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Abstract

Symmetry based approaches to the black hole entropy problem have a num-
ber of attractive features; in particular they are very general and do not de-
pend on the details of the quantization method. However we point out that,
of the two available approaches, one faces conceptual problems (also empha-
sized by others), while the second contains certain technical flaws. We correct
these errors and, within the new, improved scheme, calculate the entropy of
3-dimensional black holes. We find that, while the new symmetry vector fields
are well-defined on the “stretched horizon,” and lead to well-defined Hamil-
tonians satisfying the expected Lie algebra, they fail to admit a well-defined
limit to the horizon. This suggests that, although the formal calculation can
be carried out at the classical level, its real, conceptual origin probably lies in
the quantum theory.
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1 Introduction

A microscopic derivation of black hole entropy has been one of the greatest theoretical
challenges for any candidate quantum theory of gravity. String theory in case of some
extremal and near-extremal black holes [1] and canonical quantum gravity in case of
general non-rotating black holes [2] have produced very interesting results in this
direction.

As an alternative to both these approaches, a set of very attractive ideas was
suggested by Strominger and Carlip [3, 4, 5] over the last few years. Motivated by
some earlier works [6, 7, 8] on the relation between symmetries and Hamiltonians,
these authors argued that states of a quantum black hole should belong to a multiplet
of a representation of a suitable Lie algebra. Counting the number of states in the
multiplet would then provide the black hole entropy. The Virasoro algebra has been
proposed as a natural candidate for symmetries in this context.

An attractive feature of these alternative approaches is that they are not tied
to the details of any specific model of quantum gravity. Even more strikingly, the
central objects in this construction, namely the Virasoro algebra, central charge etc.
appear already at the classical level through the Poisson bracket algebra. The Planck
length in the expression of the entropy arises only from replacing Poisson brackets by
appropriate quantum commutators. Being essentially classical, the scheme is quite
robust and in principle applicable to black holes in any space-time dimension.

The first work [3] applies this idea to 2+1 dimensions in the context of the BTZ
black hole [9]. The symmetries, however, are taken from a previous analysis [7] which
is tailored to asymptotic infinity rather than black hole horizon. Therefore, it is not
apparent why these symmetries are relevant for the black hole in the space-time in-
terior. For example, in asymptotically flat, 4-dimensional space-times, the symmetry
group at (null) infinity is always the Bondi-Metzner-Sachs group, irrespective of the
interior structure of the space-time. Thus, the results of [3] are equally applicable to
a star that has similar asymptotic behavior as that of the black hole. Subsequently,
Carlip improved on this idea significantly by making the symmetry analysis in the
near-horizon region. Conceptually this approach is much more satisfactory in that
the black hole geometry is now at the forefront. However, at the technical level, this
work [5] appears to have some important limitations. The purpose of the present
paper is to elucidate and discuss these technical problems in some detail, and then to
present a consistent calculation which correctly implements the general ideas of [3, 5]
by a careful treatment of all the relevant technical issues.

The organization of the paper is as follows. In section 2 we discuss the technical
framework set up in [5] and point to the difficulties that arise in the implementation
of the ideas mentioned above. In section 3 we investigate two different sets of sym-
metries. In 3.1 we consider symmetries that are defined intrinsically on the horizon
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and see if a central charge can be obtained. (To find these symmetries, as suggested
in [5], we use the isolated horizon framework [10].) We find that the answer is in
the negative. In 3.2, we then consider potential symmetry vector fields defined in a
neighborhood of the horizon as in [5]. In 3.3, we find the corresponding Hamiltonians,
and calculate the corresponding Poisson brackets. From these we read off the central
charge. We conclude in 3.4 with a calculation of the entropy. The discussion of the
last three sub-sections can be regarded as a careful reworking of the ideas introduced
by Strominger and Carlip. We find that the entropy is indeed proportional to the area
but the proportionality factor differs from the one of Bekenstein and Hawking by a
factor of

√
2. Perhaps more importantly, although the Poisson brackets between the

Hamiltonians are well-defined, the symmetry vector fields underlying this calculation
fail to admit a well-defined limit to the horizon. These issues are discussed in section
4. Some technical details relevant to section 3.1 are given in the appendix.

