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1 Introduction

In perturbative multi-loop calculations, the subtraction of UV-divergences in quantum
field theory generally leads to Green functions which fail to respect the symmetries
of the theory. With the exception of the well-known γ5 problem, the method of
dimensional regularization is compatible with the gauge symmetry but it breaks the
supersymmetry. In these cases a practical method is needed to restore the symmetry
identities of the gauge symmetry or of the supersymmetry. Here the method of
algebraic renormalization [1] supplies a complete solution. However, this method has
rarely been used in practical calculations although it has been applied intensively in
order to demonstrate the renormalizability of various models.

In a recent papers [2, 3], we reviewed the method of algebraic renormalization from
a practical point of view and proposed an algebraic method combining the advantages
of the background field method (BFM) and the simplification of (intermediate) Taylor
subtractions. The method is independent of the regularization scheme; since the local
breaking terms are under control, one can use the most convenient regularization
scheme in a specific application. After a straightforward analysis of the corresponding
(Ward-Takahashi Identities) WTIs and (Slavnov-Taylor Identities) STIs, the spurious
anomalies introduced by a non-invariant regularization scheme were shown to reduce
to a few universal breaking terms which depend only on finite Green’s functions. The
method was already applied to several phenomenologically relevant examples in the
SM, such as the two-loop contributions to the processes H → γγ, to B → Xsγ and
to the three-gauge boson vertices [2, 4, 3].

Because of the experimental precision of standard model observables at LEP
(CERN, Geneva), at SLC (SLAC, Stanford) and at TEVATRON (FERMILAB), cal-
culations of quantum corrections on the two-loop level are necessary; and the γ5 play
a critical role here. The purpose of this note is to offer a theoretical analysis of the
electroweak two-loop contribution to the muon decay using our algebraic method,
and to show its efficiency.

Since a detailed self-contained discussion of the fundamental symmetry constraints
for the SM, of the algebraic renormalization procedure in the BFM, and of our specific
subtraction method can be found in [2, 3], we restrict ourselves here to reviewing
briefly the basic steps of our method (Sec. 2). Then we discuss the muon-decay
amplitude, in particular the gauge-invariant subset of two-loop diagrams which is
sensitive to the γ5 problem (Sec. 3). It is well-known that there is a physical infrared
divergence present in the muon-decay amplitude. For this purpose, we propose an IR
regulator that is manifestly compatible with all the symmetries of the SM (Sec. 4).
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2 General Strategy

In the following, we briefly review the main steps elaborated in [2, 3] to renormalize
a gauge model with a non-invariant regularization technique. The BFM turns out
to be very important for our purposes and, therefore, we quantize the SM in the ‘t
Hooft background gauge [5, 6, 7].

The use of a non-invariant regularization scheme induces breaking terms into the
STIs

S
(
Γ(n)

)
= h̄n∆(n),S +O(h̄n+1) , (1)

which implement the Becchi-Rouet-Stora-Tyutin (BRST) symmetry, and into the
WTIs

W(λ)

(
Γ(n)

)
= h̄n∆(n),W +O(h̄n+1) , (2)

which implement the background gauge invariance of the SM. The definition of S and
W(λ) is given in [2].

The local breaking terms are denoted by ∆(n),S and ∆(n),W . Note that the locality
is a consequence of the Quantum Action Principle. Here and in the following, Γ(n) de-
notes the n-loop order regularized and (minimally) subtracted one-particle-irreducible
(1PI) function. Γ(n) includes the renormalization of all subdivergences. The STIs and
the WTIs are not able to fix the Green functions completely. Indeed it is possible
to add invariant local terms to the action changing the normalization conditions of
the Green functions. A complete analysis on the normalization conditions for the SM
can, for instance, be found in [7].

