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supersymmetric quantum corrections that can be of order 1 for large val-
ues of tanβ, provided |µ| ∼ MSUSY. Therefore, a sensitive prediction for
observables driven by any of these couplings can only be obtained after an
all-order resummation of the large corrections. We perform this necessary
step and show, as an example, the effect of the resummation on the com-
putation of the pp, pp → tbH− + X cross-section and on the branching
ratio BR(b → sγ) at the next-to-leading order.
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1 Introduction

The full experimental confirmation of the Standard Model (SM) still requires the
finding of the Higgs boson. The last LEP results, suggesting a light Higgs of about
115 GeV [1], are encouraging, but we will have to wait for the upgraded Tevatron or
the LHC to see this result either confirmed or dismissed. In any case, there is room
for a extended Higgs sector of various kinds (extra doublets, singlets, even triplets).

The Higgs sector of the Minimal Supersymmetric Standard Model (MSSM), well-
known nowadays (see [2], for instance), still deserves further studies. In particular, an
interesting topic is the effect of supersymmetric corrections on the Yukawa interaction,
because many production and decay channels are mediated by these couplings, some
of them at the one-loop level (such as H → γγ or gg → H).

For large tanβ values, one expects deviations of order 1 of the Yukawa couplings to
down-type fermions from their tree-level values, due to gluino (SUSY-QCD) and, to
a lesser extent, higgsino (SUSY-EW) radiative effects. This can be seen, for instance,
in the computation of the one-loop correction to the t → bH+ partial decay rate [3],
which grows with tanβ as (αs,w/4π) tanβ. With contributions of order (αs/4π)n tannβ
arising at higher orders in perturbation theory, the one-loop result can only be mean-
ingful for small tanβ values. Let us recall that large tanβ scenarios, such as those
derived from supersymmetric SO(10) models with unification of the top and bot-
tom Yukawa couplings at high energies [4,5], have become more appealing since LEP
searches for a light neutral Higgs boson, h, started to exclude the low-tanβ region of
the MSSM parameter space. The latest analyses rule out the MSSM for tanβ in the
range 0.52 < tanβ < 2.25, even with maximal stop mixing [6].

In this talk we present the resummation of such corrections into the definition of
the bottom Yukawa as a function of the bottom mass, restoring the reliability of the
perturbative series for large tanβ. This “improved” formula for the Yukawa is then
used in the evaluation of the pp, pp → tbH− + X cross-section and of the branching
ratio for b → sγ at the next-to-leading order (NLO), comparing the result with the
case in which no resummation is made.

2 Resummation of SUSY corrections

Let us briefly explain how such large corrections could arise. The starting point
is the MSSM superpotential. Supersymmetry constrains it to be holomorphic in the
chiral superfields, implying that the left-handed components of down-type quarks and
leptons only couple to the H1 Higgs doublet, while the left-handed up-type quarks
and leptons only couple to H2. For the third-generation quarks, one has

L = −hb bbH0
1 − ht tt H0

2 + · · · (1)
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Soft-SUSY-breaking operators induce the forbidden couplings, bbH0
2 and ttH0

1 , radia-
tively. After integrating out all R-odd particles in the MSSM, one obtains an effective
two-Higgs-doublet model (2HDM) lagrangian

Leff = −(hb + ∆h1
b) bbH0

1 − (0 + ∆h2
b) bbH0

2 + · · · (2)

As we have argued above, there is a clear motivation for studying the large tanβ
regime of the MSSM. If tanβ is large, and after electroweak symmetry breaking, the
∆h2

b term can induce corrections of order 1 to down-type fermion masses:

mb = hb v1

(

1 + ∆h1
b/hb + ∆h2

b/hb tanβ
)

, (3)

or conversely, one can express the renormalized bottom Yukawa coupling as a function
of the bottom mass through

hb v1 =
mb

1 + ∆h1
b/hb + ∆h2

b/hb tanβ
∼ mb

1 + ∆mb

. (4)

The set of quantum corrections included in (4) are universal, in the sense that
they equally affect all amplitudes proportional to the bottom Yukawa. To derive (4),
one matches the MSSM to a generic 2HDM at a scale MSUSY of the order of the
relevant soft-SUSY-breaking parameters. Alternatively, within the MSSM, and using
an on-shell renormalization scheme, these corrections are absorbed into the bottom
mass counterterm, δmSUSY

b ∼ −∆mSUSY
b .