For concreteness, we work in 2+1 dimensions. However, the framework should
admit a straightforward generalization to arbitrary space-time dimensions.

2 Re-examination of the symmetry based calcula-

tions in 3 dimensions

In the standard conventions (with 8G = 1), the line-element of BTZ black hole in the
Eddington-Finkelstein coordinates is given by

ds2 = −N2dv2 + 2dvdr + r2(dφ + Nφdv)2 ,

N2 = −M +
r2

`2
+

J2

4r2
, Nφ = − J

2r2
. (2.1)

Here, J and M are two real parameters and ` is related to the negative cosmological
constant as Λ`2 = −1. The black hole has a Killing-horizon at r = r+ defined by
N2(r+) = 0, or

r2
+ =

1

2
M`2

[

1 +

√

1 − J2

M2`2

]1/2

, |J | ≤ M` . (2.2)

For the purpose of calculations it is convenient to introduce Newman-Penrose like
basis in 2+1 dimensions which has two null vectors la and na and a space-like vector
ma (all real). They satisfy the relations

l · l = n · n = l · m = n · m = 0 , −l · n = m · m = 1 . (2.3)

The 2+1 dimensional metric can be expressed in such a basis as gab = −2l(anb)+mamb.
The corresponding inverse metric is gab = −2l(anb) + mamb. In the rest of the paper
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we will assume that we have chosen the triad l, n, and m in such a way that the
vectors l and m are tangent to the horizon at the horizon. For the metric (2.1) a
convenient choice of the basis vector fields is

l = ∂v +
1

2
N2∂r − Nφ∂φ , n = −∂r , m =

1

r
∂φ . (2.4)

and the corresponding one-forms that span the dual-basis are

l = −1

2
N2dv + dr , n = −dv , m = rNφdv + rdφ . (2.5)

The covariant derivatives of the one-forms, like ∇alb, can be expressed solely in terms
of the one-forms and the so-called Newman-Penrose coefficients (See e.g. [12]; an
exposition of the formalism in 2+1 dimensions can be found in the appendix of [13])

∇alb = −εnalb + κ̃namb − γlalb + τlamb + αmalb − ρmamb

∇anb = εnanb − πnamb + γlanb − νlamb − αmanb + µmamb (2.6)

∇amb = κ̃nanb − πnalb + τlanb − νlalb − ρmanb + µmalb

where, for the metric (2.1) and the tetrad (2.4) the coefficients are given by

ε = r`2 − r(Nφ)2, ρ = −12rN2, µ = −1r

α = τ = π = Nφ (2.7)

κ̃ = ν = γ = 0.

At the horizon ε(r+) = κ, where κ is the surface gravity of the black hole.
With these preliminaries out of the way, let us now apply the general ideas of [5]

to this 3-dimensional black hole. The BTZ space-time admits a global Killing vector

χ = ∂v − Ω∂φ , Ω = Nφ(r+) . (2.8)

As in [5] we now define another vector field ρa which is given by

∇aχ
2 = −2κρa , ρa = rr+

(

∂v + N2∂r − Nφ∂φ

)

. (2.9)
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It follows that χ · ρ = 0 and Lχρa = 0 everywhere. For convenience we express both
vector fields χ, ρ in the Newman-Penrose basis up to order (r − r+)2 terms

χa = la + (r − r+)(κna + 2Ωma) + O(r − r+)2 , (2.10)

ρa = rr+la − (r − r+)κna + O(r − r+)2 . (2.11)

Clearly, at the horizon χ =̂ ρ =̂ l. Two other useful identities are ∇aρb = ∇bρa and
χa∇aχb = κρb which follow from the definition (2.9) of ρ and the fact that χ is a
Killing vector.

