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Abstract

We study the breaking of supersymmetry in five-dimensional (5d) warped spaces, using
the Randall-Sundrum model as a prototype. In particular, we present a supersymmetry-
breaking mechanism which has a geometrical origin, and consists of imposing different
boundary conditions between the fermions and bosons living in the 5d bulk. The scale of
supersymmetry breaking is exponentially small due to the warp factor of the AdS metric.
We apply this mechanism to a supersymmetric standard model where supersymmetry
breaking is transmitted through the AdS bulk to matter fields confined on the Planck-
brane. This leads to a predictable superparticle mass spectrum where the gravitino mass
is 10−3eV and scalar particles receive masses at the one-loop level via bulk gauge interac-
tions. We calculate the mass spectrum in full detail using the 5d AdS propagators. The
AdS/CFT correspondence suggests that our 5d warped model is dual to the ordinary 4d
MSSM with a strongly coupled CFT sector responsible for the breaking of supersymmetry.
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1 Introduction

The standard model is believed to be an effective theory valid up to some energy scale near
the electroweak scale. What lies beyond the standard model has been the subject of active
research. Among the possible candidates, there are technicolor theories, supersymmetry, and,
recently, extra dimensions [1].

Extra dimensions and supersymmetry present an additional motivation. They could be an
important ingredient in the underlying theory that includes a quantum description of gravity,
and in particular for string theory they play a crucial role. A particularly interesting extra
dimension scenario is the Randall-Sundrum model [2]. In this model the extra dimension is
compactified in a slice of anti-deSitter (AdS) space, and, as a consequence, the electroweak
scale is generated by an exponential warp factor in the metric. This model can be supersym-
metrized [3, 4, 5] providing an interesting alternative to the minimal supersymmetric standard
model (MSSM), and a possible connection to string theories [6].

In this article we want to continue the study of supersymmetric extensions of the standard
model living in five dimensions where the extra dimension is compactified as in the Randall-
Sundrum model [3, 7]. In particular, we want to study supersymmetry breaking. A warped ex-
tra dimension allows for new ways of breaking supersymmetry. The particular mechanism that
we will consider here consists of imposing different boundary conditions between the fermions
and bosons. This supersymmetry breaking mechanism has been previously studied in flat space
but not in warped spaces. In warped space this way of breaking supersymmetry leads to novel
phenomenological consequences. For example, the radius of compactification does not need to
be large (TeV−1) as in the case of flat space [8]. Therefore it can be consistent with a large
cut-off scale that is related with the Planck scale, MP , or grand unified theories [9, 7]. As we
will show, the scale of supersymmetry breaking can be very low (∼ TeV) and this implies a
superlight gravitino m3/2 ∼ 10−3 eV. Scalars are massless at tree-level and get masses at the
one-loop level. We will study in detail a “warped” version of the MSSM, where gravity and
gauge bosons live in the five-dimensional (5d) AdS bulk, while matter fields are located on one
of the boundaries, the Planck-brane. In this warped MSSM the squark and slepton masses
arise at one-loop from the gauge interactions and are therefore naturally flavor independent.
One of the most interesting properties of the model is its predictivity of the low-energy mass
spectrum. We will calculate it here in full detail. Although we present the calculation for a
particular extension of the standard model, the calculation of quantum effects in warped spaces
that we present here is much more general and can also be useful for other scenarios.

Another important motivation for the study of the MSSM in a slice of AdS arises from the
AdS/CFT correspondence [10]. This conjecture suggests that these 5d models have a strongly-
coupled 4d dual [11, 12, 13, 14]. Therefore, the study of the weakly coupled 5d gravity theory
here will be helpful in understanding supersymmetric 4d theories with a strongly coupled sector.
We will comment later on this duality.

In section 2 we introduce the Randall-Sundrum compactification and its supersymmetric
version. In particular we also analyze the gravitino Kaluza-Klein decomposition since it is the
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only field not considered in Ref. [3] (see also [15]). In section 3, we present the supersymmetry-
breaking mechanism, which is based on imposing “twisted” boundary conditions for fermions
in the bulk, and comment on the differences compared with the case of a flat extra dimension.
In section 4 we introduce a version of the MSSM living in a slice of AdS and calculate the
sparticle mass spectrum, at tree-level and at one-loop level. We will also comment on the
holographic interpretation of the model. Our concluding remarks appear in Section 5. Finally
in the Appendix, we present a detailed calculation of the 5d propagators in a slice of AdS.

2 The Warped Supersymmetric Brane-World

We will consider the scenario of Ref. [2], which is based on a nonfactorizable 5d geometry.
The fifth dimension y is compactified on an orbifold, S1/Z2 of radius R, with 0 ≤ y ≤ πR.
The boundary of the 5d spacetime consists of two 3-branes located at the orbifold fixed points
y∗ = 0 and y∗ = πR. This configuration with the 5d metric solution [2]

ds2 = e−2σηµνdx
µdxν + dy2 ≡ gMNdx

MdxN , (1)

is a slice of AdS space, where σ = k|y| and 1/k is the AdS curvature radius. The 5d coordinates
are labelled by capital Latin letters, M = (µ, 5) where µ = 0, . . . , 3. The complete supergravity
action for this configuration is obtained by including the gravitino and graviphoton together
with the graviton [3, 4, 5]. However, for the discussion of supersymmetry breaking it will suffice
to only consider the additional gravitino kinetic and mass terms, which are given by [3]

S = S5 + S(0) + S(πR) ,

S5 =

∫
d4x

∫
dy
√−g

[
− 1

2
M3

5

(
R+ iΨ̄i

Mγ
MNPDNΨi

P − i
3

2
σ′Ψ̄i

Mγ
MN(σ3)

ijΨj
N

)
− Λ

]
,

S(y∗) =

∫
d4x
√−g4

[L(y∗) − Λ(y∗)

]
, (2)

where g4 is the induced metric on the 3-brane located at y∗, and γM1M2...Mn = 1
n!
γ[M1γM2 . . . γMn]

is the antisymmetrized product of gamma matrices. We have defined σ′ = dσ/dy. Supersym-
metry automatically ensures the bulk/boundary conditions Λ(0) = −Λ(πR) = −Λ/k. The action
contains the 5d Planck scale M5, the 5d Ricci scalar R, two symplectic-Majorana gravitinos,
Ψi

M (i = 1, 2), and a bulk cosmological constant Λ. At y∗ = 0 the effective 4d mass scale is of
order of the Planck scale, M2

P ' M3
5 /k, and we will refer to the brane there as the Planck-brane.