Acting on the broken WTIs (2) with the Taylor operator (1− T δ) one gets

(1− T δ)W(λ)

(
Γ(n)

)
= 0 , (3)

where δ has to be chosen in such a way that (1− T δ)∆(n),S/W = 0. After commuting
the Taylor operator (1− T δ) with W(λ), we obtain

W(λ)

[
(1− T δ

′
)Γ(n)

]
=

[
T δW(λ) −W(λ)T

δ′
]
Γ(n) ≡ h̄nΨ(n),W (λ) , (4)

where δ′ is the naive power-counting degree of Γ(n). In general, one has δ ≥ δ′, hence
the commutation of the Taylor operator with W(λ) leads to over-subtractions of Γ(n)

and, thus, to the new breaking terms Ψ(n),W (λ) occurring on the r.h.s. of Eq. (4) (for
more details see [2, 3]). The breaking terms Ψ(n),S(λ) for the STIs are defined in the
same way. Therefore, the application of the Taylor subtraction on Eqs. (1) and (2)
transforms them into

S
(
Γ̂(n)

)
= h̄nΨ(n),S +O(h̄n+1) and W(λ)

(
Γ̂(n)

)
= h̄nΨ(n),S +O(h̄n+1) , (5)

where Γ̂(n) = (1− T δ)Γ(n).
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The breaking terms Ψ(n),S and Ψ(n),W can be expressed in terms of a linear com-
bination of ultra-violet (UV) finite Green functions. Here we assumed that up to
the (n − 1)-loop order the Green functions are already correctly renormalized. The
main difference between Ψ(n),S and Ψ(n),W is due to the linearity of the corresponding
operators S and W(λ). In the former case one has to consider non-linear terms aris-
ing from lower loop orders. On the contrary, the linearity of the WTIs enormously
simplifies the evaluation of the breaking terms and of counterterms.

Finally, we introduce

IΓ(n) = Γ̂(n) − Ξ(n) = (1− T δ)Γ(n) − Ξ(n) , (6)

where Ξ(n) is chosen in such a way that the following identities are fulfilled:

S
(
IΓ(n)

)
= 0 , W(λ)

(
IΓ(n)

)
= 0 . (7)

In general, it is quite simple to compute the counterterm, ΓC.T. = T δΓ(n) + Ξ(n),
as it can be expressed in terms of Green functions expanded around zero external
momenta.

As already mentioned above, there is still the freedom to add invariant counter-
terms. In other words, we have the freedom to impose normalization conditions that
lead in addition to Eqs. (7) to the following equation being fulfilled:

Ni

(
IΓ(n)

)
= 0 , (8)

where the index i runs over all independent parameters of the SM. As the Green
function Γ(n) also has to fulfill this condition we have for the counterterm

Ni

(
T δΓ(n) + Ξ(n)

)
= 0 , (9)

which is a local equation. This means that, whenever the effort to impose the nor-
malization conditions is done the changes due to the subtraction are only a local
changes which can be easily compensated. For clarity let us consider an example: for
the condition on the W boson mass we could choose N1(Γ

(n)

Ŵ+Ŵ−) = Γ
(n),T

Ŵ+Ŵ−(p∗) = 0
where the superscript T stands for the transverse part and Re(p∗) = MW . Notice
that the imposition of normalization conditions is a very important ingredient for the
computation in order to compare with other schemes and in order to simplify the
breaking terms themselves.

The procedure described so far is heavily based on the Taylor operator T δ. In the
presence of massless particles this may introduce infra-red (IR) divergences. In [4] we
presented a modified procedure which resolves this spurious IR problem generally.
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Figure 1: Example of O(Nfα
2) contributions to the muon decay amplitude with a two-loop

three-point, two-loop two-point function and with box contribution

3 Muon Decay Amplitude

3.1 General settings

• Muon decay amplitude

We want to focus on the O(Nfα
2) contributions including the two-loop three-

point functions ΓŴ+
µ νe

(pν , pe)
∗ with a Ŵ and an electron (muon) and electron-

(muon-) neutrino. This subgroup of O(Nfα
2) contributions to the muon decay

amplitude is the most delicate one regarding the γ5-problem. An example is
given in Fig. 1.