As in [5], the classical phase-space can be taken to be the space of solutions of Ein-
stein’s equations. Each space-time configuration which is a point in the phase-space
contains an inner as well as an outer boundary. Moreover, all space-time configura-
tions in the neighborhood of the inner boundary are BTZ-like. For this to achieve [5]
uses a set of boundary conditions which insure that all space-times admit a Killing
vector χ in a neighborhood of the inner boundary and posses the same ‘near-horizon
geometry’. More precisely, it requires

χaχbδgab =̂ 0 , χatbδgab =̂ 0, (2.12)

where ta is any space-like vector tangent to the inner boundary (t · χ = 0). The
hat over the equality sign here means that the above equation holds on the horizon.
Clearly the vector field ξ which preserves these boundary conditions (2.12) under
diffeomorphisms has to be tangent to the horizon. Keeping the same notation as in
[5] let us take the vector field to be

ξa = Tχa + Rρa (2.13)

where R and T are arbitrary functions. By demanding that (2.13) preserves (2.12)
under diffeomorphisms one puts restrictions on R and T . These are derived in [5] (cf.
eq (4.8))

R = 1κχ2ρ2DT , D ≡ χa∇a . (2.14)

The vector field, satisfying (2.14), can then be said to generate symmetries in the
precise sense of (2.12).

Let us now check the closure of the Lie-algebra of these vector fields. It is at this
point that the analysis of [5] appears to be flawed. The errors arise at three levels:
a) As noted in [5] the requirement that the Lie bracket of symmetry vector fields
should close imposes a new condition

LρT =̂ 0. (2.15)
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In [5] this condition was imposed at the horizon. However, at the horizon ρa =̂ χa =̂ l
and hence, (2.15) reads DT =̂ 0. Then the main steps in the calculations of [5] fail
to go through. In particular, the central charge is expressed in terms of DT at the
horizon and therefore vanishes identically. This in turn implies that the entropy also
vanishes identically. While the restriction on DT has been noted explicitly in [5], its
(obvious) consequences on the value of the central change and entropy are overlooked.
b) Furthermore, it is not sufficient to impose (2.15) only at the horizon; closure will
fail unless it holds in a neighborhood.
c) Later, for explicit calculations, a specific function T is chosen in [5] (cf. eq. (5.6))
. Unfortunately, this function does not satisfy the condition (2.15) which is required
in the earlier part of the analysis in [5].

In other words, although the boundary conditions (2.12) and (2.15) are reasonable,
the technical implementation of them, as presented in [5], is incorrect. In the next
section we will propose an implementation of the boundary conditions that does not
suffer from these problems.

3 New Sets of Symmetries

The purpose of this section is to present a systematic analysis which is free of the
technical flaws discussed above. However, before embarking on this discussion, in
section 3.1 we first investigate a separate issue. In Carlip’s analysis, the symmetry
vector fields are defined in a neighborhood of the horizon. From general, classical con-
siderations, one might expect that it should be possible to focus just on the horizon
structure and consider symmetry vector fields defined intrinsically on the horizon. We
consider this possibility in Section 3.1 and show that in this case the central charge
vanishes. Thus the Carlip-type analysis can not be carried out with symmetries de-
fined intrinsically on the horizon. This result suggests that, although the analysis
appears to be classical, the origin of the central charge —and hence entropy— can
not be captured in a classical analysis. In the remainder of the section, we con-
sider symmetry vector fields more closely related to those of [5] and improve on that
analysis.

3.1 Geometrical symmetries

A new framework that is naturally suited for the analysis of symmetries on the horizon
is now available – the so-called ‘isolated horizons’. This is a notion that captures the
minimum structure intrinsic to the horizon to describe an equilibrium state of a black
hole. It allows, however, for matter and radiation in an arbitrary neighborhood of the
black hole, as long as none crosses the horizon. As suggested in [5], this framework
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is well-suited for the Carlip approach to entropy. A comprehensive description of the
isolated horizons framework is given in [10, 11]. Isolated horizons in 2+1 dimensions
are discussed in detail in [13].