Similarly, at y∗ = πR the effective mass scale is of order MP e
−πkR, which is the TeV scale for

kR ' 11. Consequently the 3-brane located there will be referred to as the TeV-brane. The
index i labels the fundamental representation of the SU(2)R automorphism group of the N = 1
supersymmetry algebra in five dimensions. The gravitino supersymmetry transformation is
given by [3]

δΨi
M = DMη

i +
σ′

2
γM(σ3)

ijηj , (3)
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where the symplectic-Majorana spinor ηi is the 5d supersymmetry parameter.

Similarly, gauge bosons and matter can be added to the bulk [16, 17, 9, 18, 3]. In a
5d supersymmetric theory they form part of vector supermultiplets and hypermultiplets. The
behavior of these supermultiplets in the background of Eq. (1) was considered in Ref. [3], where
the Kaluza-Klein mass spectrum was also derived. Only the analysis of the gravitino field was
not presented in Ref. [3]. For this reason, we will present below the Kaluza-Klein decomposition
of the gravitino. This will also help to show how the superHiggs mechanism operates level-
by-level in the Kaluza-Klein modes, and will help to better understand the supersymmetry
breaking mechanism presented in the next section.

2.1 Kaluza-Klein decomposition of the gravitino and the superHiggs

mechanism level by level

Let us start by decomposing the 5d gravitino, ΨM , and the 5d supersymmetry parameter, η,
into 4d Kaluza-Klein fields

Ψµ L,R(xµ, y) =

∞∑
n=0

ψ
(n)
µ L,R(xµ) f

(n)
L,R(y) ,

Ψ5 L,R(xµ, y) =
∞∑

n=0

ψ
(n)
5 L,R(xµ)f

(n)
5 L,R(y) ,

ηL,R(xµ, y) =
∞∑

n=0

η
(n)
L,R(xµ)f

(n)
L,R(y) . (4)

We have dropped the SU(2)R index i, since we need only consider the i = 1 component (the i = 2
component is simply obtained from the symplectic-Majorana condition). We have also defined
γ5ΨL,R = ±ΨL,R. It is important to note that we have chosen the y-dependent wavefunction of
the supersymmetry parameter η to be the same as that for the Kaluza-Klein gravitinos.

2.1.1 Kaluza-Klein modes n 6= 0

The supersymmetry transformation Eq. (3) for i = 1 gives

δΨµ = ∂µη + σ′γµ

(
1− γ5

2

)
η ,

δΨ5 = ∂5η + σ′
γ5

2
η . (5)
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Substituting Eq. (4) into Eq. (5) and projecting out the nth-mode 1, we find that the super-
symmetry transformation for the nth Kaluza-Klein gravitino mode is given by

δψ
(n)
µ L = ∂µη

(n)
L + γ̃µ

∞∑
k=0

ankη
(k)
R , (6)

δψ
(n)
µ R = ∂µη

(n)
R , (7)

where γ̃µ is the 4d Minkowski gamma matrix and the coefficients ank are given by

ank ≡
∫
dy e−2σσ′f (n)

L (y)f
(k)
R (y) . (8)

The coefficients ank imply that the supersymmetry transformation of ψ
(n)
µL at level n, depends

nontrivially on the complete tower of Kaluza-Klein parameters η
(k)
R . This effect is entirely due

to the fact that the bulk is AdS. Let us now impose the following relation for the wavefunctions
of Ψ5:

f
(n)
5 L,R =

1

mn

(
±∂5 +

1

2
σ′
)
f

(n)
L,R , (9)

where mn is the 4d mass of the gravitino Kaluza-Klein mode n, which will be derived below.
The condition (9) allows us to write a simple expression for the supersymmetry transformation

of Kaluza-Klein modes ψ
(n)
5

δψ
(n)
5 L = mnη

(n)
L , (10)

δψ
(n)
5 R = −mnη

(n)
R . (11)

This shows that the nth Kaluza-Klein mode of the 5th component of the gravitino transforms as
a Goldstino of the η(n) supersymmetry transformation and that these N = 2 supersymmetries
are non-linearly realized. We can now see that the redefined gravitinos

ψ̃
(n)
µ L ≡ mnψ

(n)
µ L − ∂µψ

(n)
5 L +mnγ̃µ

∞∑
k=0

ank
ψ

(k)
5 R

mk
,

ψ̃
(n)
µ R ≡ mnψ

(n)
µ R + ∂µψ

(n)
5 R , (12)

are invariant under supersymmetry transformations, and therefore correspond to the physical
fields. On the contrary, the fields ψ

(n)
5 are gauge dependent and can be eliminated. This is the

superHiggs mechanism. The ψ
(n)
5 are eaten by the gravitino ψ

(n)
µ to become massive.

