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Relevance of accurate Monte Carlo modeling in nuclear medical imaging

Habib Zaidi®
Division of Nuclear Medicine, Geneva University Hospital, CH-1211 Geneva, Switzerland

(Received 23 June 1998; accepted for publication 3 February)1999

Monte Carlo techniques have become popular in different areas of medical physics with advantage
of powerful computing systems. In particular, they have been extensively applied to simulate
processes involving random behavior and to quantify physical parameters that are difficult or even
impossible to calculate by experimental measurements. Recent nuclear medical imaging innova-
tions such as single-photon emission computed tomogré®RECT), positron emission tomogra-

phy (PET), and multiple emission tomograpiET) are ideal for Monte Carlo modeling tech-
niques because of the stochastic nature of radiation emission, transport and detection processes.
Factors which have contributed to the wider use include improved models of radiation transport
processes, the practicality of application with the development of acceleration schemes and the
improved speed of computers. In this paper we present a derivation and methodological basis for
this approach and critically review their areas of application in nuclear imaging. An overview of
existing simulation programs is provided and illustrated with examples of some useful features of
such sophisticated tools in connection with common computing facilities and more powerful
multiple-processor parallel processing systems. Current and future trends in the field are also
discussed. ©1999 American Association of Physicists in Medicirf&0094-24089)01904-5
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[. INTRODUCTION AND OVERVIEW gambling and similar pursuits. Von Neumann, Ulam and
Fermi applied the method towards neutron diffusion prob-
Recent developments in nuclear medicine instrumentatiofsms in the Manhattan Project at Los Alamos during World
and multiple-processor parallel processing systems have crgyar |1. But even at an early stage of these investigations,
ated a need for a review of the opportunities for Monte Carla,on, Neumann and Ulam refined this particular “Russian
simulation in nuclear medicine imaging. One of the aims of,jette” and “splitting” methods. However, the systematic
the medical physicist involved in nuclear medical imagingyeyejopment of these ideas had to await the work of Kahn
research is to optimize the design of imaging systems and 9,4 Harris in 1948.During the same year, Fermi, Metropo-

improve the quality and quantitative accuracy of reécon-s anq ylam obtained Monte Carlo estimates for the eigen-

structed images. Several factors affect the image quality a”\‘;alues of the Schrodinger equation. Uses of Monte Carlo

the accuracy of the data obtained from a nuclear medicinf:nethods have been many and varied since that time. The
scan. These include the physical properties of the deteCtorgpplications of the Monte Carlo method in medical physics

colllmqtor and gantry de&_gn, attenyatlon and sgattgr COMyere few before the review paper by Raesidgince that
pensation and reconstruction algorithhfsintegrating im-

) : L time, there has been an increasing number of applications of
provements in these with current tracers and sensitive an’ggn . . L
onte Carlo techniques to problems in this field thanks to

specific tracers under development will provide major advan- | bools® and hensi . al Q12
tages to the general nuclear medicine clinician and researctﬂe Several books—and comprenensive review pa

investigator(Fig. 1). Mathematical modeling is necessary for d€Scribing the principles of the Monte Carlo method and its
the assessment of various parameters in nuclear medical ifiPPlications in medical physics. _ .
aging systems since no analytical solution is possible when There has been an enormous increase and interest in the
solving the transport equation describing the interaction of/S€ of Monte Carlo techniques in all aspects of nuclear im-
photons with nonuniformly attenuating body structures ancd®9ing, including planar imagint, single-photon emission
complex detector geometries. computed tomographySPECT,**~8 positron emission to-
The Monte Carlo method is widely used for solving prob- mography (PET)**~?2 and multiple emission tomography
lems involving statistical processes and is very useful ifMET).?* However, due to computer limitations, the method
medical physics due to the stochastic nature of radiatiofas not yet fully lived up to its potential. With the advent of
emission, transport and detection processes. The method légh-speed supercomputers, the field has received increased
very useful for complex problems that cannot be modeled byattention, particularly with parallel algorithms which have
computer codes using deterministic methods or when expermuch higher execution rates. Our main purpose in this paper
mental measurements may be impractical. The Monte Carlis to present a framework for applying Monte Carlo simula-
method was named by Von Neumdrirecause of the simi- tions for a wide range of problems in nuclear medical imag-
larity of statistical simulation to games of chance, and beding. Emphasis is given to applications where photon and/or
cause the city in the Monaco principality was a center forelectron transport in matter is simulated. Some computa-
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Fic. 2. Principles of Monte Carlo simulation of an imaging system.

cal simulation as applied to an imaging system. Assuming
that the behavior of the imaging system can be described by
probability density functiongpdf’s), then the Monte Carlo
simulation can proceed by sampling from these pdf's, which
necessitates a fast and effective way to generate random
numbers uniformly distributed on the intenjd, 1]. Photon
emissions are generated within the phantom and are trans-
ported by sampling from pdf's through the scattering me-
dium and detection system until they are absorbed or escape
the volume of interest without hitting the crystal. The out-
comes of these random samplings, or trials, must be accumu-
lated or tallied in an appropriate manner to produce the de-
sired result, but the essential characteristic of Monte Carlo is

Fic. 1. Scientific and technical strategy for recording accurate functionalthe use of r_andom sampllng teChn'ques to arrive at a solution
images. In bold, the parts where Monte Carlo simulation plays an importanof the physical problem.

role (adapted from an illustration by Professor Terry Jones, MRC

The major components of a Monte Carlo method are
briefly described below. These components comprise the
foundation of most Monte Carlo applications. The following

tional aspects of the Monte Carlo method, mainly related tQections will explore them in more detail. An understanding
random numbers, sampling and variance reduction are digs these major components will provide a sound foundation
cussed. Basic aspects of nuclear medicine instrumentatiqg; the developer to construct his own Monte Carlo method,
are reviewed, followed by the presentation of potential apjihough the physics and mathematics of nuclear imaging are
plications of Monte Carlo techniques in different areas of\,q beyond the scope of this paper. The primary compo-

nuclear imaging such as detector modeling and systems dggnts of a Monte Carlo simulation method include the fol-
sign, image reconstruction and scatter correction techniqueﬁ,wing.

internal dosimetry and pharmacokinetic modeling. Widely
used Monte Carlo codes in connection with computing facili-(i)
ties, vectorized and parallel implementations are described.
Current trends and some strategies for future development ifi)
the field are also discussed.

iii
IIl. THE MONTE CARLO METHOD: THEORY AND (i)
COMPUTATIONAL ISSUES (iv)

Numerical methods that are known as Monte Carlo meth-
ods can be loosely described as statistical simulation methv)
ods, where statistical simulation is defined in quite general
terms to be any method that utilizes sequences of random
numbers to perform the simulation. A detailed description of(vi)
the general principles of the Monte Carlo method is given in
a number of publication3!?*?®and will not be repeated

here. Figure 2 illustrates the idea of Monte Carlo or statistiVvii)
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Probability density function§df’s): the physical sys-
tem must be described by a set of pdf's.

Random number generator: a source of random num-
bers uniformly distributed on the unit interval must be
available.

Sampling rule: a prescription for sampling from the
specified pdf’s.

Scoring: the outcomes must be accumulated into over-
all tallies or scores for the quantities of interest.

Error estimation: an estimate of the statistical error
(variance as a function of the number of trials and
other quantities must be determined.

Variance reduction techniques: methods for reducing
the variance in the estimated solution to reduce the
computational time for Monte Carlo simulation.
Parallelization and vectorization algorithms to allow
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Monte Carlo methods to be implemented efficiently massively parallel architectures, the processors should
on advanced computer architectures. not have to communicate among themselves, except
perhaps during initialization.

A. Random numbers generation Although powerful RNGs have been suggested including

Computational studies requiring the generation of randonshift register, inversive congruentional, combinatorial and
numbers are becoming increasingly common. All randomi‘intelligent” methods such as those implemented in the
number generatoréRNG) are based upon specific math- McNP code® the most commonly used generator is the linear
ematical algorithms, which are repeatable. As such, the nunsongruential RNG(LCRNG).*! Recently, Monte Carlo re-
bers are just pseudo-random. Here, for simplicity, we shalbearchers have become aware of the advantages of lagged
term them just “random” numbers. Formally, random is de- Fibonacci serieLFRNG). With extremely long periods,
fined as exhibiting “true” randomness, such as the time bethey are generally faster than LCRNG and have excellent
tween “tics” from a Geiger counter exposed to a radioactivestatistical propertie¥’ Those generators are briefly described
element. Pseudo-random is defined as having the appeararieglow.
of randomness, but nevertheless exhibiting a specific, repeat-
able pattern. Quasi-random is defined as filling the solution )
space sequentiallyin fact, these sequences are not at alll- Linéar congruential generators
random, they are just comprehensive at a preset level of The LCRNG has the forfi
granularity. Monte Carlo methods make extensive use of
random numbers to control the decision making when a
physical event has a number of possible results. The RNG iwhere m is the modulusa is the multiplier andc is the
always one of the most crucial subroutines in any Monteadditive constant or addend. The size of the modulus con-
Carlo-based simulation cod2A large number of generators strains the period, and is usually chosen to be either prime or
are readily availablé® and many of these are suitable for the a power of 222> An important subset of LCRNG is obtained
implementation on any computer systéfisince today there by settingc=0 in Eq. (1), which defines the multiplicative
is no significant distinction in floating point processing capa-linear congruential RN@/LCRNG). This generatotwith m
bilities between a modern desktop and a mainframe coma power of 2 anad=0) is the de facto standard included with
puter. A typical simulation uses from 0o 10> random FORTRAN and C compiler®! One of the biggest disadvan-
numbers, and subtle correlations between these numbetages to using a power of 2 modulus is that the least signifi-
could lead to significant errof8. The largest uncertainties cant bits of the integers produced by these LCRNGs have
are typically due more to approximations arising in the for-extremely short periods. For examppe,mod(2) will have
mulation of the model than those caused by the lack of rana period of 2.3 In particular, this means the least-significant
domness in the RNG. Mathematically speaking, the sequendat of the LCRNG will alternate between 0 and 1. Some
of random numbers used to effect a Monte Carlo modetautions to the programmer are in ordéj: the bits of
should possess the following propertfés. should not be partitioned to make several random numbers

since the higher order bits are much more random than the

M) Uncorrelated sequences. the sequences of randop&wer order bits;(ii) the power of 2 modulus in batches of
numbers should be serially uncorrelated. Most espe-

. : powers of 2 should be avoide(ii) RNGs with large modu-
cially, n-tuples of random numbers should be inde- : .
lus are preferable to ones with small modulus. Not only is
pendent of one another.

(i) Long period: ideally, the generator should not repeat'the period longer, but the correlations are lower. In particu-

oractically, the repetition should oceur only after the lar, one should not use a 32 bit modulus for applications

. r irin high resolution in the random numbers. In spi
generation of a very large set of random numbers. equiring a high resolutio the rando umbers spite

(iii)  Uniformity: the sequence of random numbers shouldOf this known defect of power of 2 LCRNGs, 48 bit multi-

be uniform, and unbiased. That is, suppose we deﬁnghers (and higher have passed many very stringent random-

n-tuples  pf'=(u U.p) and dvide the oo ©SS
A" At ey The initial seed should be set to a constant initial value,
n-dimensional unit hypercube into many equal sub-

. . - o such as a large prime numbgtr should be odd, as this will
volumes. A sequence is uniform if in the limit of an . . L .
Do atisfy period conditions for any modujusOtherwise, the
infinite sequence all the sub-volumes have an equal ... o .
initial seed should be set to a “random” odd value.
number of occurrences of randamrtuples.

5 . - e _
(V) Reproducibility: when debugging programs, it is neC_Andersoﬁ recommends setting the initial seed to the fol

4 4 lowing i :
essary to repeat the calculations to find out how '[heOWIng Integer

errors occurred. The feature of reproducibility is also  ug=iyr+ 100X (imonth— 1+ 12X (iday— 1+ 31
helpful while porting the program to a different ma-

Upr1=a(u,+cymodm), (U]

chine X (ihour+ 24X (imin+ 60X iseqQ))), 2
(v)  Speed: Itis of course desirable to generate the randowhere the variables on the right-hand side are the integer
numbers fast. values of the date and time. Note that the year is 2 digits

(vi) Parallelization: The generator used on vector madong, i.e., the domain offyr is [0-99. However, it may be
chines should be vectorizable, with low overhead. Onpreferable to introduce the maximum variation in the seed
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into the least significant bits by using the second of thistype and energy of the incident particle and to the kind of
century, rather than the most significant bits. The followinginteraction it undergoes. These partial cross-sections are
equation is preferable: summed to form the total cross-section; the ratio of the par-
tial cross-section to the total cross-section gives the probabil-
ity of this particular interaction occurring. Cross-section data
X (iday— 1+ 31X (imonth—1+12iyr)))) (3)  for the interaction types of interest must be supplied for each

. .. material present. The model also consists of algorithms used
Generally, LCRNGs are best parallelized by parametenzm% compute the result of interactiofshanges in particle en-
the iteration process, either through the multiplier or the ad- P g P

ditive constant. Based on the modulus, different parametrigrgy’ .direction., etg. b_ased on the.physi_cal principles that
sations have been tric. escribe the mteracnqn of radiation vylt_h matter an.d the

cross-section data provided. Therefore, it is extremely impor-
tant to use an accurate transport model as the Monte Carlo
result is only as valid as the data supplied.