It is natural to define symmetries as maps which preserve the basic horizon struc-
ture, by which we mean the induced metric and a class of null generators. More
details are given in the Appendix. Here let us just state that a vector field which
preserves that structure must be tangent to the horizon, i.e. of the form

ξa =̂ Ala + Bma (3.16)

where the functions A and B are restricted to be

A = C(v−) + const. · v (3.17)

B = const. (3.18)

The coordinates v and v− are defined by the relations n = −dv, m = 1
r+

∂
∂φ

, and

v± = v ∓ φ/Ω. It is easy to see that the algebra of these vector fields (3.16) closes.
Now the boundary conditions at the isolated horizon induce a natural symplectic
structure in the phase space, where the phase space consists of all possible space-time
configurations which admit a fixed isolated horizon. The symplectic structure can be
used to evaluate the Poisson brackets between any two phase space functionals.

It is not difficult to check that the vector field (3.16), is Hamiltonian. For details
see the Appendix. The Poisson brackets of the corresponding Hamiltonians close
on-shell

{Hξ1 , Hξ2} =̂H[ξ1,ξ2] . (3.19)

Hence, the central charge is zero. This result is not quite unexpected since our
analysis is entirely classical and typically the central charge arises from the failure of
the classical symmetries to be represented in the quantized theory. This shows that, in
general, for symmetries represented by smooth vector fields on the horizon, the ideas
of [3, 5] do not go through. If one wishes to use smooth fields —as is most natural
at least in the classical theory— the central charge can arise only from quantization
and the analysis would be sensitive to the details of the quantum theory, such as the
regularization scheme used, etc. If the original intent of the ideas of [3, 5] is to be
preserved, one must consider symmetries represented by vector fields which do not
admit smooth limits to the horizon; in a consistent treatment, the use of “stretched
horizons” [5] is not optional but a necessity. Perhaps this is the price one has to pay
to transform an essentially quantum analysis in the language of classical Hamiltonian
theory.

Finally, note that any reasonable local definition of a horizon should lead to the
above conclusions since we have made very weak assumptions in this sub-section.
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3.2 Extended notion of symmetries

Let us now return to the discussion of Section 2 and consider symmetry vector fields
defined in a neighborhood of the horizon. Thus, we will now use the stronger set of
conditions (2.12) which requires that the closure condition (2.15) be satisfied every-

where 1. This guarantees that the Lie-algebra of the vector fields (2.13) closes

[ξT1
, ξT2

] = LξT1
ξT2

= ξT1DT2−T2DT1
, ξT = Rρ + Tχ (3.20)

where R is determined in terms of T as in (2.14). One is to make use of the facts
that Lχρ = LρT = LρR = 0. The condition (2.15), however, restricts the choice of
the vector fields everywhere. To solve for the vector fields we consider a ‘stretched’-
horizon at r = r+ + ε as the inner boundary. The solutions that are of the form

Tn ∼ fn(r) exp(inΩv+) (3.21)

are especially interesting because they furnish a Diff(S1), provided fnfm ∼ fn+m.
However, the condition (2.15) is to be imposed carefully because of the (r−r+) terms
in the vector field ρ (2.9)

ρa∇aT ∼
(

∂v+
+ N2∂r

)

T = 0 . (3.22)

Clearly, the radial derivative of T blows up at the horizon. With the ansatz (3.21)
there is a unique solution for Tn in the neighborhood of the horizon

T ε
n = 12Ω exp

(

− inΩκ log(r − r+) + inΩv+

)

. (3.23)

The normalization of T is so chosen that the vector fields ξ form a Diff(S1) algebra

[ξε
Tn

, ξε
Tm

] = i(n − m)ξε
Tm+n

(3.24)

in the neighborhood of the horizon.
Notice that because of (3.23) the vector fields ξ do not have a well defined limit

at the horizon. They are defined only at the stretched horizon and oscillate wildly
in the limit r → r+. Also the radial derivative of ξ blows up, as expected from the
condition (2.15). So one has to take great care in evaluating the Poisson bracket and
Hamiltonians – now one cannot ignore terms which are of order O(r − r+) especially
in presence of radial derivatives in the Poisson brackets. Actually more terms will
contribute to the Poisson bracket and a thorough examination of the entire calculation
is needed.