There are further contributions at the two-loop level such as the diagrams in-
cluding the two-loop-two-point function ΓŴ+

µ Ŵ
−
ν

(p) (Fig. 1). These have already

been discussed within our approach in [4], but there are no problems with γ5

∗All momenta are considered as incoming. In the Green functions Γφ1...φn they are assigned to
the corresponding fields starting from the right. The momentum of the most left field is determined
via momentum conservation. Ŵ denotes the background field corresponding to the quantum field
W .
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Figure 2: Gauge-invariant subset of O(Nfα
2) contributions to the muon decay including

vertex and external leg corrections.

there. Moreover, there are two-loop box diagrams with a gauge-boson self-
energy inside (as shown in the last diagram of Fig. 1).

Thus, let us focus on contributions like the one shown in the first picture of
Fig. 1. We have to consider the complete gauge-invariant subset of two-loop
contributions to the three-point function ΓŴ+

µ νe
(pν , pe). Actually, there are

various types of diagrams shown in Fig. 2. Here we note that only the first two
diagrams in Fig. 2 change when switching from a conventional gauge to the ‘t
Hooft-background gauge.

• IR problems

Among the O(Nfα
2) gauge-invariant subset of diagrams (see Fig. (2)), one has

to consider those with a virtual photon. Those diagrams are potentially IR
divergent and only the O(Nfα

2) contributions to the physical amplitude, after
the inclusion of the Bremsstrahlung radiation of the external electron and muon,
turn out to be finite.

Historically [8], the virtual photon contributions, namely the pure QED cor-
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rections, are analysed separately from the electroweak corrections by using a
suitable decomposition of massless propagators. In that spirit, the pure QED
corrections have been computed in [9, 10, 11] and the remaining complete elec-
troweak corrections are IR finite. In paper [12] the O(Nfα

2) corrections are
computed in the MS scheme and the massless quark approximation has been
used. In [13, 14] the exact fermionic contributions, in on-shell scheme, are taken
into account. However, since we are not interested in the explicit evaluation of
the muon amplitude, but only to present a procedure to handle the γ5 prob-
lem in the present process, we will not disentangle the QED corrections in our
considerations.

As a consequence, we have to keep the possible IR divergences under control,
namely we have to be sure that all the steps of the computation are IR regu-
lated. The situation is worsened by the fact that, according to our procedure,
the Taylor expansion in Eqs. (4) is performed at zero momentum. For those
purposes, we propose a BRST invariant IR regularization for the photon within
the SM (see Sec. 4). This method regulates both physical and spurious IR
divergences simultaneously.

An alternative approach to IR problems is the following: regarding γ5, the
delicate diagram is shown in the first picture of Fig. (1) which belong to the
pure vertex corrections ΓŴ+

µ νe
(pν , pe). Luckily, this vertex Green function is

the simplest one – compared to box and external-leg corrections – from the IR
perspective. This is because its physical IR singularities are induced only by
the on-shell wave-function renormalization.

Therefore, we can also avoid the physical IR problems by choosing an off-shell
renormalization procedure. There are two ways of doing this: i) either one
imposes an on-shell renormalization for the neutrino and, as a consequence of
WTIs, an off-shell renormalization prescription of the electron is automatically
provided (see next section), ii) or one can also choose a MS wave-function
renormalization for external fermions which is infrared finite and compatible
with the background gauge invariance.

Finally, to handle the spurious IR problems generated by means of the Tay-
lor subtraction, a modification of the procedure is discussed in [4]. Here, the
modified breaking terms Ψ(2),W , occurring in the WTI for the Green function
ΓŴ+

µ νe
(pν , pe), is written explicitly.

• Kinematic approximations

The specific kinematic situation allows for some simplifications: in ΓŴ+
µ νe

(pν , pe)
the W is off-shell, while both the electron and the electron-neutrino are on-shell.
We can make the approximation p2

W = 0 and neglect mmuon/mW -terms, because
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the muon is almost at rest. All momenta squared are zero, and hence

pW = pν = pe = 0 . (10)

In the following we will derive all symmetry constraints for the general kinematic
case and then specify to the zero-momentum setting (10).