The lagged-Fibonacci series RNGFRNG) have the fol- When a photorthaving an energy below 1 Me\passes
lowing general fornf® through matter, any of the three interaction procegpbs-
toelectric, incoherent scattering, coherent scatte¢mmay oc-
cur. The probability of a photon of a given energynder-
where® may be one of the following binary arithmetic op- going absorption or scattering when traversing a layer of
erators+, —,*, | andk are the lags anan is a power of materialZ can be expressed quantitatively in terms of a lin-
2(m=2P). In recent years the additive lagged-Fibonacciear attenuation coefficient (cm™*) which is dependent on
RNG (ALFRNG) has become a popular generator for serialthe material’s densityp (g.cm ),
as well as scaleable parallel machitfdsecause it is easy to
implement, it is cheap to compute and it does well on stan- = ¥phota’ Aincon™ Kcon- ®)
dard statistical tests, especially when the kg sufficiently  |n the case of photoelectric absorption, the total photon en-
high (such ask=1279). The maximal period of the AL- ergy is transferred to an atomic electron and the random walk
FRNG is (2—1)2°"! and has & D~ different full- s terminated. In an incoherent photon interaction, a fraction
period cycles” Another advantage of the ALFRNG is that of the photon energy is transferred to the atomic electron.
one can implement these generators directly in a floatingThe direction of the scattered photon is changed to conserve
point to avoid the conversion from an integer to a floating-the total momentum of the interaction. The Klein—Nishina
point that accompanies the use of other generators. Howevesxpression for the differential cross-section per electron for
some care should be taken in the implementation to avoidn incoherent interaction is used to sample the energy and
floating-point round-off errors. the polar angle of the incoherently scattered phdfofihe

Instead, the ALFRNG can be parameterized through itgoherent scattering only results in a change in the direction
initial values because of the tremendous number of differengf the photon since the momentum change is transferred to
cycles. Different streams are produced by assigning eacthe whole atom. The kinetic energy loss of the photon is
stream a different cycle. An elegant seeding algorithm thahegligible. Coherent scattering of a photon could be gener-
accomplishes this is described by Mascajn interesting  ated using the random number composition and rejection
cousin of the ALFRNG is the multiplicative lagged- techniqué to sample the momentum of the scattered photon
Fibonacci RNG (MLFRNG). While this generator has a and the scattering angle according to the form factor distri-
maximal-period (3—1)2P2, which is a quarter the length pution.
of the corresponding ALFRNG, it has empirical properties |t is common to neglect coherent scattering in PET Monte
considered to be superior to ALFRN&SOf interest for  Carlo simulation of photon transport because of its low con-
parallel computing is that a parameterization analogous té&ibution to the total cross-section at 511 keV. In the follow-
that of the ALFRNG exists for the MLFRNG. This latter ing examples, the relative importance of the various pro-
algorithm was used for generating uniformly distributed ran-cesses involved in the energy range of intergslow 1
dom numbers on a parallel computer based on the MIMDVeV) are considered for some compounds and mixtures
principle®® The sequence of 24 bit random numbers has ased in nuclear medicine to justify some of the approxima-
period of about 2** and has passed stringent statistical testsions made in Monte Carlo codes. Figure 3 illustrates the
for randomness and independerite. relative strengths of the photon interactions versus energy for
water, cortical bone, sodium iodid&al) and bismuth ger-
manate(BGO), respectively. For water, a moderately |&wv-
material, we note two distinct regions of single interaction

For radiation transport problems, the computationaldominance: photoelectric below and incoherent above 20
model includes geometry and material specificatidrBv-  keV. The almost order of magnitude depression of the coher-
ery computer code contains a database of experimentally olent contribution is some justification for the approximations
tained quantities, known as cross-sections, that determine thiéscussed. The coherent contribution to the total cross-
probability of a particle interacting with the medium through section is less than 1% for energies above 250 keV. How-
which it is transported. Every cross-section is peculiar to theever, this contribution is in the order of 7% for highma-

Ug=isect 60X (imin+ 60X (ihour+ 24

2. Lagged-Fibonacci generators

U,=U,_®U,_, modm), [|>Kk, (4)

B. Photon transport

Medical Physics, Vol. 26, No. 4, April 1999
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terials like BGO. Therefore, efforts should be made to treaspeed when sampling from the probability distributions.
the coherent scattering process adequately for detector mat€hey are described in more detail in Secs. IID and Il E.
rials. In a recent investigation, photon cross-section libraries

(NIST, PHOTX*“? and parametrizations implemented in

simulation package§GEANT, PETSIM****were compared C- Electron transport

to the recent library provided by the Lawrence Livermore | principle, electron transport should be included when
National LaboratoryEPDL97* for energies from 1 keV to  simulating the complete electromagnetic cascadcro-

1 MeV for a few human tissues and detector materials 0&copic techniqugs However, the large number of interac-
interest in nuclear imagin®. The cross-section data for mix- tions that may occur during electron slowing down makes it

tures and compounds are obtained from the equation: unrealistic to simulate all the physical interactiofmsacro-
scopic techniques® Secondary electrons are generally as-
n=p2 Wi(ulp)i, (6)  sumed to deposit all their energy at the point of interaction
]

because of the low energies involved in nuclear medicine,
where p is the density of the materialy; the fraction by and therefore the short ranges of the electrons generated and
weight of theith atomic constituent, as specified in ICRU their negligible bremsstrahlung production. Therefore, elec-
Report 44" and (u/p); the mass attenuation coefficients. tron transport has not received particular attention in nuclear
Different photon cross-section libraries show quite largeimaging applications of the Monte Carlo method. However,
variations as compared to the most recent EPDL97 data files. number of investigators considered this effect mainly for
It is recommended that Monte Carlo developers only use thdosimetry calculation®->°
most recent version of this librafy. Most existing electron transport algorithms are based on

A calculation of the distances between interactions in ahe multiple collision models for scattering and energy loss.

medium are performed by sampling from the exponentialThe complexity of the techniques used in microscopic mod-
attenuation distributioEq. (10) below]. Different tech- els varies considerably, although a common approach is to
nigues have been proposed to improve the computationeglect bremsstrahlung interactions. Simple models are

Medical Physics, Vol. 26, No. 4, April 1999



579 Habib Zaidi: Relevance of accurate Monte Carlo modeling in nuclear medical imaging 579

based on the simulation of all the scattering events, calculaputations needed to describe the system evolution. In es-
ing the step length between consecutive collisions with thesence, the physics and mathematics are replaced by random
elastic mean-free path. Energy losses are determined frosampling of possible states from pdf's that describe the sys-
the Bethe theory of stopping power and an approximatioriem. Thus, it is frequently necessary to sample some physical
included to account for the energy-loss straggling. Thisevent, the probability of which is described by a known pdf.
model has been improved later by taking inelastic collisiongExamples include the distance to the next interaction and the
into account® Macroscopic techniques classify the physicalenergy of a scattered photon. bebe the physical quantity
interactions of electrons into groups that provide an overalto be selected anfi{x) the pdf. Among the properties of the
picture of the physical process. Bergfedivided electron pdf is that it is integrable and non-negative. Assume that the
transport algorithms into two broad clasgekss | and class domain off(x) is the interval Xy, . Xmax] @nd that it is nor-

II) distinguished by how they treat individual interactions malized to unit area. The cumulative distribution function
that lead to the energy losses of the primary electrons and the(x) of the frequency functiorf(x) gives the probability
production of bremsstrahlung photons and/or knock-on electhat the random variableis less or equal ta. It is defined
trons. The condensed-history technique for electron transpodés

has been review8Hand comparisons of class | with class |l .

algorithms and of Goudsmit and Saunderson multiple- F(X)Eprobabnit}“gx):f f(r)dr. (8)
scattering theory have also been m&4¥ The Moliere

theory contains a small-angle approximatioand requires a A stochastic variable can be sampled by the use of uniformly

certain minimum number of scattering events to occurgjstributed random numbeR in the rangg0—1] using one
whereas the Goudsmit and Saunderson theory is exact forg the techniques described below.

single-scattering cross-section. It has been shown, however,

that the effects of the small-angle approximation can beir, pjrect method
compensatedt: An improved model for multiple scattering
into the voxel Monte Carlo algorithm comparable in accu-

racy with the Parameter Reduced Electron-Step Transpo

Algorithm (PRESTA®® has been developed recentfy. IS ulr(;|f8rml>t/)tdllstr(|jbgted Il:r)][tot_tl] the .sagpleéj \t/)alue ok
A systematic error is introduced in low energy transportCou e obtained by substitutirig(x) in Eq. (8) by a uni-

. _ 71 .
when the algorithm does not account for the change in éorm random _numb_elR, th"’?t 'S’?(_F (R). A. practical .
discrete interaction cross-section with enefyyTo over- example of using this technique is the calculation of the dis-
come this problem, M4 developed an algorithm to account tance to the next interaction vertex. The inversion is not al-
properly for the change in an electron discrete interaction’ &> possible, but in many important cases the inverse is

cross-section as a function of energy for low energy electrorlieadlly obtained.
transport.

Xmin

This method can be used if the inverse of the cumulative
ﬂistribution functionF ~1(x) is easily obtainable. Sinde(x)

2. Rejection method
D. Analog sampling Another method of performing this when it is too compli-

Analog Monte Carlo attempts to simulate the full statistic cated to obtain the inverse of the distribution function is to
development of the electromagnetic cascade. If we assunf® the rEJ]?CtIOH techmlqdew]tnch .forlllrows_tre f(illowmg
that a large number of particle histori@é, are included in a Stﬁps'(f') define ﬁ normalized UIHCtIO () =1(x)/ m|a>é(X),
batch, the individual batch estimates can be considered JENEr€fmadX) is the maximum value ofi(x); (i) sample two
drawn from a normal distribution. For a given calculation, Uniformly distributed random numbef$, andRy; (iii) cal-

the estimated uncertainty is proportional to the inverse of th&UlteX using the equatioR =Xy +R1(Xmax—Xmin); and(iv)

square root of the number of histories simulated. The effill Rz IS less than or equal t6'(x), thenx is accepted as a

ciency e of a Monte Carlo calculation can therefore be de-S@mpled value; otherwise a new valuexas sampled.

fined ag’ Over a large number of samples, this technique will yield
a set of values ok within the required distribution. It does,
_ i 7 however, require two random numbers per trial and many
2T @) trials may be required depending on the area under of the

. S . . . curve of f(x). A typical example of using this technique is
whereT is the calculation time to obtain a variance estimate, . . .
2 the photon energy and scattering angle resulting from inco-
o“. For largeN, e should be constant as long as the calcula- :
. : : herent scattering.
tion technique remains the same.
As described earlier, the imaging system can be described
in terms of pdf's. These pdf's, supplemented by additional3, Mixed methods
computations, describe the evolution of the overall system,

. . : . When the previous two methods are impractical, the
whether in space, energy, time or even some higher dimen- . )
. . mixed method that combines the two may be u¥efssume
sional phase space. The goal of the Monte Carlo method is )
. . . . that the pdf can be factored as follows:
simulate the imaging system by random sampling from these

pdf's and by performing the necessary supplementary com- f(x)=h(x)-g(x), 9

Medical Physics, Vol. 26, No. 4, April 1999
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whereh(x) is an invertible function andj(x) is relatively  Since the maximum distanak,,,, the photon travels before

flat but contains most of the mathematical complexity. Theinteraction is infinite, and the number of photon mean free
method consists of the following step@) normalizeh(x) paths across the geometry in any practical situation is finite,
producing h’(x) such thatfirr:;m'(x)dle; (i) normalize there is a large probability that photons leave the geometry
g(x) producing g’(x) such that g'(x)<1 for x in of mtere_zst W|thout interacting. To increase the statistical ac-
[Xemin X (i) USE the direct method to select arusing curacy in the imparted energy calculation, we force the pho-

, (i - tons to interact by assigningy, ., a finite distance, e.g., the
h’(x) as the pdfi(iv) usex and apply the rejection method "~ nax & I
us?né]g’(x) i.F()e. E:hlose a rando?r? zumtﬁr]if 9'(X)=R thickness of the detector being simulafédA true distrib-

acceptx; otherwise go back to stefiii). uted phot_on pathlengtt within d,,,, can be sampled from
the equation

1
E. Nonanalog sampling “variance reduction d=——In(1-R[1—e *dmaq), (13
techniques” M

A direct Monte Carlo simulation using true probability The photon’s weight must be multiplied by the interaction
functions may require an unacceptable long time to producg@robability,
S'Fatist_ically relevant results. Photons emission_is isotrop?c,_so W, =W, [1—e #dmai. (14)
directional parameters may be sampled uniformly within
their individual ranges. Nuclear imaging systems have a lown emission computed tomography, the photon is allowed to
geometrical efficiency because of the small solid angle delnteract through coherent or incoherent interactions only
fined by the collimator and/or the small axial aperture.Within the phantom since photoabsorption does not contrib-
Therefore, the calculation would be very ineffective in termsute to energy imparted in the crystal. The weight is then
of required computing tim& It is thus desirable to bias the Multiplied by the probability for the photon being scattered:
sampling (nonanalog sampling by introducing different _

. . . . Mincoht Meoh

types of importance sampling and other variance reduction W, ;=W, —}
techniques to improve the computational efficiency of the M
Monte Carlo method® The results obtained by nonanalog where wcon and uqon are the cross-section data for incoher-
simulation are, however, biased by the variance reductioent and coherent scattering, respectively, ani the total
technique and a correction for this is required. A particlelinear attenuation coefficient.
history weight,W, is introduced, which describes the prob-  Stratification. Stratification refers to the process of deter-
ability of the particle following the current path. This weight mining the frequencies with which the various regions of
is calculated for each particle history, and used in the calcustate space are used to start a parfiti€he solid angle of
lation of the results. If an event occurs, the weidhitis acceptance of the detector arr&yy., is small due to col-
added to the counter rather than incrementing the counter bymation and to the size of the detector array itself. This
one unit. Bielajew and Roge¥sdivided variance reduction results in significant computational inefficiencies with analog
techniques in three categories: those that concern photaionte Carlo simulation, because only a few percent of the
transport only, those that concern electron transport onlyphotons generated and tracked will actually be detected. The
and other more general methods. The most useful techniquegal of stratification is to simulate only photons that are

(15

are described below. emitted in directions within the solid angle, which can be
calculated from the maximum acceptance anghg,y.
1. Photon-specific methods which, in turn, can be estimated from the dimensions of the

phantom and the detection system. The solid angle does not

Interaction forcing.In an analog Mpnte Ca_rlo S|mu!at|on, change in magnitude when simulating source locations off-
photons are tracked through the object until they either es-

. ; . The ph ing f he ph is eith i-
cape the object, are absorbed or their energy drops belowCenter € photon escaping from the phantom Is either pri

o : . Mmary or scattered. If the photon happens to be a primary
select.ed t'hre'shold. The probability function for a photon In'photon, its direction within the solid angle could be sampled
teraction is given by

from
= 28
PO)=pe (10 co90)=1—R[1—c0SHOma- (16)
Th bability that a phot ill't | a distandeor |
is ;\gg bi’ tity thatt & photon witl fravel a distander fess In this case, the weight is multiplied by the probability of
escape without interaction in the solid andle,.,,
d
p(d)=f pe #dx=1—e 40 (11 [1—COSOal
0 Wn+1=anm- (17)

To sample the pathlength, a uniform random numRBeis ] ) ) )

substituted fop(d) and the problem is solved fat Exponential transform, russian roulette and particle split-
o ) ting. The exponential transform is a variance reduction tech-
og(1—R

d= (12) nique used to bias the sampling procedure to give more in-
M ' teractions in the regions of interest and thus improve the
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efficiency of the calculation for those regions. To implementrejection” technique. In this method, different energy cut-
this method, the distance to the next interaction in number 0bffs are chosen for the regions surrounding the region where
mean free pathg], , should be sampled froth energy deposition is to be scored, each energy cut-off being
In(R) chosen_ accor_ding to the distance to the nearest boundary of
S — (18) the region of interest.
(1—Ccosd) Parameter reduced electron stephis algorithm allows

where C is a parameter that adjusts the magnitude of thdIs to use small electron steps in the vicinity of interfaces and
scaling andé the angle of the photon with respect to the boundaries and large steps elsewtiériss components are
direction of interest. The new weighting factor is given by the following: a path-length correction algorithm which is
based on the multiple scattering theory of Moliere and which
exp(— d,C coso) (19 takes into account the differences between the straight path-
(1-Ccosf) length and the total curved pathlength for each electron step;

Note that the new weighting factor is dependentcyn If a lateral correlation algorithm which _takes intp accou_nt lat-
0<C<1, the particle pathlength is stretched in the forward€ral transport; and a boundary crossing algorithm which en-
direction, which is used for shielding problems. For Sures that electrons are _transported accgrately in the y|C|n|ty
—1<C<0, the average distance to the next interaction iof interfaces. The algorithm has been |mpIen_1ented_|n th_e
shortened in the forward direction, which is used for surfacdeGS4 code system and proved that substantial savings in
problems. FoIC=0, we recover the unbiased sampling. TheComputing time may be realized when using this method.
optimal choice of this parameter is dependent on the problem

to pe s_olved. The general guideline i_s to avoid to use Iarg%,_ General methods

weighting factors because they may increase the variénce.