Let us now turn to the Rarita-Schwinger equation for the bulk gravitino, which in the AdS
background reads

γMNPDNΨP − 3

2
σ′γMP ΨP = 0 . (13)

1This corresponds to multiplying each side of Eq. (5) by f
(n)
L,R, integrating over y, and using the gravitino

orthogonality condition
∫

dy e−σf
(n)
L,Rf

(m)
L,R = δnm.
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Using the redefined gravitino fields (12), the equation of motion (13) simplifies to

γµνρ∂νψ̃
(n)
ρ L,R −mnγ

µρψ̃
(n)
ρ R,L = 0 , (14)

which represents the 4d massive Rarita-Schwinger equation for the spin 3/2 field ψ̃
(n)
µ , and

where the y-dependent Kaluza-Klein wavefunctions satisfy(
∂5 +

1

2
σ′
)
f

(n)
L = mne

σf
(n)
R , (15)(

∂5 − 5

2
σ′
)
f

(n)
R = −mne

σf
(n)
L . (16)

One can see that the dependence on ψ
(n)
5 has dropped out and the equation of motion depends,

as expected, only on ψ̃
(n)
µ . The solutions of Eqs. (15) and (16) are a special case of the general

solution appearing in Ref. [3]. In fact, defining f̂
(n)
L,R = e−σf

(n)
L,R one can see that f̂

(n)
L,R corresponds

to the wavefunction of a “hatted” fermion of mass m = 3σ′/2 defined in Ref. [3]. Thus, using
the results in Ref. [3] and the fact that Ψµ L (Ψµ R) are defined even (odd) under the Z2-parity,
we obtain the y-dependent gravitino wavefunctions

f
(n)
L =

1

Nn
e

3
2
σ
[
J2(

mn

k
eσ) + b(mn)Y2(

mn

k
eσ)
]
, (17)

f
(n)
R =

σ′

kNn
e

3
2
σ
[
J1(

mn

k
eσ) + b(mn)Y1(

mn

k
eσ)
]
, (18)

where Jα and Yα are Bessel functions, Nn are normalization constants and the coefficients b(mn)
satisfy

b(mn) = −J1(
mn

k
)

Y1(
mn

k
)
, (19)

b(mn) = b(mne
πkR) . (20)

The Kaluza-Klein masses of the gravitinos ψ̃
(n)
µ can be obtained by solving (20), and for n > 0

they are approximately given by

mn '
(
n+

1

4

)
πke−πkR . (21)

Finally, using (15) and (16), and the fact that Ψ5 R (Ψ5 L) are even (odd) under the Z2-parity,
we have from the condition (9)

f
(n)
5 L = eσf

(n)
R , (22)

f
(n)
5 R = eσf

(n)
L − 2σ′

mn

f
(n)
R . (23)
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2.1.2 Massless sector

The y-dependence of the gravitino zero-mode wavefunction is obtained from Eq. (15), since

under the orbifold symmetry, f
(0)
R is projected out. Thus for the remaining mode, f

(0)
L with

m0 = 0, we obtain

f
(0)
L (y) =

1√
N 0

e−
1
2
σ , (24)

where the normalization factor N0 = (1− e−2πkR)/k. This is consistent with the y-dependence

of the graviton zero-mode wavefunction, as expected from supersymmetry. Similarly, η
(0)
R is

projected out and η
(0)
L whose wavefunction is also given by Eq. (24) parametrizes the remaining

N = 1 supersymmetry of the theory. In fact one can check that Eq. (24) satisfies the Killing
spinor condition.

Similarly, for the fifth-component of the gravitino, we have that ψ
(0)
5 L is projected out and

only ψ
(0)
5 R remains in the theory. This corresponds to the supersymmetric partner of the radion,

the “radino”. The 4d effective Lagrangian of this field has been recently presented in Ref. [19].

3 Supersymmetry breaking in a slice of AdS

Different mechanisms of supersymmetry breaking in brane-world scenarios have been consid-
ered in the past. The most popular, based on the Horava-Witten model, corresponds to break-
ing supersymmetry in a hidden-sector living on a brane located at a finite distance from the
observable-sector brane [20]. The moduli (e.g. the dilaton and radion) play the role of mes-
sengers communicating the supersymmetry-breaking from the hidden to the observable sector.
These scenarios rely on gaugino condensation to occur on the hidden-sector brane in order to
explain the hierarchy.

Warped (AdS) spaces allow for new possibilities. First of all, since the hierarchy is now
explained by the warp factor, one does not need a gaugino condensation in a hidden sector to
be responsible for a small supersymmetry breaking. Supersymmetry can be broken at tree-level
if it occurs on the TeV-brane, and therefore have a stringy origin.

The supersymmetry-breaking mechanism that we will consider here is based on imposing
different boundary conditions between fermions and bosons on the TeV-brane. This breaks
supersymmetry for the bulk fields, and as we shall see, the Kaluza-Klein fermions and bosons
receive TeV mass-splittings. The mechanism consists of the following. The 5d bulk fields in the
supersymmetric Z2 orbifold can be classified as either odd or even fields under the Z2 parity.
For the 5d fermions, we have two possibilities to define the Z2 parity, namely

ψ(−y) = ±γ5ψ(y) . (25)

Once a choice is made, this also defines the chirality on the 4d boundary at y∗ = 0, since
ψ(0) = ±γ5ψ(0). For the supersymmetric Z2 orbifold the same chirality is chosen on the two
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boundaries at y∗ = 0 and y∗ = πR. In this way only half of the bulk supersymmetry is broken by
the boundaries, leaving an N = 1 supersymmetric theory at the massless level. However, there
also exists the possibility to separately define the chirality of fermions on the two boundaries.
For example, the choice

ψ(0) = γ5ψ(0) ,

ψ(πR) = −γ5ψ(πR) , (26)

corresponds to the following y-dependence

ψ(−y) = γ5ψ(y) ,

ψ(−y + πR) = −γ5ψ(y + πR) . (27)

Thus, under a 2π rotation around the circle S1, Eq. (27) leads to fermions that are antiperiodic

ψ(y + 2πR) = −ψ(y) . (28)

As will be shown below, the boundary conditions (26) project out the massless fermion modes
arising from bulk fields. Also supersymmetry is now completely broken since no Killing spinor
can be defined 2.

The fermionic boundary conditions (26) have been considered previously in the literature.
If the space of the extra dimension is flat, imposing these boundary conditions exactly corre-
sponds to breaking supersymmetry by the Scherk-Schwarz mechanism [22]. This mechanism
has been applied to the MSSM in Refs. [8, 23, 24, 25, 26]. In the Horava-Witten theory this was
studied in Ref. [27]. However, for warped spaces the fermionic boundary conditions Eq. (26) do
not correspond to the Scherk-Schwarz mechanism, because this requires a smooth limit where
supersymmetry is restored [22]. In the case of warped spaces, we have not found such a smooth
limit 3.