• Subdivergences

Considering only the O(Nfα
2) contributions to the two-loop three-point ver-

tex function Γ
(2)

Ŵ+
µ νe

(pν , pe), we have to take into account three kinds of one-

loop subdivergences: the three-gauge boson vertices with one background and
two quantum fields (they have been largely discussed in [4] within the BFM
framework), the quantum gauge boson self-energies (they have been analysed
in [2, 3] without and with the BFM; in particular, in [3] the conversion from
background field amplitudes to quantum ones is completely exploited) and the

one-loop Γ
(1)

Ŵ+νe
(pν , pe) amplitude together with their corresponding scalar ver-

tices where the gauge boson is replaced by the Goldstone boson (notice that
this amplitude appears also as subdivergence for two-loop three-gauge boson
vertices and it is extensively discussed in [4]).

Moreover, the renormalization of one-loop amplitudes can be quite easily han-
dled within different regularization techniques, therefore we can assume, for
the time being, that the one-loop Green functions already satisfy the WTIs (or
the STIs) and fulfill certain normalization conditions. Nevertheless, to apply
our procedure, we have to compute the one-loop counterterms which must be
inserted in one-loop graphs. By using the notation of the introduction, these
counterterms are given by

IΓ(n) = Γ̂(n) − Ξ(n) = Γ(n) −
[
T δΓ(n) + Ξ(n)

]
= Γ

(n)
bare − Γ

(n)
UV −

[
T δΓ

(n)
bare + T δΓ

(n)
UV + Ξ(n)

]
. (11)

In the second line we have introduced the bare Green function Γ
(n)
bare in addition.

This quantity is defined by Γ(n) = Γ
(n)
bare−Γ

(n)
UV where Γ

(n)
UV denotes the necessary

UV counterterms computed in the specific regularization used in the calculation.
Of course, the complete one-loop counterterms, namely IΓ(n)−Γ

(n)
bare, have to be

taken into account at the two-loop level.

For instance, in the case of charged gauge-boson self-energies, given IΓ
(1)

W+
µ W

−
ν

(p)

(which satisfy the normalization conditions and the corresponding STIs) and

given Γ
(1)

W+
µ W

−
ν

(p), computed in the same regularization as will be used in the
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two-loop computation of Γ
(2)

Ŵ+
µ νe

(pν , pe), the counterterms are

Γ
(1),C.T.

W+
µ W

−
ν

(p) = T 2
p

(
Γ

(1)

W+
µ W

−
ν

(p)
)

+ Ξ
(1)

W+
µ W

−
ν

(p) ,

Ξ
(1)

W+
µ W

−
ν

(p) = ξ
(1)
W,1 p

2gµν + ξ
(1)
W,2 pµpν + ξ

(1)
MW

gµν , (12)

where

ξ
(1)
W,1 =

1

144

(
5 ∂2

p IΓ
(1)

W+
µ W

−
µ

(p)
∣∣∣∣
p=0

− 2 ∂pµ∂pν IΓ
(1)

W+
µ W

−
ν

(p)
∣∣∣∣
p=0

)
,

ξ
(1)
W,2 =

1

72

(
−∂2

p IΓ
(1)

W+
µ W

−
µ

(p)
∣∣∣∣
p=0

+ 4 ∂pµ∂pν IΓ
(1)

W+
µ W

−
ν

(p)
∣∣∣∣
p=0

)
,

ξ
(1)
MW

=
1

4
IΓ

(1)

W+
µ W

−
µ

(p)

∣∣∣∣
p=0

. (13)

In the same way, all the other possible one-loop divergences can be computed
once the renormalized Green functions IΓ(1) are known.

In some cases, the BFM does not achieve great advantages (for instance, in the
cases of amplitudes with external fermions only) at the practical level and, on
the other hand, it could be convenient to use the conventional gauge fixing.
However, the Green functions computed with external background fields can
be easily related to those with external quantum fields by using the extended
versions of the BRST symmetry.

3.2 Two-loop vertex function

Working in the framework of the BFM, there is only one WTI for the vertex function
Γ

(2)

Ŵ+
µ νe

(pν , pe) that has to be evaluated at two loops (cf. [2]):

i (pν + pe)ρ Γ
(2)

Ŵ+
ρ νe

(pν , pe) + iMWΓ
(2)

Ĝ+νe
(pν , pe)

+
ie

sW
√

2

[
Γ

(2)
νν (−pν)PL − PRΓ

(2)
ee (pe)

]
= ∆

(2),W
λ+νe

(pν , pe) .