Russian roulette and splitting are often used together with Correlated samplingThe correlated sampling technique
the exponential transform although they are still effectivecan be used in the transport of both photons and electrons. It
when used independenﬂy_ In Russian rou]ette, a randorjﬁ eSpeCiaIIy effective for CalCUlating ratios or differences of
number is selected and Compared to a threshbjdf the two quantities which are nearly equal. The basic idea is that
random number turns out to be smaller tharthe particle is  the simulations of the geometries of interest are kept as
allowed to survive but the weight should be updated accordclosely correlated as possible so that most of the statistical
ingly, W,,..;=W,/\. In particle splitting, a particle coming fluctuations will cancel in the ratios and differences. The real
from a region of interest can be divided intoparticles, each difference between the two geometries will be better re-
having a new weightingV, . =W, /N. flected in the ratios and the differences obtained. The calcu-
lational uncertainties in the ratios and the differences ob-
tained with correlated sampling are, in general, smaller than
those obtained from uncorrelated simulations.

Electron range rejectionA fundamental difference be- There are several ways of doing correlated sampling in
tween the transport of photons and electrons in a condensethdiation transport. In coupled photon—electron transport, a
history simulation code is that photons travel relatively longsimple method has been used in which random number seeds
distances before interacting while electron tracks are interef the particle histories, for which a primary particle or any
rupted not only by geometrical boundaries but also by mul-of the secondaries has deposited energy in the region of in-
tiple scattering “‘steps.” A large amount of simulation time terest for one geometry, is stored and used for the simula-
is spent on checking boundaries and selecting deflectiotions of the alternative geomet?y.A new correlated sam-
angles and so on. Electron range rejection means that arpling method for the transport of electrons and photons has
electrons with their residual range smaller than the distancbeen developed in which a main particle history is split up
to the nearest boundary or to the region of interest in thavhenever a particle meets the boundary of the region where
simulation will be terminated to save computing time. Dif- the medium differs between the two or more ca&ebhis
ferent methods have been suggested for electron range rejgearticle is then followed separately for each case until it and
tion. The reduced interrogation of geometiRIG) method  all its descendants terminate. Holrffeslescribed a corre-
calculates the distance to the nearest boundary and compdeted sampling technique which forces histories to have the
it to the maximum multiple-scattering step length. If the same energy, position, direction and random number seed as
electron cannot reach any of the boundaries during this stefricident on both a heterogeneous and homogeneous water
the boundary checking routine will not be called and this will phantom. This ensures that a history that has, by chance,
save computing time. Another method called ‘“disregardtraveled through only water in the heterogeneous phantom
within a zone” is usually used with RIG to further speed up will have the same path as it would have through the homo-
the simulation. It consists of disregarding electrons whosgeneous phantom, resulting in a reduced variance when a
energies are so low that they cannot reach the nearest boundtio of the heterogeneous dose to the homogeneous dose is
ary. Those methods are, however, inefficient for simulationgormed.
involving curved surface¥, where the time required to cal- Use of geometry symmetrijhe use of some of the inher-
culate the distance to the closest boundary may be considegnt symmetry of the geometry may realize a considerable
able. An alternative way is to use a range-related “regionincrease in efficiency. If both the source and target configu-

d}\: -

Wi 1=W,

2. Electron-specific methods
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rations contain cylindrical planar or spherical—conical simu-beam and cone-be&frhave been built to improve the trade-
lation geometries, the use of symmetries is more obviousoff between resolution and sensitivity by increasing the
Other uses of symmetry are less obvious, but the saving iamount of the Anger camera that is exposed to the radionu-
computing time is worth the extra care and coding. clide source. This increases the number of counts, which
improves sensitivity. More modern collimator designs, such
as half-cone-beam and astigmatic, have also been conceived.
IIl. NUCLEAR MEDICAL IMAGING TECHNIQUES Sensitivity has seen an overall improvement by the introduc-
Recent advances in detector design focus on enhancd®n of multi-camera SPECT systems. A typical triple-
sensitivity and spatial and temporal resolution, and on th&€amera SPECT system equipped with ultra-high resolution
possibility of using conventional photon and coincidence defparallel-hole collimators can achieve a resolution of from 4
tection (two back-to-back photons, each with an energy ofto 7 millimeters? Other types of collimators with only one or
511 ke\) simultaneously. In this section, we describe instru-a8 few channels, called pinhole collimators, have been de-

mentation advances in nuclear medical |mag|ng Signed to image small organs and human extremities, such as
) ) the wrist and thyroid gland, in addition to research animals
A. Planar gamma camera imaging such as ratéé-67

Gamma camera imaging requires the collimation of
gamma rays emitted by the radiopharmaceutical distributio
within the body. Collimators are typically made of lead or
tungsten and are about 4 to 5 cm thick and 20 by 40 cm on SPECT has, in recent years, become one of the major
a side. The collimator contains thousands of squares, rourttbols for thein vivo localization of radiopharmaceuticals in
or hexagonal parallel channels through which gamma raysuclear medicine studies. SPECT systems are now widely
are allowed to pass. Although quite heavy, these collimatoravailable and important clinical areas of SPECT imaging in-
are placed directly on top of a very delicate single crystal ofclude cardiology, neurology, psychiatry and oncology. In
Nal(TI). Any gamma camera so equipped with a collimatorconjunction with new and existing radiopharmaceuticals,
is called an Anger camefd.Gamma rays traveling along a quantitative SPECT may be used to noninvasively measure
path that coincides with one of the collimator channels willblood-flow, metabolic function, receptor density and drug
pass through the collimator unabsorbed and interact with thdelivery. In oncology, it is important in radiation dosimetry
Nal(Tl) crystal creating light. Behind the crystal, a grid of and treatment planning for internal radionuclide therapy in
light sensitive photomultiplier tubes collect the light for pro- general and radioimmunotherapyRIT), in particular?
cessing. It is from an analysis of these light signals that im-Transverse tomographic images can be reconstructed from
ages are produced. Depending on the size of the Anger camprojection data acquired at discrete angles around the object.
era, whole organs such as the heart and liver can be imageblany mathematical approaches have been used for image
Large Anger cameras are capable of imaging the entire bodseconstruction in SPECT. Two broad categories have
and are used, for example, for bone scans. emerged, which we refer to as analytic and iterative algo-

A typical Anger camera equipped with a low-energy col-rithms. The common characteristic of analytic methods is
limator detects roughly one in every ten thousand gamma raghat they utilize exact formulas for the reconstructed image
photons emitted by the source in the absence of attenuatiodensity. The most popular method is filtered backprojection
This number depends on the type of collimator used. Thevhere the acquired projection data are filtered with a ramp
system spatial resolution also depends on the type of collifilter before being backprojected. The iterative approach is
mator and the intrinsic resolution of the Anger camera. Abased on the process of matching the measured projections to
typical modern Anger camera has an intrinsic resolution of 3he calculated projections. The calculated projections are de-
to 9 millimeters. Independent of the collimator, system resotermined from an initial reconstruction and are compared to
lution cannot get any better than intrinsic resolution. Thethe measured data. The difference between the two data sets
same ideas also apply to sensitivity: system sensitivity iss used to correct the calculated projections. This procedure
always worse than intrinsi@rysta) sensitivity. A collimator is repeated until some predefined error level has been
with thousands of straight parallel lead channels is called aeached. Statistical reconstruction techniques such as the
parallel-hole collimator, and has a geometric or collimatormaximume-likelihood expectation-maximizatiodML-EM)
resolution that increases with the distance from the gammalgorithm seek a source distribution which will maximize the
ray source. The geometric sensitivity, however, is inverselyML function relating the estimated and the measured projec-
related to geometric resolution, which means improving col4ions.
limator resolution decreases collimator sensitivity, and vice The quantitative determination of the radioactivity content
versa. High resolution and great sensitivity are two parain tissues is required in both diagnostic and therapeutic
mount goals of gamma camera imaging. Therefore, researcimuclear medicine. Planar scintillation camera imaging has
ers must always consider this trade-off when working onbeen used to estimate activity in tumors and various
new collimator designs. There have been several collimatoorganse® The drawback with this technique is, however, the
designs in the past fifteen years, which optimized thdack of information regarding the variation of activity with
resolution/sensitivity inverse relation for their particular depth. The acquired images are, furthermore, distorted by the
design®* Converging hole collimators, for example, fan- activity content in overlapping structures. In contrast,

%. Single-photon emission computed tomography
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SPECT has great potential for the quantitation of activity
distributionsin vivo due to its three-dimensional imaging
capability. There are, however, several factors that must be %

considered in quantitative imaging. Some of these factors are
the system sensitivity and spatial resolution, dead-time and
pulse pile-up effects, the linear and angular sampling inter-
vals of the projections, the choice of reconstruction filter and
the size of the object and attenuation and scat&ince im-

age quality in nuclear medicine is limited by statistics, the i
administered dose and the imaging time are extremely im- T
portant. In practice, the limited count statistics in most clini-
cal studies affect the accuracy and precision of quantitative
SPECT. However, the two most significant effects are the
photon attenuation in the object and the contribution in the
images of events arising from photons scattered in the object.
These effects limit the accuracy of quantitative measure-
ments and result in decreased contrast and blurred edges of

line of response

(@

the reconstructed activity distribution in the image. ]
I l crystals
C. Positron emission tomography
Measurement of the tissue concentration of a positron- PMT's

emitting radionuclide is based on coincidence detection of
the two photons arising from positron annihilation. Follow-
ing the administration of a positron-emitting radioisotope,
detector arrays surrounding the patient detect the emerging
annihilation photons. After being sorted into parallel projec-rig. 4. (a) Schematic representation of a volume-imaging multi-ring PET
tions, the lines of responsg.ORs) defined by the coinci- scanner(b) A block detector consists of a set of crystals having cuts of
dence channels are used to reconstruct the three-dimensioﬁﬁiere”t depths acting as light guides and segmenting the block into 64
(3D) distribution of the positron-emitter tracer within the pa- (8% 8) de_te(_:tion elements in this example. The _block_ is coupled to fo_ur
! - : photomultiplier tubes at the back, and the crystal in which photoabsorption
tient. In two-dimensional2D) PET, each 2D transverse sec- occurs is identified by comparing the outputs of the four photomultiplier
tion of the tracer distribution is reconstructed independentlytubes.
of adjacent sections. In fully three-dimensior{@8D) PET,
the data are sorted into sets of LORs, where each set is
parallel to a particular direction, and is therefore a 2D paral{BGO) detectors with a spatial resolution of 15 nifnto
lel projection of the 3D tracer distribution. Coincidences aremultiple rings of small BGO crystals offering a spatial reso-
collected for each LOR and stored in a 2D array, or sinodution of 5 mm® The spatial resolution improvements have
gram. In each sinogram, there is one row containing thdeen achieved through smaller crystals and the efficient use
LORs for a particular azimuthal angle; each such row correof photomultipliers and position readout based on Anger
sponds to a 1D parallel projection of the tracer distribution alogic. The tomograph design which has proved successful in
a different coordinate along the scanner axis. An event isecent years represents a compromise between maximizing
registered if both crystals detect an annihilation photorsensitivity while keeping detector dead time and contamina-
within a coincidence time window of the order of 10 ns, tion from scattered and random coincidences at a reasonable
depending on the timing properties of the scintillator. A pairlevel. To achieve this performance, multi-ring tomographs
of detectors is sensitive only to events occurring in the tubéncorporate collimatorgor septa between the detector rings,
joining the two detectors, thereby registering direction infor-with coincidences acquired only within a ring or between
mation (electronic collimation Coincidence detection offers adjacent ring$? Thus, in the interest of maximizing the
significant advantages over single-photon detection: elecsignal-to-noise ratio and quantitative accuracy, compara-
tronic collimation eliminates the need for physical collima- tively little use has been made of electronic collimation, one
tion, thereby significantly increasing sensitivity. Accurateof the main advantages of coincidence counting. Conse-
corrections can be made for the self-absorption of photonguently, an increase in sensitivity by a factor of 4—5 has been
within the patient so that absolute measurements of tissuachieved by removing the septa and acquiring coincidences
tracer concentration can be made. between detectors in any two rifgsFig. 4). It is also found
While the physics of positron annihilation limits the spa- that tomographs without septa can be operated more effec-
tial resolution to, at best, 2—3 mm, the statistical accuracy isively with lower activity levels in the field-of-view.
related to the sensitivity of the detection system. In the past A modern tomograph with inter-ring septa detects and
twenty years, there has been a significant evolution in PETecords only 0.5% of the photon pairs emitted from the ac-
instrumentation from a single ring of bismuth germanatetivity within the tomograph field-of-view. This increases to

(®)
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over 3% when the septa are remoVétHowever, even if the
detector system is 100% efficient for the detection of anni- ..
hilation photons, the angular acceptance of modern scanner

. Rectangular PMTs
would record only 4.5% of the coincidences. The spatial | o
resolution obtained with modern tomographs is about 5—6 | Hieheuide
mm in all three directions. Most use detectors based on : LSO crystals

5cmx5c¢cm blocks of BGO. Each BGO block is cut into 8 by S~ SO erystals
8 individual detector cells and read out by four photomulti-
plier tubes. Light sharing schemes are used to identify théic. 5. The possible detector design of a multiple emission tomography
active detector cell. Energy resolution at 511 keV of suchfa@mera. The detector blocks employ two separate crystals: one for single-
BGO detector blocks is decreased from an intrinsic value o hoton err_ntters{yttnum 0?(_yorth05|I|cate, YS@and one for pos_ltr_on emit-

ers (lutenium oxyorthosilicate, LS Rectangular photomultiplier tubes
about 15% FWHM to around 23% up to 44%, depending onPmTs are preferred because they reduce the dead spaces between the
the cell, because of scintillation light losses resulting fromPMTs when compared to those of the circular ones.
the cuts applied to the detector block.

Compton scatter in the field-of-view is another effect in- ) ) ] ) ]
fluencing sensitivity and represents more than 30% of th&cintillator in a single-photon counting mode. YSO is a scin-
data acquired with a 3D scanri@increasingly sophisticated fillator with higher light output than LSO but worse absorp-
scatter correction procedures are under investigation, particlon characteristics than LSO. YSO and LSO could be com-
larly those based on accurate scatter models, and opined in a phoswllch detector block, where YSO'IS plgced in
subtraction—convolution approachiéd3Monte Carlo meth- @ front layer and is used for low energy SPECT imaging and
ods give further insight and might in themselves offer a postSO in @ second layer is used for PET imagfigvents in
sible correction procedure. The development of fully 3D re-the two detector materials can be separated by pulse shape
construction algorithms has been necessary in order to takliScrimination, since the decay times of the light in YSO and
advantage of the acquisition of PET data without sépt# LSO are differen{70 and 40 ns, respectively

In the most widely used 3D filtered backprojectiGrBP)

algorithm of Kinahan and Rogef3unmeasured oblique pro- |v. APPLICATIONS OF THE MONTE CARLO

jection data, not accessible within the finite axial extensionMETHOD IN NUCLEAR MEDICAL IMAGING
of the scanner, are estimated by forward-projecting through a )
low-statistics image reconstructed by 2D-FBP from tran-" Detector modeling
saxial projections. The completed 2D projections are then Monte Carlo simulation of detector responses and effi-
reconstructed by the FBP technique: each 2D projection igiencies is one of the areas which has received considerable
convolved with a 2D filter kernel, and then backprojected inattention°~° The critical component of emission tomogra-
3D through the image volume. phy is the scintillation detector. Increased light per gamma
ray interaction, faster rise and decay times, greater stopping
power and improved energy resolution are the desired char-
acteristics. Table | summarizes these properties for selected
In recent years, there has been an increased interest gtintillators under development and currently in use. Im-
using conventional SPECT scintillation cameras for PET im-provements in these characteristics enable detectors to be
aging, however, the count rate performance is a limiting facdivided into smaller elements, thus increasing resolution and
tor. A sandwich-like construction of two different crystals minimizing dead-time losses.
allows the simultaneous use of gamma and positron radiop- An early contribution to the field providing a detailed de-
harmaceuticals referred to as multiple emission tomographgcription of the techniques used was due to Zéfsyabula-
(MET).”” This may be implemented with solid-state photo-tions of the response of N@Il) detectors were performed
diode readouts, which also allows electronically collimatedbetween 100 keV and 20 Me¥,and the simulations of in-
coincidence countingFig. 5). The resultant images will pro- cident photons above 300 keV impinging on cylindrical de-
vide finer imaging resolutiorfless than 5 mmy better con-  tectors of different materials due to Rog&tsSimulations of
trast and a ten-fold improvement in coincidence sensitivityNal(Tl) detectors with different shapes and volumes below
when compared to what is currently available. Although the300 keV have also been report¥dA detailed investigation
photodiode noise might be a major problem, this can bef energy responses of germanium detectors and the use of
solved to some extent but with a significant increase in costMonte Carlo simulations to correct the measured spectra has
The performance of a detector block design which wouldbeen performed by Ch&hand comparisons of efficiency
have high resolution and high count rate capabilities in botttalculations for BGO scintillators between Monte Carlo and
detection modes was recently evaluatéd@he high light measurements report&The detection efficiency of a high-
output of LSO (approximately 5—6 times BGQallows the  pressure, gas scintillation proportional chamber, designed for
construction of a detector block that would have similar in-medical imaging in the 30—150 keV energy range, has been
trinsic resolution characteristics at 140 keV as a conventionahvestigated through measurement and Monte Carlo simula-
high resolution BGO block detector at 511 keV. However,tion with the aim to design an optimized detector for use in
the intrinsic radioactivity of LSO prevents the use of this specialized nuclear medicine studf&sAn approximate ex-

D. Multiple emission tomography
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TasLE |. Characteristics of scintillator crystals under development and currently used in nuclear medicine imaging systems.