1Strictly speaking, we only consider a neighborhood of the horizon where the vector field χ is
Killing. In the BTZ example, however, it is globally Killing
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3.3 Hamiltonian and Poisson bracket algebra

The existence of the Hamiltonian under the boundary conditions (2.12) is shown in
[5]. The surface Hamiltonian is (the bulk Hamiltonian is zero by constraints)

Hε
ξn

= 12π

∮

S∆

εabc∇bξεc
n . (3.25)

The phase space, described in section 2 is associated with a conserved symplectic
current [14]. The corresponding symplectic structure may be used to evaluate the
Poisson brackets between any two functionals in the phase-space. On shell, the sym-
plectic structure can be written as the sum of boundary terms only. However, one
may choose appropriate fall-off conditions of the fields at asymptotic infinity such
that the contribution from the outer boundary vanishes. In the present example the
fields approach ‘strongly’ to asymptotic AdS-values. In that case given two Hamil-
tonian vector fields ξ1 and ξ2, the Poisson bracket between the two corresponding
Hamiltonian functionals is given solely by the terms at the inner-boundary [14]

{Hξ1 , Hξ2} =

∮

S∆

(

ξ2 · Θ[g,Lξ1g] − ξ1 · Θ[g,Lξ2g] − ξ2 · (ξ1 · L)
)

(3.26)

where 2πΘa[g, δg] = εab[g
bc∇c(gdeδg

de)−∇cδg
bc] is the one-form symplectic potential

and L is the three-form Lagrangian density. Making use of Einstein’s equations
Rab = 2Λgab we can express the Poisson bracket explicitly in terms of the vector fields

{Hξ1, Hξ2} = 12π

∮

S∆

εabc

[

ξb
2∇d(∇dξc

1 −∇cξd
1) + 8Λξb

2ξ
c
1 − (1 ↔ 2)

]

. (3.27)

Our purpose is to find the terms proportional to n3 in the Poisson bracket (3.27)
which give rise to a non-trivial central extension to the Poisson bracket algebra. The
Hamiltonian (3.25) contains terms only linear in n. The central charge can then be
read off from the n3 terms with appropriate normalizations. After a long calculation
we arrive at the following expression

lim
ε→0

[

{Hε
ξn

, Hε
ξm
}
]

= 4in3δm+na∆Ω2πκ + terms linear in n . (3.28)

Notice that although the vector fields (3.23) do not have a smooth limit as r → r+

the Hamiltonian and the Poisson bracket have well defined limits.

3.4 Entropy arguments

According to the standard normalization (up to linear order terms in n)

lim
ε→0

[

{Hε
ξn

, Hε
ξm
} − i(n − m)Hε

ξn+m

]

= ic12n3δn+m (3.29)
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the central charge can be read off from the n3-term in the Poisson bracket (3.27)

c = 24a∆Ωπκ . (3.30)

The zero mode of the Hamiltonian too can be read off from (3.25) and is given by

lim
ε→0

[

Hε
ξ0

]

= a∆κ2πΩ . (3.31)

Hence, by Cardy formula [15], the entropy is

S = 2π
√

cHξ06 = 2
√

2a∆ (3.32)

which agrees with the Bekenstein-Hawking entropy (in units 8G = h̄ = 1) up to a
factor of

√
2.