The quantity ∆mb is dominated by SUSY-QCD virtual effects,1 and at the one-
loop level can be cast into the simple expression [5]

∆mb ∼ ∆mSQCD
b =

2αs

3π
µ mg̃ tanβ I(mb̃1

, mb̃2
, mg̃) , (5)

where the function I is the limit of Passarino–Veltman’s C0 for vanishing external
momenta.

An interesting property of ∆mb is that it does not vanish for MSUSY/mW → ∞.
The SUSY-QCD contribution, for instance, evaluates to αs/(3π) tanβ in this limit.
This should never be understood as a non-decoupling behaviour of the MSSM, because
the tree-level hb is not an observable. If the masses of both the SUSY partners and
the non-standard higgses (H , A, H±) become large, the SUSY radiative corrections
to hb are cancelled out exactly by one-loop process-dependent corrections. If mA is
not too large with respect to mW , one can expect large deviations from the rule

ghbb/ghττ = mb/mτ , (6)

1An analogous quantity, ∆mτ , can be defined for the τ -Yukawa. ∆mτ , though, receives (gener-
ally) smaller SUSY-EW contributions.
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Figure 1: Complete set of Feynman diagrams contributing at order αn
s tannβ to the inverse

bottom propagator, in SUSY-QCD with no virtual gluons. Dashed and solid internal lines
represent sbottom quarks and gluinos, respectively. A cross denotes, in the second diagram,
the insertion of a bottom mass-counterterm, and in the last diagram, the counterterm for
the b̃Lb̃RH0

2 coupling.

which holds not only in the SM, but also in 2HDM of types I and II [2]. For the H ,
A, neutral higgses, eq. (6) can be violated even in the decoupling limit, their masses
being of the order of mA. This feature could help in distinguishing the MSSM Higgs
sector from a generic type II 2HDM, specially if correlations among various Higgs
couplings were checked.

Remarkably enough, it can be shown that, in mass-independent renormalization
schemes such as the MS, the whole set of SUSY-QCD corrections of the form2 αn

s tannβ
are resummed into the above definition for hb [7] in eq. (4). The proof involves the
consideration of the perturbative series for the inverse bottom propagator, which can
be used to determine the functional relation between hb and the bottom pole mass.
In a first step one restricts the analysis to the set of diagrams with no gluons: only
those in fig. 1 contribute at order αn

s tannβ, higher-loop diagrams being suppressed
either by inverse powers of tanβ or by mb/MSUSY factors. Requiring the inverse
propagator to vanish on-shell, one arrives at (4), apart from 1/ tanβ and mb/MSUSY

suppressed quantities. The full proof, that is, after allowing for diagrams containing
virtual gluons, is more delicate. It requires, for instance, a careful analysis of the
infrared behaviour of the extra diagrams, as 1/mb mass singularities would invalidate
the counting of mb/MSUSY powers used in the proof.

3 Prospects for H± searches at hadron colliders

As a first example of the use of eq. (4), we are going to consider the MSSM
associated production of a charged Higgs boson, H±, with top and bottom at hadron
colliders, presenting results for both the Tevatron and the LHC [8]. From our point
of view, the relevance of this channel is due to its ability to test the charged Higgs
coupling to the third-generation quarks and leptons. Any information obtained about

2The only exception being, for n = 1, the process-dependent one-loop effects that restore the SM
low-energy limit of the theory for mA/mW → ∞.
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Figure 2: The pp, pp → tbH− + X cross-section at the Tevatron Run II (left) and at the
LHC (right), for µ = −200 GeV, tanβ = 30 and mg̃ = mt̃1

= m
b̃1

= Ab = At = 500 GeV.
The dashed curve corresponds to the qq annihilation channel, the dotted curve to the sum
of the gg-initiated and gb-initiated channels, after subtracting double counting in the gb
channel. The solid curve is the sum of all channels, qq, gg and gb.

these couplings could provide valuable hints on the exact nature of the Higgs sector.
After the LEP shutdown, charged Higgs searches concentrate on the Tevatron

results. Both direct and indirect Tevatron analyses have been limited to the region
mH+ < mt − mb, placing constraints on the mH+–BRt→bH+ plane [9], which are
usually translated to the mH+–tanβ plane once the relevant MSSM parameters are
fixed [10].