Scintillator NalTl) BGO BaF2 LSO GSO LUAP YAP
Formula Na(Tl) Bi,G&0;, BaF, Lu,SiOs5:Ce GdSiOs:Ce LUAIO;:Ce YAIO;:Ce
Density (g/co 3.67 7.13 4.89 7.4 6.71 8.34 5.37
Light yield (%) 100 15-20 3-20 75 20-25 25-50 40
Effective Z 51 75 53 66 60 65 34
Decay constantns) 230 300 1/700 42 30-60 18 25
Peak wavelengtiinm) 410 480 195-220 420 440 370 370
index of refraction 1.85 2.15 1.56 1.82 1.95 1.95 1.56
Photofraction(%)a’b 17.3/7.7 41.5/88 18.7/78.6 32.5/85.9 25/82.3 30.6/85.1 4.5/48.3
Mean free paticm)®® 2.93/0.4 1.04/0.08 2.19/0.27 1.15/0.1 1.4/0.16 1.05/0.1 2.17/0.7
Hygroscopic Yes No No No No No No

@At 511 keV.
PAt 140 keV.

pression for the count rate characteristics of Anger scintilla{PMT’s) or photodiode array an@i) how will the DOI mea-
tion cameras has been derived, and validated by Monte Carksurement resolution affect the reconstructed resolution of a
simulation§® while the EGs4 Monte Carlo code has been PET camera? The position-dependent light distribution has
used to evaluate the response of jgtystal in terms of been used to measure the 511 keV photon interaction posi-
efficiency, energy and space resolutions versus photon efion in the crystal on an event by event basis to reduce radial
ergy in the diagnostic energy ran¢20—100 keV.*® elongatiort® Different geometrical modifications were also
Many detector modeling applications were developed irsimulated, leading to a proposal of a 2.3x 30 mmBGO
the PET field, including the pioneering work of DereriZo, crystal, for which a 2.2 mm FWHM light distribution is pre-
who simulated arrays of detectors of different materials angjicted, which should yield a PET detector module with DOI
sizes to study the effect of the inter-crystal septa and later opeasurement resolution of 3.6 mm FWHM. A test module
to optimize the optical coupling between BGO crystals andyith one 3x3x 30 mmBGO crystal, one 3 mm square PIN
PMTS® by taking into account the reflection and Scatte”ngphotodiode and one PMT operated-e20 °C with an ampli-
along the detection system. The search for an appropriaig,, peaking time of 4us, and a measured DOI resolution of
detec_tor for this imaging modality was C(_)nducted ina comz 5 8 mm FWHM has been proposed by Mo&simula-
parative study of several crystals including BGO, CsF andjos predicted that this virtually eliminates radial elongation

NaI(TI)éig Bi:zz}ﬁuzseddinl gmr(]a-o_f-fliglht PEP? and ]Iciquid in a 60 cm diameter BGO tomograph. The performance of a
Xenon.™ Binkley™ modeled the impulse response o aPMT'singIe detector element must be extrapolated using Monte

front-end amplifier, and constant fraction discriminator t0~, " <imulations to predict the performance of a multi-
evaluate the effects of front-end bandwidth and constan

. . . N élement module or a complete PET camera.
fraction delay and fraction for timing-system optimizations . : .
A The Triumph PET group has developed a simulation tool
of BGO scintillation detectors.

to model position encoding multicrystal detectors for PET

The penetration of annihilation photons into the detector,

material before interaction is a statistical process which Ieadtshat treats the interactions of energetic photons in a scintilla-

to significant displacement and anisotropy of the pointtor' the geometry of the multl-crystgl array, as vv_eII_ as the
gropagation and detection of individual scintillation

spread function. Compensation for crystal penetration is thu
P P y P photons?’ Design studies of a whole-body PET tomograph

an important issue to recover the spatial resolution in PET. P' ; .
Comanof investigated algorithms to identify and correct for with the capacity to correct for the parallax error induced by

detector Compton scatter in hypothetical PET modules witfhe DO! of gamma-rays were also perforn?éd?he expert-
3% 3% 30 mmBGO crystals coupled to individual photosen-mental energy, depth and transverse position resolunoqs of
sors. The true crystal of first interaction was determined byBGO block detectors were used as main inputs to the simu-
the simulation for eventual comparison with the crystal idenJations to avoid extensive light transport in position encoding
tified by a given algorithm. They reported a misidentificationPlocks. An improved model for energy resolution which in-
fraction of 12% if the detector has good energy and positiorfludes the nonproportionality of the scintillation response of
resolution when using position of interaction to identify for- BGO and the statistical noise from photoelectron amplifica-
ward scatter. tion in the PMT’s was also proposéd Simulation studies
Numerous strategies have been proposed for constructiftfve also been carried out to investigate the feasibility of
detector modules that measure the depth of interactiobsing a triangular detection module for PET with neutral
(DOI), but most of them proved impractical to implement or networks to reconstruct the coordinates of the photon absorp-
provided insufficient DOI measurement resolution. Two im-tion point and thus recover the DOI informati&®.Another
portant questions can be addressed through Monte Carkexciting application is the use of a PET imaging system for
simulation: (i) what fraction of events will be mis-identified monitoring the dose delivered by proton and gamma-ray ra-
because of noise fluctuations in the photomultiplier tubesliotherapy beam¥! By measuring the amount and ratio of
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the beam-induced positron-emitting activity, the dose distrisimulationst!! The authors showed that the image noise dis-
bution and tissue composition may be determined. tribution along the object radius became more uniform when
the curved collimator was used and that the spatial resolution
of the lateral cortex when using the curved collimator was
significantly improved due to improved radial resolution.

Image modeling was employed by Schifizwho devised Monte Carlo calculations were also used to aid in the devel-
a computer program simulating a rectilinear scanner whictopment of a method for imaging therapeutic dose$*bfoy
was used to study the influence of different imaging proto-using thick Pb sheets to the front face of a high-energy
cols on the detectability of lesions. Simulation of gammaparallel-hole collimatot®
camera imaging to assess qualitatively and quantitatively the There has been renewed interest in pinhole collimation for
image formation process and interpretatirand to assist high resolution imaging of small organs such as the thyroid
development of collimatoté* using deterministic methods since it provides an improved spatial resolution and an in-
and simplifying approximations have been developed mainlcrease in sensitivity as the distance between the source and
to improve speed of operation. the pinhole aperture decreaséswangd!’ simulated point

In gamma camera imaging, the choice of collimator in-response functions for pinhole apertures with various aper-
volves a compromise between sensitivity and spatiature span angle, hole size and materials. The point responses
resolution®*%° The proper choice of collimator is especially were parameterized using radially circularly symmetric two-
difficult at the cut-off energy level of low-energy collimators dimensional exponential functions which can be incorpo-
(e.g.,%23; 159 keV) and in multiple tracer studies. The rela- rated into image reconstruction algorithms that compensate
tionships between sensitivity, spatial resolution and septdior the penetration effect. The effect of pinhole aperture de-
penetration of a given set of collimators have to besign parameters on angle-dependent sensitivity for high reso-
studied*!%® The physicist has to determine which of the lution pinhole imaging was also investigated using Monte
available collimators provides superior image quality for aCarlo modeling!'® Simulated'®i SPECT studies for uni-
given acquisition timé% To that end, in addition to its quan- form cylinders showed that activity concentrations were un-
titative clinical applications, Monte Carlo simulation may be derestimated toward the outside of the cylinders when a
a useful research tool for tasks such as evaluating collimatasin® @ rather than the correct $ift sensitivity correction was
design and optimizing gamma camera motion. In receng@pplied in image reconstruction, whetés a parameter and
years, there is an increased use of specialized collimatoiis the angle of the incident ray with the surface of the detec-
such as fan-beafif,convergent-bearff concavet®” variable  tor crystal.
focus (cardiofoca) and long-bore collimators. The improve-  In a similar way in the PET field, Monte Carlo techniques
ment in image quality results from the fact that the increasavere used to determine the effects of crystals with straight
in resolution is greater than the loss of sensitivity. The effecand pointed tips and septa on spatial resolution and
of collimation in a Compton-scatter tissue densitometryefficiency!!°to compare the singles to true coincident events
scanner has been studied in a detailed p&fer. ratios in well collimated single, multi-slice and open colli-

Monte Carlo techniques were extensively used to analyzenator 3D configurations to evaluate tungsten inter-plane
the performance of new collimators design for planar gammaepta of different thicknesses and geomettitand to assess
camera 1% SPECT!! and PET imaging'®!®® Practical  the effect of collimation on the scatter fractitt.
guidance could be offered for understanding trade-offs that The design of SPECT and PET systems using the Monte
must be considered for clinical imaging. Selective compari-Carlo method has received considerable attention and a large
sons among different collimators could also be presented fanumber of applications were the result of such
illustrative and teaching purposes. Approaches to the colliinvestigations?!1?? Bradshaw?! used this tool for the de-
mator optimization problem, as well as more sophisticatedsign of a detector suitable for use in a SPECT cylindrically
“task-dependent” treatments and important considerationshaped scintillation camera. Detection characteristics of two
for collimators design have been performié8.The well-  scintillator materials and the optical performance of several
known imaging performance parameters of parallel-hole colgeometric configurations were studied. The design of proto-
limators could be compared with those of fan- and conetype systems that utilize solid-state detectors and low-noise
beam collimator¥®!'> which have enjoyed considerable electronics to achieve improved energy resolution were car-
success in recent years, particularly for brain SPECT. Reried out using simulated SPECT projections of a simple
duced noise and higher sensitivity was reported for conemyocardial perfusion phantot?® The results showed that a
beam collimators compared to other collimators having simi-=WHM energy resolution of 3—4 keV is sufficient to render
lar geometric resolutions. WeH proposed a rotating-slit the error due to scatter insignificant compared to the uncer-
collimator which collects one-dimensional projections fromtainty due to photon statistics. Monte Carlo simulations have
which the planar image may be reconstructed by the theorglso been performed to evaluate the design of collimated
of computed tomography. A spatial resolution of 6 mm at adetectors used to measurél or %Y in the thyroid gland-**
distance of 100 mm from the collimator with seven times theTwo detector sizes were simulated for each radioisotope and
sensitivity of a parallel-hole collimator was achieved. Theactivity was placed in both the gland and the remainder of
imaging properties of optimally designed planar-concavehe body in varying amounts to assess the efficacy of colli-
collimators were evaluated by means of Monte Carlomation. This study showed that a wide angle of acceptance

B. Imaging systems and collimators design
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and sufficient detector crystal thickness take precedence ove
collimation and shielding.

The Monte Carlo method has also been used in the desig!
of single-slicé®?? and multi-slice PET scannef$/* A
VME bus-based microcomputer system has been used ti
implement a model for simulation of the flux of gamma rays
in cylindrical PET detector systemi& The program is ca-
pable of tracing over one million photons per hour and has
been used to explore some of the effects of “opening up”
planar detector geometries into volumetric imagers.
Rogers?® compared some of the performance parameters of
a tomograph based on large area (N8l detectors to similar
parameters of conventional small crystal machines. Mi€hel
used thesEANT package from CERf to study the response
function and the scatter fraction in two PET scanners with
and without inter-plane septa. The simulation of a large
multi-plane PET camera named HISPETand a planar im-
aging system made of two matrices, each one consisting o
400 (2x2x 30 mn?) crystals of YAP:C&?® using theecs4
system have also been reported. Thomp&bimvestigated
the effects of detector material and structure on PET spatia
resolution and efficiency in terms of the number of interac-
tions and tangential component of the mean square distanc
between the centroid and the point of first interaction.