(14)

Here ∆
(2),W
λ+νe

(pν , pe) is a polynomial of the external momenta pν and pe of max-
imum degree 1. We define the weak mixing angle through the on-shell relation
cW = MW/MZ as we want to maintain the form of the WTIs to be the same to
all orders. PL/R = (1∓ γ5)/2 are the chiral projectors.

The breaking terms in (14) are generated by a non-invariant regularization pro-
cedure, for instance by using the ‘t Hooft-Veltman definition of γ5 [15]. To remove
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them, according to the procedure described in [2, 4], we apply the Taylor operator
(1− T 1

pν ,pe
), obtaining

i (pν + pe)ρ

[(
1− T 0

pν ,pe

)
Γ

(2)

Ŵ+
ρ pνpe

(pν , pe)
]

+ iMW

[(
1− T 0

pν ,pe

)
Γ

(2)

Ĝ+νe
(pν , pe)

]

+
ie

sW
√

2

{[(
1− T 1

pν

)
Γ

(2)
νν (−pν)

]
PL − PR

[(
1− T 1

pe

)
Γ

(2)
ee (pe)

]}
= Ψ

(2),W
λ+νe

(pν , pe) .

(15)

where

Ψ
(2),W
λ+νe

(pν , pe) = iMW

(
pρν∂pρ

ν
+ pρe∂pρ

e

)
Γ

(2)

Ĝ+νpe
(pν , pe)

∣∣∣∣∣
pν=pe=0

, (16)

are finite and are generated by means of the over-subtraction.
Notice that the computation of Ψ

(2),W
λ+νe

can be also performed without encountering
any UV divergences. For that purpose, it is sufficient to implement the subtraction
of UV subdivergences directly in such a way that all the diagrams are always finite.
Technically, we suggest the use of Zimmermann’s subtraction formula [16]. Since all

the integrals involved can be performed analytically, Ψ
(2),W
λ+νe

can be evaluated exactly.
In this way, we use the Dirac algebra in 4 dimensions without any ambiguities.

Notice that the zero momentum subtraction in Eq. (15) removes exactly the con-
tribution that we would like to evaluate to compute the muon decay amplitude in the
approximation (10). However, this contribution can be computed as a counterterm.
Notice in fact that, the local part of the muon decay amplitude is totally fixed when
the normalization conditions for fermion two-point functions and the WTIs are used.

By using the parametrization

Ξ
(2)

ψψ
(p) = ξ

(2)
2,ψ ( 6p−mψ) + ξ

(2)
ψ mψ , ψ = ν, e

Ξ
(2)

Ŵ+
µ νe

(pν , pe) = ξ
(2)

L,Ŵ+νe
γµPL + ξ

(2)

R,Ŵ+νe
γµPR , (17)

for two- and three-point functions, and decomposing the breaking terms into scalar
functions

Ψ
(2),W
λ+νe

(pν , pe) = i
(
ψ

(2)
1 6pνPL + ψ

(2)
2 6pνPR + ψ

(2)
3 6pePL + ψ

(2)
4 6pePR

)
, (18)

we have the solution

ξ
(2)

R,Ŵ+νe
= ψ

(2)
2 = ψ

(2)
4 ,

ξ
(2)

L,Ŵ+νe
=

e

sW
√

2
ξ

(2)
2,ν + ψ

(2)
1 ,

ξ
(2)
2,e = ξ

(2)
2,ν +

sW
√

2

e

(
ψ

(2)
1 − ψ

(2)
3

)
, (19)
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for the coefficients. Notice that the equality ψ
(2)
2 = ψ

(2)
4 follows from the consistency

conditions (see, for example, the discussion in [2]) and it provides a check of the
computation of the breaking terms. In addition, from Eqs. (19), it emerges that

ξ
(2)
2,e = ξ

(2)
2,ν in the case of invariant regularization techniques, namely when ψ

(2)
i =

0, ∀i. This means that we are not allowed to impose any arbitrary normalization
conditions for fermion residues. If the neutrino is renormalized in such a way that
its residues is equal to 1, the electron residue will be clearly different from 1. In this
way, we have a partial on-shell scheme, we maintain the background gauge symmetry
and we can avoid the physical IR divergences for the vertex amplitude.