Let us now study the fermionic spectrum with the boundary conditions (26), which we will
refer to as “twisted” boundary conditions. The resulting Kaluza-Klein mass spectrum for ψL

is now determined by (see Appendix)

Jα−1(
mn

k
)

Yα−1(
mn

k
)

=
Jα(mn

k
eπkR)

Yα(mn

k
eπkR)

, (29)

where α = |c + 1/2| for a fermion of Dirac-type mass m = cσ′ and α = 2 for the gravitino.
One can easily check that the equation resulting from imposing twisted boundary conditions
on ψR leads to an identical Kaluza-Klein spectrum. The first thing to notice in Eq. (29) is that
mn = 0 is no longer a solution of the above equation and therefore no massless fermions are

2This has some similarities with finite temperature which also breaks supersymmetry [21].
3Similarly, one can also show that the models of Refs. [24, 25] with only one Higgs hypermultiplet (instead of

two) do not have this smooth limit to a supersymmetric theory. This alternative has recently been considered
in Ref. [26], where it was shown that the boundary conditions Eq. (26) can also be understood as compactifying
on a S1/(Z2 × Z2) orbifold.
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present. Consequently, supersymmetry is now completely broken. One can also see that the
Killing spinor, η

(0)
L , whose wavefunction is identical to Eq. (24), is not consistent with the new

boundary conditions. Thus, the only change with respect to Section 2.1 is that Eq. (20) is now
replaced by Eq. (29), and the massless sector of subsection 2.1.2, is no longer present in the

theory. Notice that from Eq. (10) the Goldstino of the broken N = 1 supersymmetry is ψ
(0)
5 L.

In the limit mn � k and kR� 1, the solution of Eq. (29) is given by

mn '
(
n+

α

2
− 1

4

)
πke−πkR . (30)

Comparing with the result for “untwisted” boundary conditions [3], one finds that the Kaluza-
Klein mass spectrum is shifted by a value that asymptotically approaches 1/2(πke−πkR). This
is to be contrasted with the flat case where the shift in the Kaluza-Klein mass spectrum is
1/(2R).

There is an important difference when this type of supersymmetry breaking is realized in
warped spaces compared to the flat case. In flat spaces this type of supersymmetry breaking is
global. To see this, let us consider an observer living on one of the branes with the other brane
sent to infinity (R → ∞). In this limit and in flat space, supersymmetry is restored because
the Kaluza-Klein spectrum becomes continuous (the scalar-fermion mass splitting disappears).
This is related to the fact that one can locally (i.e., on either brane) define a supersymmetric
theory. Breaking supersymmetry globally (when the extra dimension is compact, no Killing
spinor can be defined in the whole space) leads to the important property that the vacuum
energy and the one-loop scalar masses are finite and independent of the cut-off scale [28, 25].

In warped spaces the situation is different and the finiteness of the one-loop scalar masses
depends on which particular brane the observable sector lives. Consider first the observable
sector on the Planck-brane where the TeV-brane is sent off to infinity. In this limit supersym-
metry is restored on the Planck-brane because the Kaluza-Klein spectrum becomes continuous.
Therefore the one-loop scalar masses on the Planck-brane will be finite. Alternatively, sup-
pose that the observable sector is on the TeV-brane. Now, even if we consider the limit where
we send the Planck brane away (R → ∞), the Kaluza-Klein spectrum remains discrete and
supersymmetry stays broken. Therefore on the TeV-brane supersymmetry is broken and cor-
rections to scalar masses will be sensitive to the ultraviolet cut-off. Another way to see that
supersymmetry is broken by the TeV-brane (contrary to the flat case) is that no Killing spinor
can be defined if fermions have twisted boundary conditions. Even in a non-compact space,
the TeV-boundary breaks all the supersymmetries. These expectations will be confirmed in
the following sections by the explicit calculation of the one-loop scalar masses in a warped AdS
space.

Finally, as an alternative to the supersymmetry-breaking mechanism considered above, there
also exists the possibility of breaking supersymmetry by the F -term, FT of the radion field T .
This can easily be achieved by turning on a constant term, W , in the superpotential localized
on the TeV-brane. In flat space this is known to generate a vacuum expectation value (VEV)
〈FT 〉 ∼ W/M3

5 . In fact in flat space, this corresponds exactly to the Scherk-Schwarz mechanism
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[29] or to imposing the twisted boundary condition for the fermion as in Eq. (26). However,
in a warped space this is not the case, and a nonzero 〈FT 〉 leads to a new way of breaking
supersymmetry. Furthermore, in a warped space the VEV of FT , induced by a constant term
in the superpotential at the TeV-brane, is exponentially suppressed, 〈FT 〉 ∼ e−πkRW/M3

5 . The
tree-level spectrum is easily derived. For the gaugino we have mλ ∼ 〈FT/T 〉 ∼ TeV, while for
scalars localized on either brane their masses are zero. The scalar masses are, however, induced
at the one-loop level. This scenario leads, qualitatively, to the same mass spectrum as the one
considered above, and will not be pursued here.

4 The Warped MSSM

Let us now present a candidate MSSM based on the 5d model described above. We will assume
that both gravity and gauge fields are in the bulk. Supersymmetry is spontaneously broken by
imposing twisted boundary conditions, (26), on the gravitino and gaugino. The MSSM matter
fields are assumed to be completely localized on the Planck brane. At tree level, the matter
fields are massless and the dominant supersymmetry-breaking effects will be transmitted to
the matter fields on the Planck brane by the 5d gauge interactions. Thus, the soft masses
on the Planck brane will arise via radiative corrections and can be computed using the 5d
AdS propagators. On the other hand, the Higgs field can also be assumed to be a bulk field.
However, in this case we will see that radiative corrections to the Higgs soft masses are sensitive
to TeV-scale physics. Other alternative scenarios will also be discussed. Since the bulk fields
live in a warped space, these models will be referred to as the “warped MSSM”.