Beyond the kinematical limit for t → bH+, apart from the one considered in this
talk, there are two other promising production channels: pair production [11] and
associated production with a W boson [12]. The work presented here on pp, pp →
tbH− + X adds, with respect to previous analyses [13,14,15,16,17], a resummation of
the leading —in powers of αstanβ, for tanβ >∼ 10— SUSY radiative corrections (both
strong and electroweak) and a estimation of the off-shell effects. It will be presented
in full detail in [8], including a complete signal and background analysis.

3.1 Cross-section computation and results

At the parton level, the reactions pp, pp → tbH−+X proceed through three main
channels3: i) qq → tbH−, with q = u, d (the s contribution can be safely neglected), a
channel only relevant to the Tevatron [14,15]; ii) gg → tbH−, dominant at the LHC,

3We shall omit the charge-conjugate process, pp, pp → tbH++X , for the sake of brevity. Including
this process just amounts to multiplying our cross-section by a factor of 2.
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and also at the Tevatron for increasing H± masses [14,15]. Since the bottom mass,
mb, is small with respect to the energy of the process, parton distribution functions
(PDFs) for b-quarks have to be introduced, allowing for the resummation of collinear
logs [18]. This provides an extra bg → tH− channel contributing to the cross-section.
Contrary to i) and ii), in this case the final state contains at most three high-pT

b-quarks and, therefore, bg-initiated processes cannot be detected by using four high-
pT b-tagging. Once a PDF for the b-quarks is used, there is some amount of overlap
between bg- and gg-initiated amplitudes, which has to be removed [18,19]. To this
end, we follow here the method described in ref. [19], straightforwardly translated
to the tbH− final state case (see also [14]). Figure 2 shows the relative relevance of
the various channels to both the Tevatron Run II and the LHC, as explained above.
The solid curve can be used to get a rough estimate of the reach of the process
pp, pp → tbH− +X in the search for a MSSM charged Higgs boson in these machines
for the given parameters (see the caption).

The amplitude for pp, pp → tbH− + X is, for large tanβ, approximately propor-
tional to the Yukawa coupling of the bottom quark and, as explained above, receives
supersymmetric quantum corrections that can be of order 1. An analysis of the reach
of pp, pp → tbH− +X in H± searches demands the appropriate inclusion and resum-
mation (using (4)) of such corrections in the computation of the cross-section. For
the present work we have also included the full off-shell SUSY-QCD and SUSY-EW
corrections to the H+tb vertex and to the fermion propagators, although ∆mb in (4) is
the only correction contributing at order (αs/4π)n tannβ and thus dominates for large
tanβ. In fact, the approximation of neglecting vertex and propagator corrections in
the cross-section, which we call “improved Born” approximation, is really justified in
that region (see fig. 3).

We disregard virtual supersymmetric effects on the gqq and ggg vertices and on
the gluon propagators. We expect those to be of order (αs/4π) · (√s/MSUSY), with no
tanβ enhancement, and thus suppressed both by a loop factor (any reasonable choice
for αs(Q) will be small) and by a MSSM form factor coming from the loop integrals.
Therefore, we can neglect these contributions as we are only considering large tanβ
values. Besides, the cross-section for the signal is much smaller for tanβ close to 1,
so our approximation is well justified.

The only other source of potentially large radiative corrections is, of course, stan-
dard QCD. At least one group is currently addressing the NLO QCD correction to
pp, pp → bbH +X, which can provide a good guess for the sign and size of the correc-
tions in pp, pp → tbH− + X. In the meantime, we can parametrize our ignorance by
using a K-factor ranging between 1.2 and 1.5 [22,16,20]. Once the exact value of K
will be known, it will be easy to conveniently rescale our plots to take into account the
effect of the gluon loops. The only QCD corrections we do incorporate to the cross-
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section are those related to the running of αs(Q) and mb(Q).4 We choose to work with
equal renormalization, µR, and factorization, Q, scales fixed at µR = Q = mt + mH+ .