The final result, namely diagram computation plus counterterms, can be written
in the following way

IΓ
(2)

Ŵ+
µ νe

(pν , pe) = Γ
(2)

Ŵ+
µ νe

(pν , pe)

−
[
T 0
pν ,pe

Γ
(2)

Ŵ+
µ νe

(pν , pe) + ξ
(2)

L,Ŵ+νe
γµPL + ξ

(2)

R,Ŵ+νe
γµPR

]
. (20)

The parameters ξ(2)
ν and ξ(2)

e are used to impose mass renormalization conditions on
the fermion self-energies.

From this we learn that the symmetric amplitude IΓ
(2)

Ŵ+
µ νe

at zero momentum is

just given by the universal counterterm:

IΓ
(2)

Ŵ+
µ νe

(pν = 0, pe = 0) = −ξ(2)

L,Ŵ+νe
γµPL − ξ

(2)

R,Ŵ+νe
γµPR . (21)

The proposed procedure allows for an efficient computation of the amplitude IΓ
(2)

Ŵ+
µ νe

at two-loop order avoiding the γ5 problem. In the literature, different techniques
with different prescription of γ5 have been used to evaluate the Feynman diagrams of
IΓ

(2)

Ŵ+
µ νe

, however we believe that a rigorous check of these result is desirable.

4 Massive U(1) BRST symmetry within the SM

It is a well-known problem that in the computation of Green’s function there are IR
divergences due to the vanishing photon mass. In this brief section, we will describe
how to perform a regularization of the photonic IR divergences in a way that is
consistent with the BRST symmetry of the SM and, thus, preserves the unitarity of
the model (see also [18]). The choice of such a regulator is motivated essentially by
the fact that it regulates both the physical and spurious IR divergences.

We will refer to the Stueckelberg method (see [19, 20] and references therein). This
method gives rise to unsolvable renormalization problems in the case of Yang-Mills
fields, which only can only be resolved through the Higgs mechanism. However, in
the abelian case it provides a manifestly BRST (and the background gauge) invariant
model of massive QED.
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For pedagogical purposes, we present a short digression regarding the Stueckelberg
formalism in QED. The Lagrangian is given by

L = − 1

4g2
Fµν

2 +
m2

2g2
(Aµ − 1

m
∂µϕ)2 + s(cF) + Lmatter ,

Lmatter = Ψ(i 6∂ −M)Ψ + Ψγµ(Aµ − 1

m
∂µϕ)Ψ , (22)

where Fµν = ∂µAν − ∂νAµ.
The apparent non-renormalizable derivative coupling Ψγµ∂µϕΨ can be absorbed

by a field redefinition

ψ = e
i

m
ϕΨ, Lmatter = ψ(γµ(i∂µ + Aµ)−M)ψ. (23)

Notice that in the non-abelian case a redefinition of fields of type (23) will generate
new non-eliminable non-renormalizable terms [20].

The BRST transformations of the fundamental fields are given by

sÂµ = 0 , Âµ = Aµ − 1

m
∂µϕ ,

sϕ = mc , sc = 0 , (24)

sc = b , s b = 0 .

Thus, the BRST multiplets consist of two trivial pairs (ϕ, c), (c, b) and one singlet
Âµ = Aµ − 1

m
∂µϕ. This means that the physical spectrum will be independent of

(ϕ, c) and (c, b).
In the gauge-fixing-ghost term s(cF), F is a real bosonic function of all the fields

and their derivatives. For example, the ‘t Hooft-Feynman gauge fixing

F =
1

g2
(
1

2
b− ∂µAµ −mϕ) , (25)

leads directly to noninteracting ghosts c and c. Moreover, the Â − ϕ sector does
not contain higher derivatives or dipoles. The field strengths Fµν calculated from A

and from Â coincide. The field b is auxiliary with the algebraic equation of motion
b = ∂µAµ +mϕ Thus, the L defines a massive abelian gauge field coupled to matter
fields.