Before proceeding to calculate the sparticle spectrum an important comment is in order.
Since the gauge bosons live in a warped extra dimension, the effective 4d coupling is given by
g2 = (g2

5k)/(πkR), where g5 is the 5d gauge coupling [17, 9]. In order to explain the Planck-TeV
scale hierarchy we need kR ' 10, which implies that for g2

5k <∼ 1, we obtain g2 <∼ 1/30. This is
in contradiction with the experimental values of the gauge couplings which require g2 ∼ O(1).
Therefore, in order to agree with the experimental values one requires that g2

5k >∼ 30. This
inevitably means that the theory is close to the strong coupling regime at energies E ∼ k.
On the TeV-brane this corresponds to energies E ∼ ke−πkR. At these energies the expansion
parameter becomes g2

5k/(16π2) ∼ 0.2. We will assume that the effects from the strong coupling
regime do not spoil the AdS geometry. Similarly, we will be able to trust our low-energy
predictions, provided that the energy of the processes satisfies E <∼ ke−πkR.

4.1 Tree-level masses

If twisted boundary conditions are imposed on the the fermions in the bulk, then all the 4d
fermion modes will receive masses. In particular, the zero mode of the gravitino will receive a
mass whose magnitude can easily be obtained by solving (29) for α = 2:

m3/2 '
√

8ke−2πkR . (31)
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Thus, for k = MP and ke−πkR = TeV we obtain m3/2 ' 2.8 × 10−3eV. This is a superlight
gravitino, as compared to the usual gravity-mediated and gauge-mediated scenarios in four
dimensions, and satisfies the usual experimental constraints from cosmology and collider ex-
periments [30]. In the warped case the small gravitino mass arises because the coupling of
the gravitino to the TeV-brane is exponentially suppressed, and therefore it is very insensitive
to the twisting of boundary conditions on the TeV-brane. The higher Kaluza-Klein gravitino
modes are approximately given by

mn '
(
n+

3

4

)
πke−πkR . (32)

Notice that compared to the untwisted gravitino Kaluza-Klein spectrum (21), the twisted mass
spectrum has indeed shifted approximately by an amount 1/2(πke−πkR). This shift is much
larger than for the zero mode, because the nonzero Kaluza-Klein gravitino modes are localized
near the TeV-brane and therefore couple more strongly to the TeV brane as compared to the
the gravitino zero mode which is localized near the Planck brane.

Similarly, the tree-level gaugino mass is obtained by solving (29) with α = 1:

mλ '
√

2

πkR
ke−πkR . (33)

Thus, for k = MP and ke−πkR = TeV we obtainmλ ' 0.24 TeV. Notice that unlike the gravitino
zero mode, the gaugino zero mode receives a TeV-scale supersymmetry breaking mass. This is
because the vector superfield is not localized in the AdS space, and therefore directly couples
to the TeV-brane, which is the source of the supersymmetry breaking. Using (30), the higher
Kaluza-Klein modes are approximately given by mn ' (n + 1/4)πke−πkR. These masses are
obtained at tree-level and we will see that interactions of boundary fields with the bulk gauge
bosons will generate boundary masses at one-loop. Since the mediation of the supersymmetry
breaking is due to gauge interactions, the flavor problem is naturally solved. It is important
to note that the theory has a U(1)R symmetry, since the induced masses are of the Dirac-type
instead of the Majorana-type. This is a unique property of these theories, and is due to the
N = 2 bulk supersymmetry.

It is also possible to add hypermultiplets in the bulk, where the fermions have twisted
boundary conditions. In particular, if c = 1/2 then the hypermultiplet is conformal, and the
resulting Kaluza-Klein spectrum is identical to the vector supermultiplet case.

4.2 Radiative corrections on the Planck brane

In order to compute the radiative corrections of the matter fields completely confined on the
Planck brane, let us consider the 5d AdS propagator for the gauge boson and gaugino. The
general expression for the 5d propagator in a slice of AdS is derived in the Appendix. Using the
expression for the vector field Green’s function restricted to the Planck brane (z = z′ = 1/k),
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we have

GV (x,
1

k
; x′,

1

k
) =

∫
d4p

(2π)4
eip·(x−x′) 1

ip

(
J0(ipe

πkR/k)Y1(ip/k)− Y0(ipe
πkR/k)J1(ip/k)

J0(ipeπkR/k)Y0(ip/k)− Y0(ipeπkR/k)J0(ip/k)

)
.

(34)

In the limit that p� ke−πkR we obtain

GV (x,
1

k
; x′,

1

k
) ' −1

πR

∫
d4p

(2π)4
eip·(x−x′) 1

p2
, (35)

which reduces to the usual massless vector field Green’s function in flat space. In particular
notice that by Eq. (35), the charge screening [7, 31] is absent in the slice of AdS since there are
no continuum Kaluza-Klein modes. Similarly on the Planck-brane, the twisted gaugino Green’s
function defined in the Appendix reduces to the form

GF (x,
1

k
; x′,

1

k
) =

∫
d4p

(2π)4
eip·(x−x′) 1

ip

(
J1(ipe

πkR/k)Y1(ip/k)− Y1(ipe
πkR/k)J1(ip/k)

J1(ipeπkR/k)Y0(ip/k)− Y1(ipeπkR/k)J0(ip/k)

)
.

(36)

In the limit that p� ke−πkR and kR� 1 the twisted gaugino Green’s function becomes

GF (x,
1

k
; x′,

1

k
) ' −1

πR

∫
d4p

(2π)4
eip·(x−x′) 1

p2 − 2
πkR

(ke−πkR)2
, (37)

which reduces to a massive gaugino Green’s function where the gaugino mass agrees with (33).
This difference between the gauge boson and gaugino Green’s function represents the source of
supersymmetry breaking on the Planck brane.