Several researchers used Monte Carlo simulation method
to study potential designs of dedicated small animal positron
tomographs3%13! An important conclusion drawn from
these studies is that unlike human imaging where both sen
sitivity and spatial resolution limitations significantly affect
the quantitative imaging performance of a tomograph, the
imaging performance of dedicated animal tomographs is al-
most solely based upon its spatial resolution limitatitiis.
Recently, a conceptual design for a PET camera designed t
'mage th§3 human brain and small animals ha.s beeElG. 6. Reconstructions of Monte Carlo data sets of the Jaszczack’s cold rod
presented. The authors performed a Monte Carlo simula- phantom generated withodleft) and with (right) scatter simulation using
tion to predict the spatial resolution for a single plane PETfrom top to bottom the PROMIS, FAVOR, FORE, and SSRB algorithms.
camera with 3 mm LSO crystals. They concluded that thelhe cold rod diameters are from top right counter clockwise: 4.8, 6.4, 7.9,
detector modules must be able to measure the DOI on ?15, 111 'c_md 12.7 mm. Approximately 25 Mcounts were recorded for both

.. . . . types of simulations.

event by event basis in order to eliminate radial elongation
artifacts, and that such depth information can be incorporated
into the reconstruction algorithm in an artifact free way with out scatter simulation. Figure 6 shows transaxial slices of the
a simple rebinning method. phantom reconstructed using four analytic algorithms: the
reprojection algorithr{iPROMIS),’® the fast volume recon-
struction algorithm(FAVOR),”® the Fourier rebinning algo-
rithm (FORB®® and the single-slice rebinning algorithm

Monte Carlo simulations have been shown to be very use(SSRB.”* Using simulated data, HansGh validated a
ful for validation and comparative evaluation of image re-method of evaluating image recovery algorithms based on
construction techniques since it is possible to obtain a referthe numerical computation of how well a specified visual
ence image to which reconstructed images should b&ask can be performed on the basis of the reconstructed im-
compared. Three different algorithms for performing PETages. Task performance was rated on the basis of the detect-
image reconstruction have been compared using Montability index derived from the area under the receiver oper-
Carlo phantom simulation’s? The results demonstrate the ating characteristic curve. Three-dimensional photon
importance of developing a complete 3D reconstruction aldetection kernels characterize the probabilities that photons
gorithm to deal with the increased gamma detection solickemitted by radioisotopes in different parts of the source re-
angle and the increased scatter fraction that result when thgion will be detected at particular projection pixels of the
interslice septa are removed from a multi-ring tomographprojection image$® Smith**® used Monte Carlo modeling to
The Eidolon Monte Carlo packadé® was used to simulate study these kernels for the case of parallel-hole collimators.
projection data of the cold rod phantom both with and with-The authors also proposed a reconstruction method using the

C. Image reconstruction algorithms
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3D kernels in which projection measurements in three adjaby a factor of 2—8 times depending on the convergence cri-
cent planes are used simultaneously to estimate the sourterion.

activity of the center plane. The matrix equations for image The search for unified reconstruction algorithms led to the
reconstruction are solved using generalized matrix inverseslevelopment of inverse Monte Carl@MC) reconstruction
King° conducted a Monte Carlo study to investigate thetechniques?’ The concept of IMC was introduced in 1981 in
artifacts caused by liver uptake in SPECT perfusion imagingin attempt to describe a numerical method for solving a class
and to verify the hypothesis that the cardiac count change@f inverse problem$!® The IMC method converts the in-
are due to the inconsistencies in the projection data input t¥erse problem, through a noniterative simulation technique,
reconstruction. A correction of the causes of these inconsidnto a system of algebraic equations that can be solved by

tencies before reconstruction, or including knowledge of thestandard analytical or numerical techniques. The principal

would virtually eliminate these artifacts. can be applied to complex and multivariable problems, and
Floyd™! evaluated convergence properties of the ML-EM variance reduction procedures can be applied. The nonitera-

algorithm for SPECT image reconstruction as a function ofiVe IMC is strongly related to the variance reduction tech-

Poisson noise, precision of the assumed system resolutigf{due in direct simulation called importance sampling where
model and iteration number. It was also shown that lesiof"® Sampling process is altered by using random numbers

contrasts and signal-to-noise ratios in ML-EM estimates Of‘rom a modified distribution. Floyd® used IMC to perform

SPECT images can be improved by considering ComlotOIRomographic reconstruction for SPECT with simultaneous

scattering when calculating the photon detection probabilitycon.1pensatlon for gttenuatlon, sc.atter and d|§Fance-d(a_pepdent
collimator resolution. A detection probability matrix is

matrix.”"< Bayesian reconstruction methods introduce prior, )
: o8y : ! POt rmed by Monte Carlo solution to the photon transport
information, often in the form of a spatial smoothness regu- . S . L
: : equation for SPECT acquisition from a unit source activity in
larizer. More elaborate forms of smoothness constraints ma ) -
. ach reconstruction source voxel. The measured projection
be used to extend the role of the prior beyond that of a : . . e
stabilizer in order to capture actual spatial information abou%/eCtorpj will equal the product of this detection probability
" 143 P P . atrix A;; with the unknown source distribution vectsr:
the object*® In recent years, many investigators propose

Gibbs prior models to regularize images reconstructed from [p;]=[A;1[si]. (20

emission computed tomography data. Unfortunately, the hytp,o resulting large, nonsparse system of equations was
perparameters used to specify Gibbs priors can greatly influss|yed for the source distribution using an iterative ML-EM
ence the degree of regularity imposed by such priors and, Sstimator. The IMC technique proved to provide compensa-
a result, numerous procedures have been proposed 10 esfyn for the collimator effects in addition to providing higher
mate hyperparameter values from observed image dat@esolution™° It is worth noting that although the technique
Higdon*** used recent results in Markov chain Monte Carloas developed for SPECT, it is also valid for other imaging
sampling to estimate the relative values of Gibbs partitioqechmques like PET and transmission CT.
functions. Using these values, sampling was performed from The apility to theoretically model the propagation of pho-
joint posterior distributions on image scenes. This allows fokgn noise through emission computed tomography recon-
a fully Bayesian procedure which does not fix the hyperpastruction algorithms is crucial in evaluating the reconstructed
rameters at some estimated or specified value, but enablg@fage quality as a function of parameters of the algorithm.
uncertainty about these values to be propagated through thgilson'®! used a Monte Carlo approach to study the noise
estimated intensities. properties of the ML-EM algorithm and to test the predic-
Maximum a posteriori (MAP) reconstruction has been tions of the theory. The ML-EM statistical properties were
shown to have significant advantages over traditional MLcalculated from sample averages of a large number of images
methods in terms of noise performance, but these advantagesth different noise realizations. The agreement between the
are highly dependent on the choice of the distribution used tenore exact form of the theoretical formulation and the
model the prior knowledge about the solution image. A MAPMonte Carlo formulation was better than 10% in most cases
approach for iterative reconstruction based on a weightedxamined, and for many situations the agreement was within
least-squares conjugate gradigWfLS-CG) algorithm was the expected error of the Monte Carlo experiments. The same
proposed and validated using simulated hot-sphere phantomethodology was also followed to analyze a MAP-EM algo-
SPECT data and patient studié3.The ill-posed nature of rithm incorporating an independent gamma prior, and a one-
tomography leads to slow convergence for standard gradienstep-late{OSL) version of a MAP-EM algorithm incorporat-
based iterative approaches such as the steepest descent orittge a multivariate Gaussian prior, for which familiar
conjugate gradient algorithm. Chinn and Hu¥figroposed ~ smoothing priors are special cases.
a preconditioned conjugate gradiefRCQ iterative algo-
rithm for WLS reconstruction in order to accelerate the con- _ i _
vergence rate of iterative reconstruction. Using simulated- Attenuation and scatter correction techniques
PET data of the Hoffman brain phantom, the authors have The presence of scatter and attenuation in the images lim-
shown that the convergence rate of PCG can reduce the nurits the accuracy of quantification of activityWith no cor-
ber of iterations of the standard conjugate gradient algorithmections, the uncertainty could be as high as 50-180%.
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2000

Fic. 7. (8) Schematic view of &°™Tc
line source placed at the centre of a
water-filled cylinder to a scintillation
camera. (b) A comparison between
calculated(solid line) and experimen-
tal (doty energy spectra for a line
source on the axis of a water-filled
cylinder. Distribution of the various
orders of scattered and nonscattered
photons are shown by broken lines.
(Reprinted by permission from Ref.
158).
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Scatter does not produce major artifacts comparable to afraction is calculated as scatter/total where total and scatter
tenuation but reduces image contrast by including a loware calculated as the integral of the LSF and the fit within the
frequency blur in the image. The impact of scatter generallydiameter of the field-of-view. Figure 9 compares scatter frac-
depends on the photon energy, camera energy resolution, atidns for different source depths and energy window sizes
energy window settings, besides the object shape and thealculated with different Monte Carlo codes simulating scin-
source distributiot®>**Many of these parameters are non- tillation camera characteristi¢3-1°Beekman® developed a
stationary which implies a potential difficulty when develop- fast analytic simulator of tomographic projection data taking
ing proper scatter and attenuation correction techniquesnto account attenuation, distance-dependent detector re-
However, correction for scatter remains essential, not onlgponse and scatter based on an analytical point spread func-
for quantification, but also for lesion detection and imagetion (PSH model. Several simplifying approximations were
segmentation>® For the latter case, if the boundary of an also adopted to improve the speed of operation; restriction of
activity region is distorted by scatter events, then the accuthe extent of the primary and scatter PSFs, coarse sampling
racy in the calculated volume will be affect&. Monte  of the PSFs in the direction perpendicular to the camera face
Carlo calculations have been found to be powerful tools taand use of a circularly symmetric scatter functiGh.
guantify and correct for photon attenuation and scattering in A study of the factors mostly responsible for spectral con-
nuclear medicine imaging since the user has the ability taamination(overlapping of unscattered and scattered events
separate the detected photons into their components: primatigroughout the energy spectriimcluding nuclear medicine
events, scatter events, contribution of down-scatter eventimaging instrumentation itself has been performi&d.
etc. Monte Carlo modeling thus allows a detailed investigaFrey'®® generated scatter response functigBRF$ using
tion of the spatial and energy distribution of Compton scatteMonte Carlo techniques and investigated the characteristics
which would be difficult to perform using present experi-
mental techniques, even with very good energy resolution
detectors®’ 10°
In gamma camera imaging and SPECT, simulation pro-
grams have been used to obtain information on the different
processes occurring within the phantom and the detectors.
For example, energy pulse-height distribution, point-spread
function and the scatter fraction can be obtait¥dhe scat-
tered events in the energy—pulse-height distribution can be
separated according to the number of scattering events in the 10°
phantom(Fig. 7). It is clearly shown that a significant num-
ber of scattered events will be accepted by the photopeak
energy window. The scatter fraction is of great importance

LI N O O By O A L B BN B

T T T TTTIT
L1t

10*

T T T T
v ol

T T T
Lol

for quantitative estimation of the scattering contributtonit 107

is defined as the ratio between the number of scattered pho-

tons and the total number of phototscattered and unscat- 20 40 60 80 100
tered. The scatter fraction is generally measured by scan- Projection bin

ning a line source placed at the center of a water-filled _ o , »

cylinder. Line spread function& SFs are generated and the Fic. 8. E_xperlmental determm_atlon of_ the scatter fractlon_ by_ fitting the
. . . . scatter tails to a monoexponential function. The scatter fraction is calculated

scatter fraction determined by fitting the scatter tails of theys the integral of the scatter tailgray areato the integral of the LSF,

LSFs to a mono-exponential functidirig. 8. The scatter within the diameter of the FOV.
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——— T T where scatter coefficients and parameters characteristic of
- . each technique have been calculated through Monte Carlo

80 P simulations and experimental measurements for various
I 10 cm dep“_/__..///ﬁ 1 source geometried? The Compton scatter correction

<l / _ P method based on factor analysis of dynamic structures was
< // | evaluated both on planar imaging and SPECT data using
S _~"""{ Scmdepth | Monte Carlo simulations and real phantoM$A compari-
5 i son with the modified dual-windouDW) method was also
Ju ] presented. Ljungbetd derived a method based on the com-
- . bined use of 3D density information provided by computed
£ —H— Ljungberg '° . tomography to correct for attenuation and the application of
3 ----©--- Beck ' 1 Monte Carlo simulated build-up factors to correct for
n — & - Dresser '3 ] build-up in the projection pixels. A similar method was also

proposed for planar imaging® The effects of tissue-
background activity, tumor location, patient size, uncertainty
of energy windows and definition of the tumor region on the
& R N accuracy of quantification were investigated by calculating
0 20 40 60 80 100 the multiplier which yields correct activity for the volume-
Energy window width (%) of-interest when using the DW methof.
A scatter correction method in which Monte Carlo simu-
Fic. 9. A comparisop of simulated s_catter _fract_ions for different source|ated scatter Iine-spread functio(SLSF) for different depth
depths and energy window sizes obtained with different Monte Carlo codes L 7
simulating scintillation camera characteristics. and lateral pogltlons has been develobédl? he uncorrected
reconstructed images are convolved with the SLSF and sub-
tracted from the projection data to yield scatter-corrected
of the scattered radiation by fitting the SRFs with fitting projections. The method was further validated using a clini-
functions. The parameters of the fitting functions were studcally realistic, nonhomogeneous, computer phant6m.
ied as a function of source position in a water-filled cylindri- Naudé’® studied the accuracy of the channel ratio scatter
cal phantom with circular cross-section. A third-order poly-correction technique which is based on the assumption that
nomial for modeling the SRF and an approximately constanthe ratio of the scatter components in the two windaws
fitting window was also proposé§* SRFs were also simu- value is constant and independent of the relative size of the
lated for inhomogeneous scattering medra® This model  scatter contribution. The results have shown that although
has been implemented in a projector—backprojector pair thahe true H value depends on both source size and depth of
makes iterative reconstruction based scatter compensatidhe source in the scattering medium, the channel ratio tech-
feasible!®’ nique can be applied successfully when an average H value
Ljungberd®® simulated both parallel and fan-beam trans-is used. WelcH? developed a method based on the use of a
mission imaging to study the effect of down-scatter from antransmission map to define the inhomogeneous scattering ob-
emission®™T¢ radionuclide into the energy window for a ject for modeling the distribution of scattered events in emis-
transmission>3Gd radionuclide. An investigation of the ef- sion projection data. The probability of a photon being scat-
fects of scattered photons in gamma-ray transmission CT faered through a given angle and being detected in the
several types of data acquisition systems was also performeginission energy window was approximated using a Gaussian
including a flood source and a parallel-hole collimator, afunction whose parameters were determined using Monte
collimated flood source and a parallel-hole collimator, a lineCarlo generated parallel-beam SLSFs from a nonuniformly
source and a symmetric fan-beam collimator and a colli-attenuating phantom. A combined scatter and attenuation
mated line source and a symmetric fan-beam collim¥tor. correction that does not require a transmission scan was also
The results showed that a fan-beam collimator and lingoroposed and validated using measured planar data and
source rejected most of the scattered collimated emitted phaimulated SPECT fot'4n imaging?8!
tons at the object side, and that almost all the scattered pho- Hademend$? applied a modified dual photopeak window
tons could be rejected at the collimator on the detector sidgDPW) scatter correction method to Monte Carlo simulated
Speller and Horrocké® studied multiple scatter effects at 2°*Tl emission images. This method was also applied to two
lower energies, including incident diagnostic x-ray spectrayiews of an extended cardiac distribution within an anthro-
and obtained correction factors for clinical use in tissue denpomorphic phantom, resulting in at least a six-fold improve-
sitometry. ment between the scatter estimate and the Monte Carlo simu-
Much research and development has been concentrated tated true scatter. A simulation study of the triple energy
the scatter compensation required for quantitative SPECT. window (TEW) method was conducted in a multi-
Floyd'"* used Monte Carlo simulations to validate the basicradionuclide #°™Tc/2°'Tl) SPECT study®® A good agree-
assumptions underlying the empirical implementation ofment between the activity distributions reconstructed from
their scatter subtraction algorithm. Three scatter correctioprimary photons and those from corrected data has been
techniques for SPECT have been assessed and compargtbwn. A spill-down correction method was also proposed
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Fic. 10. (a) A comparison between measured and simulated single energy spectra of the ECAT-953B PET(szammiexd with permission from Ref. 181

(b) The energy distribution due to scattered photons resulting from the simulation of a line source placed in the center of a 20 cm diameter water-filled cylinder
is separated into different contributioftetal scattering or different orders of photon scattexifitnergy resolution is proportional to the inverse square root

of the deposited energy and is simulated by convolving the deposited energy with a Gaussian function whose FWHM is 23% for 511 keV photons.