Concerning the method employed to compute the squared matrix elements, we
have made intensive use of the package CompHEP [24], for both the signal and
background processes. Although CompHEP is only able to deal with tree-level calcu-
lations, we have managed to add the supersymmetric corrections to the tbH− vertex
and to the fermion propagators in the following way: first, we have modified Com-
pHEP’s Feynman rules to allow for the most general off-shell tbH− vertex, then we
have let CompHEP reckon the squared matrix elements and dump the result into
REDUCE code. At this point, we have inserted expressions for the coefficients of the
off-shell tbH− vertex that include the one-loop off-shell supersymmetric corrections
to the vertex itself and to the off-shell fermion propagators and fermionic external
lines.5 Only half the renormalization of an internal fermion line has to be included,
the other half being associated to the gqq vertex. This procedure has allowed us to
estimate the relative size of the off-shell effects in the signal cross-section, which never
exceeds the few per cent level.

In fig. 3, we compare the above various approximations to the pp → tbH− + X
cross-section at the Tevatron Run II. The curves correspond to the total cross-section,
as a function of tanβ, for a centre-of-mass energy of 2 TeV and a charged Higgs
mass of 250 GeV. The tree-level result is given by the dotted line; it grows almost
quadratically with tanβ. After including the MS off-shell one-loop supersymmetric
corrections in the tbH− vertex, in the internal fermion propagators and in the external
fermion lines, one obtains the dashed line. For the chosen parameters, that is µ =
−200 GeV, mg̃ = mt̃1

= mb̃1
= Ab = At = 500 GeV, the overall correction turns out

to be positive, as it is driven by the SUSY-QCD correction in (4), which is positive
for negative µ. The resummation of the order αn

s tannβ supersymmetric corrections
further increases the result up to the top solid curve, labelled “improved” MS. The
effect is not dramatic because µ is sizeably smaller than the rest of the relevant soft-
SUSY-breaking parameters, namely the gluino and sbottom masses. To illustrate the
possibility of a suppression of the cross-section due to virtual supersymmetric effects,
we also plot the resummed result for the same parameters but taking µ = 200 GeV
and At = −500 GeV, which corresponds to the bottom (red) solid line. It does
not differ much from the tree-level because of a partial cancellation of the correction
due to the effect of the resummed high-order terms in (4). Finally, the dot-dashed
curve is obtained by just replacing the mb(Q) in the tree-level approximation to the
cross-section with mb(Q)/(1+∆mb), as suggested by (4). This “improved” tree-level

4In the t → bH+ decay rate, this actually accounts for most of the QCD virtual effects (for
Q = mt) [23].

5We shall not write down here the analytic expressions for the renormalized vertex and propa-
gators. They can easily be derived by just generalizing previous on-shell calculations, such as those
for t → bH+ [3].
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Figure 3: Various approximations to σ(pp → tbH− + X) at the Tevatron Run II, as a
function of tanβ, for a charged Higgs mass of 250 GeV. The remaining MSSM parameters
are set as in fig. 2. Shown are the tree-level (dotted line), the one-loop MS (dashed line),
the improved or resummed MS (top solid line and bottom red solid line, the latter for
µ = 200 GeV and At = −500 GeV) and the improved tree-level (dot-dashed line) results.

constitutes a fairly good approximation to the complete resummed MS result (top
solid curve). Similar conclusions apply for pp → tbH− + X at the LHC.

4 b → sγ and supersymmetry with large tanβ

The computation of the b → sγ branching ratio at the NLO in the MSSM is
clearly a complicated matter [25,26], and completely general expressions have not yet
been derived. Nevertheless, it turns out that the leading αn

s tann+1β corrections can
be calculated and resummed to all orders in perturbation theory by replacing the
tree-level Yukawa of the bottom quark by eq. (4) in the Wilson coefficients of the
leading-order (LO) computation [27].

To show how this procedure works, let us start by identifying the dominant one-
loop Feynman diagrams. In a type II 2HDM, the diagram contributing to the highest
tanβ power is that in fig. 4, with the exchange of a virtual charged Higgs in the loop,
which is proportional to hb · ht cosβ and, therefore, of order tan0β. Substituting a
chargino by the charged Higgs, one obtains the leading diagram in the MSSM, which
is proportional to hb · ht and of order tanβ. We have checked, using the formulae
in [25], that the leading —in tanβ— NLO corrections follow from the replacement

7
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bR
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hb htcβ

Figure 4: Dominant, in powers of tanβ, LO contribution to the b → sγ branching ratio in
the 2HDM.

hb → −hb∆mb (expanding and truncating at first order in αs) in the LO contribu-
tions associated to the above-mentioned diagrams. These NLO corrections are to be
associated with the insertion of the counterterm for the bottom Yukawa in the LO,
and thus have their origin in a one-loop diagram. The resulting effect is of order
αstan2β for the chargino loop, and αstanβ for the H− loop.