Note that the vector supermultiplet in the bulk, is also equivalent to a conformal hyper-
multiplet (c = 1/2) in the bulk, where the fermion has twisted boundary conditions. The
5-dimensional mass-squared of the scalar is −3k2 +2k(δ(y)− δ(y−πR)), while the mass of the
fermion is σ′/2 [3]. On the Planck brane (z = z′ = 1/k) the twisted fermion Green’s function
is the same as Eq. (36), while the scalar field Green’s function is identical to Eq. (34). In
particular, we will also consider the bulk Higgs fields to be conformal hypermultiplets.

The scalar and twisted fermion Green’s function on the Planck brane can be used to calculate
the one-loop contribution to the mass-squared of boundary matter fields. The boundary matter
fields couple to the vector supermultiplet in the bulk via gauge interactions. The Feynman
diagrams for the one-loop mass contributions to the boundary scalar fields are the same as
those in flat space and can be found in Ref. [25]. They give

m2
i = 4g2C(Ri)Π(0) , (38)

where the 4d gauge coupling is given by g2 = g2
5/(πR) and we have defined

Π(0) = −πR
∫

d4p

(2π)4

[
G(V )

p −G(F )
p

]
. (39)
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The coefficient C(Ri) is the quadratic Casimir of the representation Ri in the corresponding
gauge group, and Gp is the 4d Fourier transform of the Green’s function (see Appendix).
Similarly, the boundary matter fields can also couple to a chiral supermultiplet in the bulk [25].
For a conformal supermultiplet (c = 1/2), where the fermions have twisted boundary conditions
we obtain

m2
i = Y 2Π(0) , (40)

where Y is the boundary-bulk Yukawa coupling. Assuming that k = MP and ke−πkR = TeV
then we obtain πkR = 34.54, and the integral in Eq. (39) can be numerically evaluated to give

Π(0) =
0.2525

2π4
(TeV)2 ' (0.0360 TeV)2 . (41)

This result is finite and insensitive to the ultraviolet cut-off for the same reason that we already
explained in the previous section, namely that the supersymmetry breaking is localized on the
TeV-brane. In fact, the integration region p ≤ ke−πkR = TeV already contributes approximately
90% of the integral in Eq. (39).

Comparing the above result with the flat space case where [25] Π(0) = (0.0367/Rflat)
2, we

see that the two cases are almost numerically identical for a flat-space radius of Rflat = ke−πkR.

4.2.1 Superparticle spectrum

It is now straightforward to extend the above result to the case of the warped MSSM. Assuming
that the squarks and sleptons live on the Planck-brane they will receive a one-loop contribution
from the bulk gauge and Higgs sector (if they are in the bulk). Assuming the bulk Higgs to be
a conformal supermultiplet and following Ref. [25] we obtain

m2
Q̃

=

(
4

3
α3 +

3

4
α2 +

1

60
α1

)
Π(0) +

1

2
(αt + αb)Π(0) , (42)

m2
Ũ

=

(
4

3
α3 +

4

15
α1

)
Π(0) + αtΠ(0) , (43)

m2
D̃

=

(
4

3
α3 +

1

15
α1

)
Π(0) + αbΠ(0) , (44)

m2
L̃

=

(
3

4
α2 +

3

20
α1

)
Π(0) + ατΠ(0) , (45)

m2
Ẽ

=
3

5
α1Π(0) , (46)

where the bulk gauge contribution is proportional to the gauge couplings α1,2,3 and the confor-
mal bulk Higgs contribution is proportional to the Yukawa couplings αt,b,τ . Thus to obtain an
experimentally allowed soft mass spectrum the scale on the TeV brane should be at least a few
TeV. Notice that the dominant corrections are proportional to the gauge couplings. Thus, the
lightest scalar field is the right-handed slepton.
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4.3 Radiative corrections in the slice of AdS

Consider a conformal hypermultiplet in the bulk with twisted boundary conditions for the
fermion. The massless scalar mode φ in the hypermultiplet will receive a one-loop mass contri-
bution due to the breaking of supersymmetry from fields in the bulk with the twisted boundary
conditions. In particular the scalar can couple to the bulk vector supermultiplet. This radia-
tive correction can simply be calculated using the 5-dimensional AdS scalar propagator. For an
alternative method to calculate quantum effects in the AdS slice see Ref. [32]. Since the scalar
propagates in the bulk we need to integrate over the extra dimension, and the corresponding
mass correction is proportional to

Π(0) = −πR
∫

d4p

(2π)4

∫ πR

0

dy
[
G(V )

p (z, z)−G(F )
p (z, z)

] ' Λk e−2πkR

16π2
(47)

where Λ is a Planck-scale cutoff. Unlike the radiative corrections of the boundary fields, it
turns out that the radiative correction (47) is not finite, as expected from the arguments of the
previous section. In fact, the bulk radiative corrections (47) are linearly divergent. This reflects
the fact that the bulk fields are propagating in five dimensions and are sensitive to physics on
the TeV-brane represented by the cutoff scale Λe−πkR. This behavior is related to the fact that
the supersymmetry breaking mechanism is localized on the TeV-brane and is sensitive to the
UV physics. This is different from flat space where the breaking of supersymmetry is inherently
a global effect, and consequently the nonlocality produces a finite result.

Let us finally comment on other possible alternatives. If the Higgs is also confined on the
Planck-brane, then its mass will be generated at the one-loop level, with a magnitude similar
to that of the sleptons (without the Yukawa coupling contribution). Although this contribution
will be positive, there are sizeable two-loop effects arising from the squarks that can make the
mass-squared negative [25]. Unfortunately, the Higgsino mass cannot be generated by radiative
corrections and we will need to extend the model to include a Higgs singlet whose VEV must
induce the Higgsino mass. In the above cases we have restricted the observable sector to the
Planck-brane. Nevertheless, many more possibilities exist by placing part of the matter in
the bulk or on the TeV-brane. For example, consider delocalizing the first two families off
the Planck-brane by changing their bulk mass parameters [3]. In this case the corresponding
squarks and sleptons of the first two families will have masses larger that those of the third
family, a scenario whose phenomenology can have interesting consequences.

