the general properties of the transverse wake function [9]: W1(z)=0 at z≥0 and W1(z)<0 over
some distance at  z<0.