It is worth noting here that Carlip’s central extension (see formula 5.10 of [5])
and zero-th mode Hamiltonian have the same numerical factor as ours. Nevertheless,
he argues that one should use a different, so called effective central extension, and
obtains the right numerical factor for entropy. In our case this strategy fails since
we have an extra factor of Ω/κ or its inverse in front of our expressions. It should
be stressed, however, that this factor is rigidly fixed by the requirements that the
symmetry algebra closes, that it gives a Diff(S1), and that the symmetry vector
fields are periodic in the coordinate φ with the period 2π. Moreover, following the
arguments of [16, 4], since within a classical framework it is impossible to determine
the value of the Hamiltonian in the ground state of the corresponding quantum theory,
the right value of the central charge that is to be used in the Cardy formula is not
determined classically.

4 Discussion

The entropy calculation of [3] faces certain conceptual limitations because the asymp-
totic symmetries may be completely different from the horizon symmetries. Both cen-
tral charge (3.30) and Hamiltonian (3.25) are quite different from the ones found in
[7] for asymptotic infinity. Thus, one needs an analysis restricted to the neighborhood
of the horizon. In [5], Carlip recognized this limitation and carried out a Hamiltonian
analysis using symmetries defined near the horizon. However, as we saw in section
2, the resulting analysis has certain technical flaws. In particular, the vector fields
which correctly incorporate the ideas laid out in the beginning of that paper are quite
different from the ones used in the detailed analysis later on.

In section 3 we made a proposal to overcome those technical problems and ob-
tained a consistent formulation which implements the previous ideas. However, now
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the symmetry vector fields (2.13) do not have a well-defined limit at the horizon.
Nonetheless both the Hamiltonians and their Poisson brackets are well-defined. Fur-
thermore, there is a central charge which, following the reasoning of [3, 5], implies
that the entropy is proportional to area. While the argument has attractive features,
its significance is not entirely clear because the vector fields generating the relevant
symmetries fail to admit well-defined limits to the horizon. Presumably, this awk-
ward feature is an indication that, in a fully coherent and systematic treatment, the
central charge would really be quantum mechanical in origin and could be sensitive
to certain details of quantization, such as the regularization scheme used. Indeed, in
the detailed analysis, we had to first evaluate the Poisson bracket and then take the
limit lim ε → 0 (see expressions (3.31) and also (3.29)), a step typical in quantum me-
chanical regularization schemes. Thus, it could well be that the awkwardness stems
from the fact that, following [3, 5], we have attempted to give an essentially classical
argument for a phenomenon that is inherently quantum mechanical.

This viewpoint is supported by our analysis of section 3.1 of symmetries corre-
sponding to smooth vector fields. If one requires that vector fields generating symme-
tries be smooth at the horizon —a most natural condition in a fully classical setting—
we found that the central charge would be zero! Thus, the fact that the vector fields
do not admit a smooth limit to the horizon is essential to the Carlip-type analysis.
The fact that one has to ‘push’ the analysis an ε away from the horizon indicates
that the procedure may be a ‘short-cut’ for a more complete quantum mechanical
regularization2.

This, however, raises some questions about the method in general: a) How sat-
isfactory is the classical analysis and how seriously should one consider such vector
fields? In particular, role of such vector fields in terms of space-time geometry is far
from obvious since they are not even defined on the horizon. b) Why should this
particular algebra be the focus of attention? c) Does the whole analysis suggest a
rather transparent quantum mechanical regularization scheme and hence, systemati-
cally constrain the quantum theory?

The fact that our final expression of entropy differs from the standard Hawking-

2Sometimes it is argued that only a classical central charge can give rise to the standard expression
a∆/4Gh̄ of entropy and a central charge induced by a quantum anomaly can only give corrections to
this expression. This, however, need not be the case. The central charge of a truly quantum origin
must be a dimensionless number and the only such possibility is c ∼ a∆/Gh̄. This would appear in
the quantum Virasoro algebra as

[L̂n, L̂m] = (n − m)L̂n+m + c12(n3 − n)δm+n (4.33)

where L̂n’s are now quantum operators. The eigenvalue of L̂0 should also be dimensionless (∼
a∆/Gh̄). Thus, the correct semiclassical expression of entropy can be reproduced even when the
central charge comes from the quantum theory.
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Bekenstein formula by a factor of
√

2 also provides a test for quantum gravity theories.
The value Hξ0 appearing in Cardy’s formula is of a quantum mechanical nature. A
classical calculation may not give the right numerical value for it. It then follows that
a quantum theory of gravity will give the correct value for the entropy provided it (a)
has classical general relativity as its low energy limit, and, (b) the expectation value
Hξ0 is a∆κ/4πΩ (assuming Hξ0 is well defined in quantum theory).