4.4 Relation to 4d strongly-coupled CFT

The AdS/CFT correspondence relates the 5d theory of gravity in AdS to a 4d strongly coupled
conformal field theory (CFT) [10]. In the case of a slice of AdS, a similar correspondence can
also be formulated [11, 12, 13, 14]. The Planck-brane in AdS5 corresponds to an ultraviolet
cutoff of the 4d CFT and to the gauging of certain global symmetries. For example, in the
case we are considering where gravity and the standard model gauge bosons live in the bulk,
the corresponding CFT will have the superPoincare group gauged (giving rise to gravity) and
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also the standard model group SU(3)×SU(2)L×U(1)Y (giving rise to the standard model gauge
bosons and gauginos). Matter on the Planck-brane corresponds to adding new fields to the
CFT which only couple to CFT states via gravity and gauge interactions. On the other hand,
the TeV-brane corresponds in the dual theory to a infrared cutoff of the CFT [13, 14]. In other
words, it corresponds to breaking the conformal symmetry at the TeV-scale. The Kaluza-Klein
states of the 5d theory correspond to the bound states of the strongly coupled CFT.

This alternate dual description suggests that the supersymmetry-breaking mechanism that
we have discussed represents a class of strongly coupled CFT’s where supersymmetry is broken
at the TeV scale. The bound states therefore do not respect supersymmetry and give rise to a
fermion-boson mass splitting. The 5d warped MSSM is then simply the ordinary 4d MSSM with
a strongly coupled CFT sector responsible for the breaking of supersymmetry. The standard
model fields coupled to the CFT sector will get tree-level masses while those coupled only via
gravity or gauge interactions will receive masses at the one-loop level. In our model the CFT
sector is charged under the standard model gauge group and consequently it implies that the
gauginos get masses at tree-level. Notice that as we mentioned earlier the gaugino mass is of
the Dirac-type. This means that the gaugino has married a fermion bound-state to become
massive 4. Since the gaugino mass comes from the mixing between the gaugino and the CFT
bound-state, the mass will be proportional to

√
g2bCFT/(8π2) = 1/

√
πkR, where we have used

the AdS/CFT relation [13] g2
5k = 8π2/bCFT and g2 = g2

5/(πR). This agrees with Eq. (33).
Similarly, the smallness of the gravitino mass (of order 10−3 eV) is also easy to understand in
the CFT picture. The gravitino coupling to the CFT sector is suppressed by 1/MP , so its mass
will be of order TeV2/MP ∼ 10−3 eV.

Although the CFT picture is useful for understanding some qualitative aspects of the the-
ory, it is practically useless for obtaining quantitative predictions since the theory is strongly
coupled. In this sense, the 5d gravitational theory in a slice of AdS represents a very useful
tool since it allows one to calculate the particle spectrum, which would otherwise be unknown
from the CFT side.

5 Conclusion

In this paper we have presented a supersymmetric 5d theory in warped space where supersym-
metry is spontaneously broken by imposing different boundary conditions between the fermion
and bosons. While this is reminiscent of the Scherk-Schwarz mechanism in flat space, we have
argued that in a warped space this is a novel way of breaking supersymmetry. Unlike the
flat-space case where the supersymmetry-breaking mechanism is a global effect, the twisted
boundary conditions in the warped space lead to a local supersymmetry breaking effect on the
TeV-brane.

A particularly interesting model is the warped MSSM, where matter is confined on the

4A Majorana-type mass would correspond, for example, to a breaking of supersymmetry (in the 5d dual) by
a nonzero FT .
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Planck brane, and gravity and gauge fields propagate in the 5d bulk. The gravitino and
gaugino receive tree-level masses from the twisted boundary conditions. In particular, the tree-
level mass of the gravitino is ∼ 10−3 eV and the gaugino mass ∼ TeV. The one-loop radiative
corrections to the squarks and sleptons confined to the Planck brane are finite and insensitive to
the UV cutoff. This simply reflects the fact that the supersymmetry-breaking is localized on the
TeV-brane, at a finite distance away from the Planck-brane. The one-loop radiative corrections
from the bulk gauge fields are proportional to the gauge couplings and thus naturally solve the
flavor problem. If the Higgs sector is also included in the bulk, then the one-loop radiative
corrections also give a contribution proportional to the Yukawa couplings. However, in this
case the radiative corrections to the Higgs soft mass are not finite. This is in contrast to the
flat-space case, and is due to the fact that the bulk Higgs directly couples to the supersymmetry
breaking effects on the TeV-brane.

By the AdS/CFT correspondence, the warped supersymmetric standard model can be inter-
preted in terms of a strongly coupled CFT, where supersymmetry (and conformal symmetry)
are broken at the TeV-scale. Thus, the warped MSSM is simply the ordinary 4d MSSM with
a strongly coupled CFT which is responsible for breaking supersymmetry. The fact that there
exists a weakly coupled 5d gravity dual, allows us to calculate the mass spectrum. This provides
a powerful tool in obtaining information about the dynamics of this class of strongly coupled
CFT’s, and is worthy of further investigation.
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Appendix: 5D propagators in a slice of AdS

Let us consider the propagation of bulk fields in a slice of AdS. We will follow the derivation of
the Green’s function presented in Ref. [33, 12], except that we will extend the previous results
to the case of arbitrary bulk fields in the two-brane scenario. The result for the bulk scalar has
also recently been given in Ref. [34].