for the 2°IT| window image in simultaneous dual-isotope Single energy spectra of the ECAT-953B PET scanner. An
9OmMT 20T SPECT imaging based on a single acquisitionenergy resolution of 23% FWHM has been assumed, since
into three energy windows4 Using Monte Carlo tech- this is the typical value for BGO block detectdfS.An en-
niques, the fractional amount 8™Tc and?°*TI spill-down  ergy pulse-height distribution obtained by simulation of a
in the 2°*TI window with respect to the total counts from the line source in the center of a water-filled cylindrical phantom
spill-down window, was calculated for simulated images ofwhere scattered events have been separated according to the
point sources at varying depths within a water-filled ellipticalnumber of scatterings is also shofrfig. 1Qb)]. The accu-
tub phantom. racy of experimental methodologies used for scatter fraction
The DW and the convolutiofCV) scatter correction tech- and scatter pair spatial distribution determination were evalu-
niques were compared using projection data, simulated bgted using the Monte Carlo meth&8.Figure 11 shows com-
the Monte Carlo methotf® The scatter distributions pre- parisons between measured and simulated scatter fractions as
dicted by the CV technique were found to be consistentlya function of the lower energy threshdith. Barney® devel-
lower than those simulated by the Monte Carlo method in th@ped an analytical simulation for single and multiple-
part of the scatter distribution corresponding to the locationscattered gamma rays in PET. The multiple-scatter model
of the sources while the DW technique gave lower estimateshowed good agreement with a Monte Carlo simulation of
of the scatter distribution. Further comparisons of four scattotal object scatter. The authors also proposed a scatter cor-
ter correction methods: DW, DPW, TEW and CV were alsorection method which uses the analytical simulation and ex-
performed using simple phantoms and a clinically realisticploits the inherent smoothness of the scatter distribution to
source distribution simulating brain imagit®. The authors  account for three-dimensional effects in scatter distribution
concluded that performing scatter correction is essential foand object shapes. Scatter components in PET divided into
accurate quantification, and that all four methods yield gorimaries, object scatter, gantry scatter and mixed scatter and
good, but not perfect, scatter correction. Bd¥atompared their effects on the degradation of reconstructed images were
nine scatter correction methods based on spectral analysislso investigated® Quantification of those components for a
Simulations and physical phantom measurements were alsmall animal PET prototype were also report&A Monte
used to compare the accuracy and noise properties of th@arlo study of the acceptance to scattered events in a depth
transmission-dependent convolution subtraction and thencoding large aperture camera made of position encoding
TEW scatter correction techniqu&. The TEW had the blocks modified to have DOI resolution through a variation
worst signal-to-noise ratio in the heart chamber of a simuin the photopeak pulse height was perform#dit was re-
lated chest phantom. ported that the poorer discrimination of object scatters with
In the PET imaging world, Compton scattering effects indepth sensitive blocks does not lead to a dramatic increase of
water on profiles of activity have been simulatdFigure  the scatter fraction.
10(a) shows a comparison between measured and simulated Although several approaches have been proposed for scat-
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55 —+———————F+—F—T—————— ments to theJournal of Nuclear Medicineas different
pamphlets® -1 Some of these pamphlets made extensive
use of Monte Carlo calculations to derive specific absorbed
3 fractions for electron and photon sources uniformly distrib-
uted in organs of mathematical phantoms. Cff&gemon-
strated that the reciprocity theorem which states that for any
3 pair of regions in a uniform isotropic or uniform scatterless
model, the specific absorbed fraction is independent of which
40 N region is designated source and which is designated target
may also be valid for heterogeneous phantoms for certain
conditions. Comparisons between measured and calculated
35 { doses when the uncertainties associated with both techniques

—e— measured . \ are considered validated the experimental validity of this
- -¢ - - simulated ' approactt®® Other approaches using the MIRD formalism
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30r S have also been propos&¥.Posto® calculated photon spe-
C i cific absorbed fractions for both the Cristy and Eckerman
ol 1 v 1 v i by b ] gastrointestinal tract and their revised model and reported
200 300 400 500 differences between electron absorbed fraction values with
Energy (keV) and without electron tracking. The calculation of absorbed

o 11 A <o bet 4 and simulated scatter fracti fractions for positron emitters relevant to neurologic studies
e e s vy esessond s Were also reportef Inerest in Monte Carlo-based dose
permission from Ref. 191 calculations withB-emitters has been revived with the appli-
cation of labeled monoclonal antibodies to RIT.
In a review article on tumor dosimetry fgB-emitters,

ter correction for 3D PET, six basic approaches have beeheichner and Kwok’” divided the various approaches into
taken to this correction: multi-energy window approachesseveral classes, namely numerical, analytical or Monte
integral transformation approaches, an approach relying ofarlo. It is also necessary to consider hybrid approaches,
an auxiliary, septa extended scan, curve-fitting approachesamely numerical approaches using Monte Carlo data. The
model-based approaches, and direct Monte Carlo techniquegse of Monte Carlo codes enables the absorbed fraction of
Levin'® developed a correction method that uses the 3Denergy to be calculated directly for a given radionuclide rela-
reconstructed image volume as the source intensity distribuive to its geometry and emission spectrum. This can be done
tion for a photon-tracking Monte Carlo simulation. The his- for relatively simple geometrié® but the main trend of
tory of each annihilation photon’s interactions in the scatterMonte Carlo approaches is that they allow complex simula-
ing medium is followed, and the sinograms for the scatteredions involving inhomogeneitie¥:?’~** Sometimes, the
and unscattered photon pairs are generated in a simulated 3@onte Carlo technique is used just to simulate random dis-
PET acquisition. The calculated scatter contribution is usedribution of sources or targets whereas the actual dosimetric
to correct the original data set. Monte Carlo techniques weréalculation is performed using dose-point kerrféfs:?
used to estimate “best possible” weighting functions for dif- Mono-energetic dose-point kernels which indicate variations
ferent energy-based scatter correction schemes and to exaifi-energy delivered at a distance from mono-energetic pho-
ine the optimal number of energy windows for KEI) and  ton or electron point sources are commonly used data sets.
BGO scintillatorst®® Ollinger’? developed a model-based The scaled point kernd#(x/r,E,) is defined by the equa-
scatter correction method that uses a transmission scan, &an
emission scan, the physics of Compton scatter and a math-
ematical model of the scanner in a forward calculation of the
number of events for which one photon has undergone a
single Compton interaction. A single-scatter simulation tech-
nique for scatter correction where the mean scatter contribuxherep is the density of the mediummg is the range in the
tion to the net true coincidence data is estimated by simulateontinuous slowing down approximatig@DSA) at energy
ing radiation transport through the object was also suggesteld, and ®(x,E,) is the specific absorbed fraction. These
and validated using human and chest phantom stddlies.  point kernels are calculated from Monte Carlo codes. Three
Monte Carlo codes are often reported in the literature,
ETRAN, 197198214 ccepl® and EGs4207216217 Although re-
sults obtained witfETRAN versions prior to 1986 may differ

There is no doubt that the area where early Monte Carldrom those obtained witlecs4*° due to an incorrect sam-
calculations in the field have been performed is dosimetrypling of the energy-loss straggling ETRAN, there are no
modeling and computatiort8. The approach adopted by the important differences in the results obtained with these two
Medical Internal Radiation DoséMIRD) committee was codes. It must be noted that the results reported in MIRD
first proposed in 1968 and published in a series of supplepamphlet 2% do not share the error described above. One

X
r—,EO) =411 px?®(x,Ey), (21)
0

E. Dosimetry and treatment planning
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major limitation in applying these codes to dosimetry ofdelivered to the fetus to be calculated at different stages of
B-emitting radionuclides is that they cannot deal satisfactogrowth. A phantom of the adult woman has also been in-
rily with electron energies below 10 ke'?. The EGsacode  cluded in the program which differs from that of the 15-year-
was also used to characterize the spatial and energy distriboid adolescent. The1ABDOS prograni®! starting with a ref-
tion of bremsstrahlung radiation from beta point sources imerence man allows for the definition of a spherical tumor
portant to RIT in watef’ This study provided the initial target and “on the fly” Monte Carlo calculations to be
data required for modeling and analyzing the scatter, attenunade??? This code was also used to show that neglecting the
ation, and image formation processes in quantitative imaginghoton contribution from**4 photon spectrum underesti-
of bremsstrahlung for RIT dosimetry. mates the tumor dose by 10—2%%3.

Leichnef!® proposed a unified approach to photon and Akabanf??* usedecs4 Monte Carlo calculations to esti-
B-particle dosimetry. This approach is based on a fit of Bergmate absorbed doses to the blood and to the surface of the
er's tables for photortd’ and electrond®® The empirical blood vessel wall as well as to a mathematical model of a
function proposed is equally valid for photons andHaversian cand® Calculation of the dose to the upper spine
B-particles. Therefore both point-kernel and Monte Carloregion near the thyroid resulting from the administration of
techniques can be effectively employed to calculate absorbe@700 MBq of'*4 and assuming a thyroid uptake of 10% was
dose to tissue from radionuclides that emit photons or elecalso performed?® A Monte Carlo model has also been de-
trons. The latters are much computationally intensive, howveloped for the simulation of dose delivery to skeletal me-
ever, point-kernel methods are restricted to homogeneous tisastases by the bone surface-seeking radiopharmaceutical
sue regions that can be mathematically described by?*Re(Sn) HEDP to optimize treatment planning and dose
analytical geometries, whereas Monte Carlo methods haveesponse evaluations of therapeutic  bone-seeking
the advantage of being able to accommodate heterogeneoradiopharmaceuticafé’ Beta-particle dosimetry of various
tissue regions with complex geometric shapes. Recentlyadionuclides used in radiation synovectomy, an intra-
Furhang® generated photon point dose kernels and abarticular radiation therapy to treat rheumatoid arthritis was
sorbed fractions in water for the full photon emission spec-also estimated using ttess4 Monte Carlo codé?822°
trum of radionuclides of interest in nuclear medicine, by It seems as if we are on the way to a more and more
simulating the transport of particles using Monte Carlo techpersonalized human dosimetry with radiolabeled antibody
nigues. The kernels were then fitted to a mathematical exdosimetry one of the aims. The dose distribution pattern is
pression. Figure 12 shows dose kernels generated in an infaften calculated by generalizing a point source dose
nite water medium for selected radionuclides of potentialdistribution?*%?3! but a direct calculation by Monte Carlo
interest in RIT?!® techniques is also frequently reported because it allows me-

The most recently available version of th@rRDOSE3  dia of inhomogeneous density to be considér@drhe de-
code??® developed by the Radiation Internal Dose Informa-velopment of a 3D treatment planner based on SPECT/PET
tion Center(Oak Ridge Institute for Science and Educajion imaging is an area of considerable research interest and sev-
allows the calculation of the absorbed dose as well as theral dose calculation algorithms have been develSpteig-
effective dose and the effective dose equivalent. The prodre 13 lists the essential steps required in developing a 3D
gram deals with three phantoms representing the pregnatreatment planning program for RIT. Projection data ac-
woman at 3, 6 and 9 months of gestation and allows the dosguired from an emission tomographic imaging system are
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F. Pharmacokinetic modeling
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Pharmacokinetic modeling is a useful component for the
estimation of cumulated activity in various source organs in
the body. A few applications of Monte Carlo techniques
Patient have been reported in the field of pharmacokinetic modeling
o ot and are.discussed in this section.
omagraphy Setem _ Casciarf®® developed a compartmental model [6F-18]
Image Reconstrution fluoromisonidazole transport and metabolism to compute the
(Analytic, lerative) [ Mulimodalcy ] volume average kappa in tissue regions frpf18] fluo-
T Vont Calo romisonidazole PET time—activity data and characterized it
Phantom Simulation J using Monte Carlo simulations and PET time—activity data.
2 | This model was able to accurately determine kappa for a
variety of computer generated time—activity curves, includ-
@ ing those for hypothetical heterogeneous tissue regions and
poorly perfused tissue regions. Compartmental models allow
ey P A .0 2P Absorbed dose map also the in vivo analysis of radioligand binding to receptor
sites in the human brain. Benzodiazepine receptor binding
Fic. 13: A di_agran”_l showing the essential steps required in d_evgloping'fwas studied using a three-compartmental ma%'[he va-
three-dlmensmnal internal dosimetry program based on quantitative emlﬁidity of the results of the coefficient of variation of each
sion computed tomography. = . o )
parameter were verified with statistical results provided by
Monte Carlo simulation. Burgét’ examined the possibility
of mathematical metabolite correction, which might obviate
the need for actual metabolite measurements. Mathematical
processed to reconstruct transverse section images whighetabolite correction was implemented by estimating the in-
yields a count density map of source regions in the bodyput curve together with kinetic tissue parameters. The gen-
This count density is converted to an activity map using thegral feasibility of the approach was evaluated in a Monte
Sensitivity derived from a calibration phantom. In the final Carlo simulation using a two tissue Compartment model. A
step, this activity distribution is converted to a dose rate okimplified approach involving linear-regression straight-line
dose map by convolving the activity distribution with dose- parameter fitting of dynamic scan data was developed for
point kernels or by direct Monte Carlo calculations. To hoth specific and nonspecific modét$ Monte-Carlo simu-
elaborate a treatment plan for an individual patient, prospeaations were used to evaluate parameter standard deviations,
tive dose estimates can be made by using a tracer activity @fue to data noise, and much smaller noise-induced biases.
radiolabeled antibody to obtain biodistribution information The authors reported good agreement between regression
prior to administration of a larger therapeutic activity. The and traditional methods.
clinical implementability of treatment planning algorithms  Welch*? investigated and quantified the effect of typical
will depend to a significant extent on the time required toSPECT system resolution and photon counting statistics on
generate absorbed dose estimates for a particular patient. the bias and precision of dynamic cardiac SPECT param-
In particular, Sgourds® proposed real 3D treatment plan- eters. The simulation of dynamic SPECT projection data was
ning for RIT in which patient datécumulative activity vox-  performed using a realistic human torso phantom assuming
els) are convolved with dose-point kernels in order to deter-both perfect system resolution and a system resolution typi-
mine the isodose distributici®?3* This is then cal of a clinical SPECT system. The results showed that the
superimposed on the target visualized in 3D by computerizedate constant characterizing the washing of activity into the
tomography(CT) or MRI. The methodology was extended myocardium is more sensitive to the region of interest posi-
later to develop a dosimetry algorithm based on a Montdion than is the washout rate constant, and that the main
Carlo procedure that simulates photon and electron transpoetfect of increased photon noise in the projection data is to
and scores energy depositions within the patiéat!23 decrease the precision of the estimated parameters.
Microdosimetric approaches are required when the rela- Computer simulations demonstrate that an estimation of
tive deviations from the mean of the local dose in the targethe kinetic parameters directly from the projections is more
exceed 20%. HumAi® developed a full Monte Carlo simu- accurate than the estimation from the reconstructed
lation of the stochastic variation of particle hits and energyimages?*® A strategy for the joint estimation of physiologi-
deposition in cell nuclei under two extreme geometric con-cal parameters and myocardial boundaries was proposed and
ditions, namely, wherf'At is retained in the capillary and evaluated by simulated myocardial perfusion studies based
when it is homogeneously distributed in the tumor. Aon a simplified heart modéf* A method allowing the esti-
method which allows dose calculations to be made to indimation of kinetic parameters directly from SPECT cone-
vidual target cells in different regions of mouse bone marronbeam projections was also proposed and validated with a
exposed to alpha particles emitted from bone was alssimulated chest phantoff® The results showed that myocar-
developed?®’ dial uptake and washout parameters estimated by conven-
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tional analysis of noiseless simulated cone-beam data had 70 e T
biases ranging between 3—-26% and 0-28%, respectively, r . |
while uncertainties of parameter estimates with this method 60L “
ranged between 0.2-9% for the uptake parameters and be- C ]
tween 0.3—-6% for the washout parameters. 'g 50 C Ve ]
V. OBJECT MODEL AND SOFTWARE PHANTOMS °g’ 40| /‘/ ]

Mathematical descriptions of human bodies and anthropo- :, A / //,OEI/‘
morphic phantoms are useful in radiation transport calcula- g 30 g S—— 1
tions. They are widely used in computer calculations of 3 r o ¢ MRE .
doses delivered to the entire body and to specific organs, and £ 29 ¢ ]
are valuable tools in the design and assessment of image O C ]
reconstruction algorithms. Software phantoms modeled in 10: ]
imaging situations were historically limited to simple point, L ]
rod, and slab shapes of sources and attenuating media. Such ]
simple geometries are useful in studying fundamental issues 050' o0 180 200 %50
of scatter and attenuation, but clinically realistic distributions Image size

cannot be evaluated by such simple geometries. A precise
modeling of the human body requires appropriate informaic. 14. Calculation times for VB, OCT, and MRR representation of an
tion on the location, shape, density and elemental compospbject(reprinted with permission from Ref. 2416

tion of the organs or tissues.