In spite of the limitations of this calculation, the final result is of considerable
interest because it is not a priori obvious that all the relevant subtleties of the full
quantum mechanical analysis can be compressed in a classical calculation simply by
stretching the physical horizon an ε distance away, performing all the Poisson brackets
and then taking the limit ε → 0 in the final expressions. Note, however, that a careful
treatment of technical issues that were overlooked in [5] was necessary to bring out
these features. Indeed, our analysis provides the precise sense in which the original
intention in [3, 5] of reducing the problem to a classical calculation is borne out in a
technically consistent fashion.

5 Appendix

In this appendix we define what is called a weakly isolated horizon. It is a more
general object then an isolated horizon, however it is sufficient for our purpose of
finding the symmetries of the horizon.

Let ∆ be a null hypersurface and l a future pointing null normal vector field on
∆. We will denote by [l] the equivalence class of null normals which differ from l only
by a multiplicative constant. Let us also introduce a one-form ωa defined intrinsically
on ∆ by:

∇ a←−
lb = ωalb. (5.34)

The arrow in the above equation denotes the pull-back to ∆.

We call a pair (∆, [l]) a weakly isolated horizon if and only if:
1. ∆ is topologically S1 × R.
2. The expansion Θ(l) of l vanishes.
3. The equations of motion hold on ∆. The stress-energy tensor Tab is such that
−T a

b lb is future directed and causal.
4. Llω = 0, where ω is the one-form given by the equivalence class [l].

We will say that a vector field ξ generates a symmetry of the horizon if the flow
generated by ξ on the phase-space preserves the basic structure of the horizon, namely
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[l] and q. Here, qab ≡ gab←−
. Thus we impose,

Lξl ∈ [l], (5.35)

Lξqab = 0. (5.36)

It is not difficult to check that any vector field ξ satisfying the above conditions can
be written as

ξa = Ala + Bma, (5.37)

where A = C(v−) + const. · v, B = const, and v±, v are defined by the relations
n = −dv, m = 1

r+

∂
∂φ

, and v± = v∓ φ
Ω
. As in the main text we assume that the vector

field ma is tangent to the horizon. Note that C(v−) must be a periodic function,
therefore one can perform a Fourier analysis and find a set of modes ξn.

Now, using Hamiltonian considerations, one can find the symplectic structure
and Hamiltonians in the phase-space of isolated horizons. For details see [13]. The
symplectic structure on-shell is equal to

Ω(δξ, δ) = −1

π

∮

S∆

[

(ξ · AI)δe
I + (ξ · eI)δAI

]

+ Ω̃(δξ, δ), (5.38)

where Ω̃ is a gauge term which is not important for the present analysis. A and
e are the connection one-form and the orthonormal triad, respectively. Using this
expression one can find the Hamiltonian corresponding to ξ as well as the Poisson
bracket of two Hamiltonians. The corresponding expressions are

Hξ = −1

π

∮

S∆

(ξ · AI)e
I + C∆, (5.39)

{Hξ1, Hξ2} = −1

π

∮

S∆

[

(ξ1 · AI)Lξ2e
I + (ξ1 · eI)Lξ2AI

]

, (5.40)

where C∆ is zero except when ξ contains a constant multiple of l. Then we have
C∆[cl] = c(M + 2r+κ + JΩ).

Subsequently, one can check that for any such symmetry vector fields

{Hξ1, Hξ2} =̂H[ξ1,ξ2], (5.41)

and therefore there is no central extension of the corresponding algebra of conserved
charges.
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