There is one additional source of tanβ-enhanced corrections in the charged Higgs
diagrams, which is not related to the bottom mass counterterm [25]: while the tree-
level H+tRsL vertex is suppressed by 1/ tanβ, this suppression is absent at the one-
loop level, so that the NLO charged-Higgs contribution to BR(b → sγ) is tanβ-
enhanced with respect to the LO one. No enhancement occurs in higher-loop dia-
grams, which are suppressed either by 1/ tanβ powers or by mb/MSUSY factors [7].

Now that all sources of tanβ-enhanced terms have been identified, it is an easy
matter to proceed with the improvement of the NLO expressions, that is, to resum all
terms of order αn

s tann+1β. Just replace, in the LO expressions, hb by hb/(1 + ∆mb),
and remove double counting, i.e. −hb∆mb terms, in the NLO formulae (see ref. [27]
for a detailed description of the procedure). This is enough to extend the validity of
the calculation presented in ref. [25] to large values of tanβ.

The quantitative effect of the improvement can be assessed from fig. 5, where
we compare the NLO theoretical prediction for BR(b → sγ) of ref. [25] with (solid
line) and without (dashed line) including the all-order resummation of the dominant
tanβ-enhanced radiative corrections, for typical values of the supersymmetric param-
eters. We use a negative value of At = −500 GeV at low energies, with mg̃At < 0.
This choice is inspired in supergravity models, where this sign relation holds unless
the boundary value of At at the high-energy input scale is one order of magnitude
larger than the gaugino soft-supersymmetry-breaking mass parameters [4,28]. For
the experimental measurement of the b → sγ branching ratio, we use the combined
result of CLEO [29] and ALEPH [30], BR(b → sγ) = (3.14± 0.48)× 10−4. Owing to
cancellations among the various contributions, the relative size of the effect turns out
to be sizeable only for µAt < 0: for the set of parameters used in fig. 5, it decreases
the NLO result by 20% at tanβ ≃ 30.
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Figure 5: Comparison of the NLO theoretical prediction for BR(b → sγ) of ref. [25] before
(solid line) and after (dashed line) performing a resummation of the dominant supersym-
metric corrections of order αn

s tann+1β, as explained in the text. The charged-Higgs boson
mass is 200 GeV and the light stop mass is 250 GeV. The values of µ and At are indicated
in the plot, while M2, the gluino, heavy-stop and down-squark masses are set at 800 GeV.

Notice that, with our sign conventions, positive values of µ are necessary in order
to obtain correct values for BR(b → sγ), even after considering higher-order effects,
within minimal supergravity models, for which, as explained in the above paragraph,
the sign of At at low energies tends to be negative. This is in contradiction with
the results of ref. [31]. We believe sign errors in the charged Goldstone and Higgs
couplings to stop and down-like squarks in the published version of [25] are at the
origin of this discrepancy (see [27]).6

5 Conclusions

Motivated by the latest LEP analyses ruling out tanβ values around 1 [6] and by
large tanβ supersymmetric SO(10) models, we have analysed the Yukawa couplings
of down-type fermions in the MSSM, which receive potentially large supersymmetric
corrections when tanβ is large. We claim that, in observables where these couplings
are relevant, a resummation of the leading —in powers of tanβ— subset of correc-
tions is needed if the observables are to be computed for large tanβ. We perform
such resummation, which is essentially independent of the particular process under
consideration, and explore its numerical impact on two exemplary processes: the
pp, pp → tbH− + X cross-section and the branching ratio of b → sγ.

6The authors of [25] have independently detected these sign errors, and posted a corrected version
of the paper to the hep-ph archive.
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Note added

After presentation of this talk, and concerning the b → sγ branching ratio, similar
formulae for the improvement of the NLO computation in the MSSM with large tanβ
have been given in [32].
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