A. Object modeling the geometric relations between objects such as excluding
common boundaries. An approach to volume-based solid

Object modeling is fundamental for performing photon modeling has been developed which is based upon topologi-
and electron transport efficiently by means of a Monte Carlo 9 L P hased up polog
method. It consists of a description of the geometry and ma(_:ally consistent definitions of boundary, interior and exterior

terial characteristics for an obje€ The material character- of a region:> From these definitions, union, intersection and

g ) : . difference routines have been developed that allow involuted
istics of interest include density and energy-dependent cross-

. . . : and deeply nested structures to be described as set-theoretic
sections. The modeling includes simple geomet8G), o S . . .
shape-basedSB), and voxel-basedVB) approaches. The combinations of ellipsoids, elliptic cylinders, prisms, cones

' and planes that accommodate shared boundaries.

three approaches use a piecewise uniform distribution of ob- . ) .
ject characteristics to model an object. With the SG model An pctree—based .methQ(DCT).Wh'Ch describes an object
by using several sizes of cubic regions was proposed by

an object is composed of a simple combination of primitives . . .
) P P P aw&! to increase the calculation speed in photon trans-

such as cylinders and spheres. The SB approach represen?rt since the number of voxels is much smaller than that of

the boundaries of shapes by mathematical equations. Regul o S
. . the VB approach. The “octree string” is generated from a
shapes such as sphere, cylinder, rectangular solid, etc. have . . .
: . . set of serial cross-sections automatically. The same author
been used to approximate irregularly-shaped regions. Th . .
: ; AU : eveloped a modeling method called the maximum rectan-
VB approach discretizes an object into tiny culfesxels

. 46 H
with uniform characteristics. An object is thus represented bygulr_:tr reg|on(M.RR) method?. I.n this approach, a MRR for

. . a given voxel is selected within a homogeneous, irregularly
a union of voxels of the same size.

Extensions of SG and SB models such as the Soli&haped region from a set of cross-sections. The search is
geometry-base(SG approack ncludes more primives [TEVE Y SEEEEC8 R SOER DTS SO TN
(ellipsoids, elliptic cylinders, tapered elliptic cylinders, rect- 9 ‘ P

angular solids, and their subsets: half, quarter, and aighthObJECt’ high speed calculation of photon transport can be

. . . . accomplished because an object can be described by means
and uses an inclusion tree data structure to provide relation-

. N : . . of fewer regions than in the VB or the OCT representation
ships between primitives. These extensions provide simple X . : : .

. . . methods. Figure 14 illustrates the calculation time required
irregular shape modeling. To allow anthropomorphic model-

ing the composite mod&f which is an extension to the SGB for the \./B OCT and MRR approaches for different image
- ) .matrix sizes.

approach adds to the primitives a voxelized rectangular solid

primitive. An object model based on a combination of modi-

fied SG, SB and VB models without restriction in the com-

bination set was also propos&i.The data are structured in Modeling of imaging and other medical applications is

a hierarchical and adjacence tree associated with an efficiebest done with phantom models that match the gross param-

tree scanning to reduce the computation time. Combinatoriadters of an individual patient. Computerized anthropomor-

approaches to solid modeling, which describe complex strugghic phantoms can either be defined by mathematiaé-

tures as set-theoretic combinations of simple objects, are limytical) functions, or digital volume arrays. The mathematical

ited in their ease of use and place unrealistic constraints ospecifications for phantoms that are available assume a spe-

B. Anthropommorphic phantoms
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cific age, height and weight. People, however, exhibit a va-
riety of shapes and sizes. In the first MIRD pamphlets, sev:
eral organs including the skeletal system, were represente 1
schematically using geometric forngsylinders, cones and I 3 F R
ellipsoids.®® The representation of internal organs with this E 3
mathematical phantom is very crude since the simple equa
tions can only capture the most general description of the
organ’s position and geometf? A version of this phantom
has been updated to include female org&@AFhe most stud-
ied phantom is defined as the reference man weighing
70 kg?°3

Mathematical phantoms are still evolving and are being
constantly improved. The heterogeneity of the body has bee .
ta.ken ,mto account b¥ I.nCIUdmg soft I:‘I.SSUGS, bone e_md Iungéle. 15. Surface rendered images of the 3D MCAT phantom developed at
with different compositions and densities. For certain organghapel Hill. (a) Anterior view with outer body surface and ribs removed to
such as the stomach and the bladder, a distinction should Isgow the various organs modele() Posterior view with the rib cage
made between the organ contents and the organ wall. A réresentreprinted with permission from Ref. 256
vised head and brain models was developed by Bodchet.
Unlike previous head models, the neck and head are treated
as two separate compartments. The neck is represented bygeaphic is a volume-rendering of anterior and posterior views
circular cylinder. It is topped by a cylindrical head region cutwith some sections removed for visualization purposes.
in the back by a cone, so that its bottom base coincides with Some calculations make use of more accurate representa-
the top of the neck. Two vertical planes on the back join thdions of individuals based on volumetric scans, such as CT,
cone to the cylinder of the head. The top of the head idVRI, and PET. As an improvement to the mathematical an-
defined by a half ellipsoid. The trunk region of the Snyder—thropomorphic phantoms, a new family of phantoms was
Fisher phantom without its internal organs is incorporateconstructed from CT daf&’ The human phantoms present
into the model. Based on the atlas of sectional humadvantages towards the location and shape of the organs, in
anatomy, a 3D computer model of a human torso, inc|udingaarticular, the hard bone and bone marrow. A physical brain
four cavities of the heart, two lobes of the lung and the bodyPhantom has also been developed to simulate the activity
surface and a 3D model of the myocardium wasdistributions found in the human brain in the cerebral blood
developed® The torso model, with more than 10000 sur- flow and metabolism studies currently employed in PEeT.
face triangles, depicts the structures and appropriate propofh® phantom utilizes thin layers of Lucite to provide appar-
tions of the internal organs, especially of the heart. ent relative concentrations of 4, 1 and 0 for gray matter,

The Mathematical CArdiac TorséICAT) phantom is an W'hlte matter. arld ventrlclgs,. re;pect!vely, in the .br.am. A
anthropomorphic phantom, developed at the University c)f:hmcally reallstlc.sou.rge dlstnbutéon S|mglza6%|ng brain imag-
North Carolina at Chapel Hill, that has been used in emissiolf'd Was created in digital form&t® ZubaP***° developed a
computed tomography imaging reseafeh.Using math-  yPical anthropommorphic VB adult phantom by manual
ematical formulas, the size, shape and configurations of the€dmentation of CT transverse slices of a living human male
major thoracic structures and organs such as the heart, livef€rformed by medical experts. A computerized 3D volume
breasts and rib cage are realistically modeled for imaging'"@ modeling all major internal structures of the body was
purposes. Though anatomically less realistic than phanto en createc_i. chh _voxel of th? volume_contams an |_ndex
derived from CT or MR images of patients, the MCAT phan_number designating it as belonging to a given organ or inter-

tom has the advantage that it can be easily modified to simLpal structure. These indexes can then be used to assign a

late a wide variety of patient anatomies. In addition, thevf"‘lue’ corresponding to, e.g., density or activity. Two ver-

MCAT phantom simulates a dynamic, beating heart inclug-S'ons of the ph_antom_ exst,_representlng e_lther the complete
: . : ) . human torso with an isotropic voxel resolution of 1.5 mm, or
ing changes in myocardial wall thickness, changes in cham- . . g .
. : . a dedicated head phantom with 0.5 mm voxel size. The dedi-
ber volumes, apical movement and heart rotation during the ; : .
. . . Cated brain phantom was created from the high resolution
cardiac cycle. The phantom consists of two physical model :
a 3D distribution of attenuation coefficients and a 3D distri- Rl scans of a human volunteer. This volume array repre-
bution of radionuclid take for the vari thoracic oraan sents a high resolution model of the human anatomy and
ution of radionuclide uptake for Ih€ various thoracic organsgg, o 55 5 vB anthropomorphic phantom.
The 3D attenuation coefficient phantom classifies all thoracic
tissues into one of 5 types: musdleasculature and other
soft tissuep lung, fat (such as in the breaststrabecular
bone and cortical bone. The MCAT phantom has become gl' MONTE CARLO COMPUTER CODES
valuable tool in imaging studies where reasonably realistic, Many Monte Carlo programs have been in use in the field
but anatomically variable patient data needs to be simulateaf nuclear imagind+1617261  and internal

The graphic in Fig. 15 illustrates the MCAT phantom. The dosimetry>020-232234ith many of them available in the
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TasLE Il. Key features of Monte Carlo codes used in nuclear medical imaging.

MC code General description

EGs4(Ref. 262 Coupled photons/electrons transport in any material
through user specified geometries. Simulation of
imaging systems not specifically included and requires
an extensive amount of user programmingvibRTRAN.

ITS including TIGER, CYLTRAN, Coupled photons/electrons transport in any material

andAccepT (Ref. 263 through slabs, cylinders or combinatorial. Simulation of
imaging systems not specifically included and requires
an extensive amount of user programming-aRTRAN.

McNP (Ref. 264 Coupled neutrons/photons/electrons transport in any
material through user generalized geometry. Simulation
of imaging systems not specifically included and
requires an extensive amount of user programming in
FORTRAN.

GEANT (Ref. 43 Coupled photons/electrons transport in any material
through combinatorial geometry. Simulation of imaging
systems not specifically included and requires an
extensive amount of user programmingriDRTRAN.

siMseT (Ref. 21 Photons transport in any material through voxel-based
phantoms. Simulation of SPECT and PET imaging
systems included. User modules written in C could be
linked.

siMIND (Ref. 15 Photons transport in any material through voxel-based
phantoms. Simulation of SPECT imaging systems
included. User modules written iRORTRAN could be
linked.

siMsPECT (Ref. 265 Coupled photons/electrons transport in any material
through voxel-based phantoms. Simulation of SPECT
imaging systems included. User modules written in
FORTRANC could be linked.

mcmATV (Ref. 266 Photons transport in any material through voxel-based
phantoms. Simulation ofsPecT imaging systems
included. User modules written irRorRTRAN could be
linked.

peTsIM (Ref. 20 Photons transport in any material through shape-based
phantoms. Simulation of PET imaging systems included.
User modules written iforTRAN could be linked.

EDOLON (Ref. 135 Photons transport in any material through shape-based or
voxel-based phantoms. Simulation of 3D PET imaging
systems included. User modules written in C/Objective-
C could be linked.

public domain®!® Table Il (Refs. 262—26p lists Monte photon Monte Carlo transport codes is a powerful tool for
Carlo codes widely used together with a short description ofletermining state-of-the-art descriptions of the production
their key features. and transport of the electron/photon cascade in time-
EGS4. The electron gamma showérGs computer code independent, multi-material, multi-dimensional  envi-
system is a general purpose package for Monte Carlo simuenments’®3 iTs is a collection of programs sharing a com-
lation of the coupled transport of electrons and photons in amon source code library that can solve sophisticated radia-
arbitrary geometry for particles with energies from a fewtion transport problems. A total of eight codes are in the
keV up to several Te\®? The code represents the state-of- collection which can be split into six groups: thisEr codes
the-art of radiation transport simulation because it is very(for 1D slab geometrigsthe cYLTRAN codes(for 2D cylin-
flexible, well-documented and extensively tested. Some haverical geometries the AcCEPTcodes(for arbitrary 3D geom-
referred to theeEGs code as thale factogold standard for etrie9, the standard codedor normal applications the P
clinical radiation dosimetrnyeGs is written in MORTRAN, a  codes(for applications where enhanced ionization/relaxation
FORTRAN pre-processor with powerful macro capabilities. procedures are needednd the M codegfor applications
EGSis a “class II"” code that treats knock-on electrons andwhich involve 2- or 3D macroscopic electromagnetic figlds
bremsstrahlung photons individually. Such events requirdhe user selects the appropriate code from the library and
predefined energy thresholds and pre-calculated data for eashipplies it with any special requirements and the physical
threshold, determined with the cross-section generatodescription of the problem to be solved in an input file.
PEGS. MCNP. MCNP is a general-purpose Monte Carlo code that
ITS. The IntegratedIGER Series(ITS) of coupled electron/ can be used for neutron, photon, electron or coupled neutron/
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photon/electron transpat?* The code treats an arbitrary and has been found a very useful research tool. Sikievp
three-dimensional configuration of materials in geometriccode has been widely used for collimators desigand to
cells bounded by first- and second-degree surfaces arelaluate attenuation and scatter correction
fourth-degree elliptical tori. For photons, the code takes actechniques’/4176-179.185-186
count of incoherent and coherent scattering, the possibility of siMSPECT. ThesiMsPECTcode developed at MIT is based
fluorescent emission after photoelectric absorption, absorpn themcnp Monte Carlo transport code for photon tracking
tion in pair production with local emission of annihilation and interaction algorithms. It has been extensively modified
radiation and bremsstrahlung. A continuous slowing dowrto allow complete collimator and source modeling and direct
model is used for electron transport that includes positrongnanipulation of the geometric and physical parameters en-
k-shell x-rays, and bremsstrahlung but does not include exeountered in SPECT imagirt§:%® The simulation package
ternal or self-induced fields. Important features that makeallows full tomographic simulation of data from physically
MCNP very versatile and easy to use include a powerful genfealistic nonuniform and asymmetric 3D source objects. Pho-
eral source, criticality source, and surface source; both ggen transport in the detector crystal, light pipe and PMT’s is
ometry and output tally plotters; a rich collection of variancenot simulated. The use of positron emitters in SPECT imag-
reduction techniques; a flexible tally structure; and an extening has also been modeled v#&MvsPECTin order to better
sive collection of cross-section data. understand the potential improvements of different collima-
GEANT. The GEANT package was originally designed for tors design on 511 keV gamma camera imaging.
high energy physics experiments, but has found applications MCMATV . The Monte Carlo Matrix Vectorize@MCMATV )
also outside this domain in the areas of medical and biologiprogram models photon transport in both homogen&8us
cal sciences, radiation protection and astronadfiche and heterogeneous medfd.The code is designed to model
main applications ofEANT are the transport of particles both projection data for simulated SPECT studies and to
through an experimental setup for the simulation of detectocompute photon detection kernels, which can be used to
response and the graphical representation of the setup andlmfiild system matrices for use in matrix-based image
the particle trajectories. The two functions are combined irreconstructiot®® The vectorized code is written iROR-
the interactive version oBEANT. This is very useful, since TRAN77 and run on a Stellar GS1000 computer for pipelined
the direct observation of what happens to a particle inside theomputations. It uses an event-based algorithm in which
detector makes the debugging easier and may reveal possitpaoton history data are stored in arrays and photon history
weakness of the setup. computations are performed within DO loops. The code is
SIMSET. The simulation system for emission tomographyadapted from a history-based Monte Carlo code in which
(sIMSET) is a software application designed to perform photon history data are stored in scalar variables and photon
Monte Carlo simulation of photon creation and transporthistories computed sequentially. Without the use of the vec-
through heterogeneous attenuators for both SPECT anor processor the event-based code is faster than the history-
PET?! The package has been in the public domain since thbased code because of numerical optimization performed
beginning of 1996 and includes the photon history generatoduring conversion to the event-based algorithm.
(PHG), the object editor, a collimator module and detection PETSIM. A series of programs calledeTsiM have been
and binning modules. The PHG is the module that generatedeveloped to model the source distribution and its attenua-
and tracks photons within the FOV of the tomograph beingion characteristics, as well as the collimator and detectors in
simulated. The code is continuously being improved includ-PET2%4 The different modules are connected by compact
ing, for instance, the implementation of incoherent scattergamma history files which are stored on a disk or tape. The
ing, random events detection and simulation of coincidencatorage of intermediate results on tape reduces simulation
imaging using conventional dual-head gamma cameras. time, since most common source geometries need be gener-
SIMIND. The SIMIND code simulates a clinical SPECT ated only once. The simulation results include spectrum
scintillation camera and can easily be modified for almosianalysis, sensitivity to true coincident events, scattered coin-
any type of calculation or measurement encountered imident and single events and the effects of these parameters
SPECT imagind? including transmission imaginy® The  of detector dead-time. The sensitivities in multi-slice systems
entire code has been written MORTRAN-90and includes ver- are presented as matrices of coincident crystal planes. The
sions that are fully operational on VAX-VMS, most UNIX matrix shows the true count sensitivity and the scatter frac-
platforms and on MS-DO®.ahey LF90 compiler In sum-  tion together for each valid combination of planes. This pre-
mary, the code works as follows: photons emitted fromsentation is very useful for assessing the effects of various
simulated decay in the phantom are followed step by steplegrees of inter-plane collimation. The spatial resolution
towards the scintillation cameraiMIND includes an accurate analysis includes the effects of positron range, noncolinearity
treatment of photon interaction in the phantom, a protectingf the gamma rays, multiple interaction within the detectors,
layer and in the crystal of the detector. The simulation ofand the effects of quantization into single crystals in
back-scattering from light guides and photomultipliers is alsamultiple-crystal block detectors. Each of these effects can be
included. Different types of collimators can be selected. turned on or off without repeating the simulation. Single
MIND can take advantage of anthropomorphic voxel-basedrystals, blocks and crystals with DOI encoding can be speci-
phantoms developed for simulating realistic imaging situafied, so that the detector geometry can be optimized.
tions. The program has been shared among several groups EIDOLON. The Monte Carlo simulatogIDOLON, was de-
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veloped using modern software engineering techniquetime, usually the cycle time of the machifié.Today’s large
mainly for fully 3D PET imaging?®!®®The code was written machines measure their speed in GFlops’ (dferations/s