As shown in Ref. [3] the equation of motion for bulk fields Φ = {Vµ, φ, e
−2σψL,R}, can

be conveniently written as a second-order differential equation. Thus, introducing a source
function J , one obtains[

e2σηµν∂µ∂ν + esσ∂5(e
−sσ∂5)−M2

Φ

]
Φ(x, y) = J (x, y) , (48)

where the parameter s = {2, 4, 1}, and the 5d masses are [3]M2
Φ = {0, ak2+bσ′′, c(c±1)k2∓cσ′′}.
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The corresponding Green’s function for (48) can then be defined as

Φ(x, y) =

∫
d4x′dy′

√−g G(x, y; x′, y′)e(4−s)ky′J (x′, y′) . (49)

provided that J = {Jµ, Jφ, γ
µ∂µJR,L ± ∂5JL,R − (c± 1)σ′JL,R}, where Jµ, Jφ and JL,R are the

source terms for the bulk vector, scalar, and fermion, respectively. It is convenient to introduce
the variable z = eky/k. In these coordinates the Planck-brane is located at z∗ = 1/k and the
TeV-brane at z∗ = eπkR/k. If we now take the 4d Fourier transform of the Green’s function

G(x, z; x′, z′) =

∫
d4p

(2π)4
eip·(x−x′)Gp(z, z

′) , (50)

then the Fourier component Gp(z, z
′) must satisfy the equation(

∂2
z +

1− s

z
∂z − p2 − M̂2

Φ

(kz)2

)
Gp(z, z

′) = (kz)s−1δ(z − z′) , (51)

where M̂2
Φ = {0, ak2, c(c ± 1)k2}. If we define Gp(z, z

′) = (k2zz′)s/2Ĝp(z, z
′), then Eq. (51)

simply becomes the Bessel equation(
∂2

z +
1

z
∂z − p2 − α2

z2

)
Ĝp(z, z

′) = (kz)−1δ(z − z′) , (52)

where α =

√
(s/2)2 + M̂2

Φ/k
2. The standard procedure for solving Eq. (52) is to use the

solution to the homogeneous equation in the regions z < z′ and z > z′, and then impose
matching conditions at z = z′. Thus writing

Ĝp(z, z
′) = θ(z − z′)Ĝ> + θ(z′ − z)Ĝ< , (53)

the solution to the homogeneous equation for z < z′ is given by

Ĝ<(z, z′) = iA<(z′)
[
J̃α(ip/k)H(1)

α (ipz)− H̃(1)
α (ip/k)Jα(ipz)

]
, (54)

and for z > z′ we obtain

Ĝ>(z, z′) = iA>(z′)
[
J̃α(ipeπkR/k)H(1)

α (ipz)− H̃(1)
α (ipeπkR/k)Jα(ipz)

]
, (55)

where H
(1)
α = Jα + iYα is the Hankel function of the 1st kind of order α, and Jα,Yα are Bessel

functions. If the boundary condition for the Green’s function, Ĝ<(Ĝ>) is even on the Planck-
brane (TeV-brane) then [3]

J̃α(z) = (−r + s/2)Jα(z) + zJ ′α(z) , (56)

where the parameter r = {0, b,∓c}, while if the boundary condition is odd then [3]

J̃α(z) = Jα(z) , (57)
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and similarly for H̃
(1)
α . Note that in the presence of the boundary mass terms parametrized

by r, the even boundary condition is equivalent to imposing the modified Neumann condition,
(∂z − rσ′)Gp(z, z

′)
∣∣
z=z∗ = 0, while the odd boundary condition is equivalent to imposing the

Dirichlet condition, Gp(z, z
′)
∣∣
z=z∗ = 0.

The unknown functions A<(z′) and A>(z′) are determined by imposing matching conditions

at z = z′. Continuity of Ĝp at z = z′ leads to the condition

Ĝ>

∣∣
z=z′ = Ĝ<

∣∣
z=z′ , (58)

while the discontinuity in ∂zĜp gives the condition(
∂zĜ> − ∂zĜ<

) ∣∣∣∣
z=z′

=
1

kz′
. (59)

This leads to the solutions

A<(z′) =
π

2k

J̃α(ipeπkR/k)H
(1)
α (ipz′)− H̃

(1)
α (ipeπkR/k)Jα(ipz′)

J̃α(ipeπkR/k)H̃
(1)
α (ip/k)− H̃

(1)
α (ipeπkR/k)J̃α(ip/k)

, (60)

A>(z′) =
π

2k

J̃α(ip/k)H
(1)
α (ipz′)− H̃

(1)
α (ip/k)Jα(ipz′)

J̃α(ipeπkR/k)H̃
(1)
α (ip/k)− H̃

(1)
α (ipeπkR/k)J̃α(ip/k)

. (61)

Finally substituting these functions into the equations for Ĝ> and Ĝ< gives the expression for
the Green’s function in a slice of AdS

Gp(z, z
′) = i

π

2
ks−1(zz′)s/2

[
J̃α(ipeπkR/k)H

(1)
α (ipz>)− H̃

(1)
α (ipeπkR/k)Jα(ipz>)

J̃α(ipeπkR/k)H̃
(1)
α (ip/k)− H̃

(1)
α (ipeπkR/k)J̃α(ip/k)

]
×
[
J̃α(ip/k)H(1)

α (ipz<)− H̃(1)
α (ip/k)Jα(ipz<)

]
, (62)

where we have defined z>(z<) to be the greater (lesser) of z and z′. The Green’s function (62)
is the general expression for arbitrary bulk fields in a slice of AdS.

The Kaluza-Klein mass spectrum can be obtained from the pole condition of the Green’s
function, namely

J̃α(ipeπkR/k)H̃(1)
α (ip/k)− H̃(1)

α (ipeπkR/k)J̃α(ip/k) = 0 . (63)

This leads to the condition

J̃α(m
k
)

Ỹα(m
k
)

=
J̃α(m

k
eπkR)

Ỹα(m
k
eπkR)

, (64)

where the four-momentum p2 = −m2. The solutions of this equation for the various combina-
tions of boundary conditions on the Planck and TeV-branes, reproduces all the Kaluza-Klein
mass spectrum results from [3].
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For the twisted boundary condition, Φ(0) = Φ(0) and Φ(πR) = −Φ(πR), we must impose on
the corresponding Green’s function the even boundary condition on the Planck-brane, Eq. (56),
and the odd boundary condition on the TeV-brane, Eq. (57). The mass spectrum is obtained
by solving (64) which now becomes

(−r + s/2)Jα(m
k
) + m

k
J ′α(m

k
)

(−r + s/2)Yα(m
k
) + m

k
Y ′

α(m
k
)

=
Jα(m

k
eπkR)

Yα(m
k
eπkR)

, (65)

and for the fermion and gravitino the equation simplifies further to Eq. (29).
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