To extend the Stueckelberg formalism to the SM quantized in the background
gauge, the scalar field ϕ transforms under the BRST symmetry† and under the back-
ground gauge transformations in the following way

s ϕ = µ c , δ(λ)ϕ = µλ , (26)

†Notation, definitions, and quantum numbers can be found in [2].
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where λ is the infinitesimal parameter of the background gauge transformations. µ is
the IR regulator and c is the U(1) ghost. The latter can be written in terms of the
combination c = cW cA + sW cZ , where cA and cZ are the photon ghost and the ghost
associated with the Z boson, respectively. It follows that a term like

ΓStu =
∫
d4x

(
1

2
∂µϕ∂

µϕ− µ∂µϕB
µ +

µ2

2
BµBµ

)
, (27)

is BRST and background gauge invariant for all the values of the parameter µ and
the last term provides a mass term for the Bµ fields. Other ϕ-dependent invariant
terms can be constructed, however it is easy to show that all of them, but (27), can
be reabsorbed by a simple redefinition of the field Bµ (cf. [20]). In addition, in order
to deal with diagonal two-point functions the ‘t Hooft gauge fixing

ΓStu,g.f. = s
∫
d4x c

(
∂µBµ − ρµϕ+ ξ0b

)

=
∫
d4x

[
b (∂µBµ − ρµϕ+ ξ0b)− c ∂2c+ ρµ2c c

]
, (28)

is used. Here ξ0 is the conventional gauge fixing parameter of the U(1) sector and ρ
is the ‘t Hooft parameter. With this gauge fixing, it is easy to see that the gauge field
Bµ, the scalar field ϕ and the ghosts c, c (with masses µ2, ρ2µ2/ξ0 and ρµ2) form a
quartet which ensures the unitarity of the model. Notice that the BRST variation of ϕ
says that this field corresponds to a would-be-Goldstone boson, and the spontaneous
symmetry breaking mechanism – in the abelian case – can be implemented without
the Higgs counterpart.

In the SM framework, the field Bµ does not coincide with the physical photon
field, but the mixing with the third component of SU(2) gauge boson triplet W 3

µ has
to be considered. We have to cancel this term by modifying the gauge fixing function
FB (cf. [2], Eq. (A.3)) for the abelian field in the following way

FB = ∂µBµ + ρ0(Φ̂ + v)it0ij (Φ + v)j +
ξ0
2
b −→ FB − ρµϕ , (29)

where ρ is the t’Hooft parameter for the ϕ field. By eliminating the Lagrange multi-
plier b, we have the gauge fixing terms

Lg.f. = − 1

2ξ0

[
∂µBµ − ρµϕ+ ρ0(Φ̂ + v)it0ij (Φ + v)j

]2

= − 1

2ξ0
(∂µBµ)

2 − ρ2µ2

2ξ0
ϕ2 − ρ0g

′2v2

2ξ0
G2 +

ρρ0µvg
′

2ξ0
ϕG

+
ρµ

ξ0
∂µBµ ϕ− ρ0vg

′

ξ0
∂µBµG

−ρvg
′

2ξ0
(∂µBµ − µρϕ)

(
H Ĝ− Ĥ G

)
− ρ2g′2v2

2ξ0

(
H Ĝ− Ĥ G

)2
, (30)
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where g′ is the U(1) gauge coupling, v is the vacuum expectation value, G and H
are the Goldstone boson and the Higgs field, respectively, while Ĝ and Ĥ are their
background partners. The first line contains the contribution to the quadratic part
of the action, this shows that also the masses of the Goldstone boson G are modified
by the introduction of the Stueckelberg field ϕ. The mixed terms ϕ∂µBµ and G∂µBµ

are cancelled (in the restricted ‘t Hooft gauge) by the mixing terms coming from the
covariant derivatives of the kinetic terms (i.e. from Eq. (27)). Finally the last terms
describe the interactions between ϕ and the other fields. As can be noticed all the
interaction terms depend on the background fields. Therefore, the Stueckelberg ϕ field
can be generated only if the fields Ĝ or Ĥ appear as external vertices of the amplitude
or due to the mixing with the neutral Goldstone boson. This is the only difference
between the Stueckelberg formalism and its application to the SM quantized in the
background gauge.
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