in Objective-C, an object-oriented programming languageEach CPU generally contains 2 multiply and 2 add pipes.
based on ANSI C. The first version of the program was deWhen all of these can be employed simultaneously as for
veloped using the NextStep development environment. Anstance, in a dot product or a vector update operation, 4
modular design featuring dynamically loadable program eleFlops/cycle can be attained. The Cray T90 has a cycle time
ments or bundles was adopted for software design. The basaf 2.2 ns and a maximum number of 32 processors, thus the
building block is amodel elementbject class which allows peak performance is 4 operations/1 cyclecycle/2.2 ns

us elements to be browsed, inspected, adjusted, created a2 processors 58.2 GFlops. Easily portable Monte Carlo
destroyed through a graphical inspector. The user interfac@ser codes are generally used for timing benchmark purposes
allows the user to select scanner parameters such as the nugm different computer$’? According to van der Steen and
ber of detector rings, detector material and sizes, energy di®ongarra®”® the classification of high-performance comput-
crimination thresholds and detector energy resolution. It alsers is based on the way instructions and data streams are
allows us to choose either a complex anthropomorphic phararranged and comprises four main architectural classes.
tom or a set of simple 3D shapes, such as parallelepiped;hese include the following.

ellipsoid or cylindroid for both the annihilation sources and  Single Instruction Single Data stream (SISD) ma-
the scattering media, as well as their respective activity conehines. These are the conventional systems that contain one
centrations and chemical compositions. The user has the po&PU and hence can accommodate one instruction stream that
sibility to view the reference source image and sinogram dati executed serially. Nowadays many large mainframes may
sets as they are generated and are periodically updated. Avave more than one CPU but each of these execute instruc-
implementation of the software on a high-performance partion streams that are unrelated. Therefore, such systems still
allel platform was also reported. should be regarded dmultiple) SISD machines acting on
different data spaces. Examples of SISD machines are for

instance most workstations like those of DEC Hewlett-
VIl. SCALAR VERSUS VECTORIZED AND Packard and Sun Microsystems.

PARALLEL MONTE CARLO SIMULATIONS Single Instruction Multiple Data stream (SIMD) ma-

Although variance reduction techniques have been devekhines.Such systems often have a large number of process-
oped to reduce computation time, the main drawback of théng units, ranging from 1,024 to 16,384 that all may execute
Monte Carlo method is that it is extremely time-consuming.the same instruction on different data in lock-step. So, a
To obtain the high statistics~<10" count$ required for im-  single instruction manipulates many data items in parallel.
age reconstruction studies requires us to track hundreds @&xamples of SIMD machines in this class are the CPP DAP
millions of particles. Consequently, a large amount of CPUGamma Il and the Alenia Quadrics. Another subclass of the
time (weeks or even monthsnay be required to obtain use- SIMD systems are the vector processors which act on arrays
ful simulated data sets. The development of advanced conef similar data rather than on single data items using spe-
puters with special capabilities for vectorized or parallel cal-cially structured CPUs. When data can be manipulated by
culations opened a new way for Monte Carlo researcherghese vector units, results can be delivered with a rate of one,
Parallel computers are becoming increasingly accessible tiwvo and in special cases of three per clock cycle. So, vector
medical physicisté®® This allows research into problems processors execute on their data in an almost parallel way but
that may otherwise be computationally prohibitive to be per-only when executing in vector mode. In this case they are
formed in a fraction of the real time that would be taken byseveral times faster than when executing in conventional sca-
a serial machine. Historically, however, most programs andar mode. For practical purposes, vector processors are there-
software libraries have been developed to run on seriafore mostly regarded as SIMD machines. An example of
single-processor computers. A modification or adaptation ofuch systems is, for instance, the Hitachi S3600.
the code is therefore a prerequisite to run it on a parallel Multiple Instructions Single Data stream (MISD) ma-
computer. However, it is worth pointing out that among all chines. Theoretically in these types of machines multiple
simulation techniques of physical processes, the Monte Carlmstructions should act on a single stream of data. As yet, no
method is probably the most suitable one for parallel compractical machine in this class has been constructed nor are
puting since the results of photon histories are completelpuch systems easy to conceive.
independent from each other. Moreover, computer aided par- Multiple Instructions Multiple Data streams (MIMD )
allelization tools designed to automate as much as possibl@achines. These machines execute several instruction
the process of parallelizing scalar codes are becomingtreams in parallel on different data. The difference with the
available?®® Although parallel processing seems to be themulti-processor SISD machines mentioned above lies in the
ideal solution for Monte Carlo simulation, very few investi- fact that the instructions and data are related because they
gations have been reported and only a few papers have beegpresent different parts of the same task to be executed. So,
published on the subjeéf® MIMD systems may run many sub-tasks in parallel in order

The theoretical peak performance of a computer is deterto shorten the time-to-solution for the main task to be ex-
mined by counting the number of floating-point additionsecuted. There is a large variety of MIMD systems including
and multiplications that can be completed during period ofthose that behave very differently like a four-processor Cray
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Y-MP T94 and a thousand processor nCUBE 2S. An impor-GFlopg, are not marketed and only available at the Institutes
tant distinction between two subclasses of systems shouldnentioned and, therefore, not of much benefit to the super-
however, be made: Shared memdi&M) and distributed computer community at large. It is worth noting that the
memory(DM) systems. market of parallel and vector machines is highly evasive; the

(i) Shared memory systemSM systems have multiple rate with which systems are introduced and disappear again
CPUs, all of which share the same address space. This meaissvery high and therefore the information provided will
that the knowledge of where data is stored is of no concern tprobably be only approximately valid.
the user as there is only one memory accessed by all CPUs Sequential programs make the most effective use of the
on an equal basis. Shared memory systems can be bo#ivailable processing power: they alone guarantee maximum
SIMD or MIMD. Single-CPU vector processors can be re-use of the CPU. In parallel programs, communication man-
garded as an example of the former, while the multi-CPUagement introduces an unavoidable overhead, resulting in
models of these machines are examples of the latter. Thess efficient use of the overall CPU power. Moreover, ac-
Cray J90 and T90 series belong to this class of computerscording to Amdahl’s law’® parallelization efficiency is de-

(i) Distributed memory systemk this case, each CPU creased by a factor representing the fraction of operations
has its own associated memory. The CPUs are connected liyat must be executed in sequential order. When this fraction
some network and may exchange data between their respe®aches one we are confronted with a wholly unparallelizable
tive memories when required. In contrast to SM machinesode, and the speed-up is zero no matter how many proces-
the user must be aware of the location of the data in the locadors are used. The efficiency of parallel programs is further-
memories and will have to move or distribute these datanore reduced by a factor equal to the fraction of processor
explicitly when needed. Again, DM systems may be eitheridle time, which is highly dependent on the software paral-
SIMD or MIMD. The first class of SIMD systems, men- lelization techniques used by the programmer. Scalar or se-
tioned above, operate in lock step and all have distributedial Monte Carlo codes track the history of one patrticle at a
memories associated to the processors. For the DM-MIMOime, and the total calculation time is the sum of the time
systems again a subdivision is possible: those in which theonsumed in each particle history. Many Monte Carlo appli-
processors are connected in a fixed topology and those ications have characteristics that make them easy to map onto
which the topology is flexible and may vary from task to computers having multiple processors. Some of these paral-
task. The class of DM-MIMD machines is undoubtedly thelel implementations require little or no inter-processor com-
fastest growing part in the family of high-performance com-munication and are typically easy to code on a parallel com-
puters. puter. Others require frequent communication and

Another trend that has come up in the last few years isynchronization among processors and in general are more
distributed processing. This takes the DM-MIMD conceptdifficult to write and debug. A common way to parallelize
one step further: instead of many integrated processors iWlonte Carlo is to put identical “clones” on the various pro-
one or several boxes, workstations, mainframes, etc., ameessors; only the random numbers are different. It is there-
connected by Ethernet, for instance and set to work concurfore important for the sequences on the different processors
rently on tasks in the same program. Conceptually, this is naib be uncorrelated so each processor does not end up simu-
different from DM-MIMD computing, but the communica- lating the same datd’ That is, given an initial segment of
tion between processors is often orders of magnitude slowethe sequence on one process, and the random number se-
Many commercial, and noncommercial packages to realizguences on other processes, we should not be able to predict
distributed computing are available. Examples of these arthe next element of the sequence on the first process. For
Parallel Virtual MachingPVM),?* and Message Passing In- example, it should not happen that if we obtain random num-
terface(MP1).2”® PVM and MPI have been adopted for in- bers of large magnitude on one process, then we are more
stance by HP/Convex, SGI/Cray, IBM and Intel for the tran-likely to obtain large numbers on another. In developing any
sition stage between distributed computing and Massivelyparallel Monte Carlo code, it is important to be able to re-
Parallel ProcessingMPP) systems on the clusters of their produce runs exactly in order to trace program execution.
favorite processors and they are available on a large amount Since a Monte Carlo particle history is a Markov chain,
of DM-MIMD systems and even on SM-MIMD systems for the next interaction or movement of a particle is always de-
compatibility reasons. In addition, there is a tendency taermined by the current state of the particle. The histories of
cluster SM systems, for instance by HIPPI channels, to obtwo particles became identical only when the same random
tain systems with a very high computational power, e.g., theaumber sequence is used to sample the next state. To ensure
NEC SX-4 and the Convex Exemplar SPP-2000X have thishat the seed tables on each processor are random and uncor-
structure, although the latter system could be seen as a morelated, Mascagtfi described a canonical form for initializ-
integrated examplé&he software environment is much more ing separate cycles of the Fibonacci generators. There are,
complete and allows SM addressjin@ther interesting re- however, many approaches to vectorized and parallel ran-
search systems like the Intel ASCI Option Red system atlom number generation in the literat#&-2%°we can dis-
Sandia National Laboratorgwith a measured performance tinguish three general approaches to the generation of ran-
of 1.3 TFlops, the CP-PACS at the University of Tsukuba dom numbers on parallel computers: centralized, replicated
(measured performance of 368 GFlppsd the Numerical and distributed. In the centralized approach, a sequential
Wind Tunnel at the National Aerospace Lab. in Jaf2B0  generator is encapsulated in a task from which other tasks
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History-based

Scalar processing history

e e .......... processor 1
__________ e processor 2 Fic. 16. A comparison between history-based scalar
processing, event-based vector processing and history-

based parallel processing. In history-based scalar pro-

cessing, one particle history is tracked at a time. In

history-based parallel processing, each particle

(p1,P2,---,Pm) is assigned to one process which tracks

its complete history€, ,e,,...,e,). In event-based vec-

el e __________ processor m tor processing, a process treats only part of each particle
history (e;,e,,...,e,) and particles f1,p2,-.-,Pm)

“flow” from process to process.

History-based
parallel processing

vector 1 vector 2
HHOHE
e2

Event-based

vector processing

request random numbers. This avoids the problem of gener- only part of random walk events or tasks, thus par-
ating multiple independent random sequences, but is unlikely ticles “flow” from process to process according to
to provide a good performance. Furthermore, it makes repro- their events.

ducibility hard tp achieve: the response to a request dependﬁle difference between the different algorithms is illustrated
on when it arrives at the generator, and hence the result

in Fig. 16. In a review of vectorized Monte Carlo, Martin
computed by a program can vary from one run to the next. In a1 . e .

) 7 and Browrf®! described variations of event-based algorithms
the replicated approach, multiple instances of the same eIl cther with speed-up results published by different arouns
erator are create{or example, one per taskEach generator g P P P y groups.

: . : During the last tw investigations wer rri
uses either the same seed or a unique seed, derived, for ex- uring the last two decades, investigations were carried

ample, from a task identifier. Clearly, sequences generated |%Ut to run different Monte Carlo codes on multiple-
ple, - Y, S€q 9 systenf§?283  vector  parallel  super-

this fashion are not guaranteed to be independent and ir'%r_ansputer
gual : P ' “computerg6:267:28428%5aalel computer§2®©287and a clus-
deed, can suffer from serious correlation problems. However, . . .
o ter of workstations in a local area network using P¥i.
the approach has the advantages of efficiency and ease ﬁ:

) . . ere are large discrepancies in the performance ratio re-
implementation and should be used when appropriate. In the . . ;

L . . . orted by different authors. In particular, Midfareported a
distributed approach, responsibility for generating a singl

. . ; speed-up of about 8 with the vectorizedG4 code (EGS4V).
sequence is partitioned among many generators, which caif
|

. factor varying between 2.9 and 5.1 was also reported for
then be parceled out to different tasks. The generators are a 266 : :
. . ) . MCMATV <> depending on whether the detection of scattered
derived from a single generator; hence, the analysis of the . . . .
o . o 7>~~~ photons is modeled or not. A linear decrease in computing
statistical properties of the distributed generator is simplified

There are two possibilities for parallelisation of Monte Carlo"me With the number of processors used was also reported
codes with EIDOLON.

0) Particle or history-based parallelization: each particle
is assigned to one of the parallel processes and th lll. CONCLUSIONS AND FUTURE PROSPECTS

histories of assigned particles are processed within the Nuclear medicine has historically been the field in which
process. most of the early Monte Carlo calculations in medical phys-
(i)  Task- or event-based parallelization: a process treatEs were performed. The large number of applications re-
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