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Abstract

This paper is devoted to the study of growth of local resolvents. We give necessary conditions

to obtain bounded local resolvents. The boundedness of derivatives of the local resolvent is

studied in the case of re
exive Banach spaces and some results are given for admissible operators.
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1 Introduction

Let X be a complex Banach space and L(X) be the algebra of continuous linear operators on

X. For T 2 L(X), we denote by �(T ) its spectrum and by RT : � 2 C n �(T ) ! RT (�) =

(T � �)�1 2 L(X) its resolvent map. Let x 2 X be the analytic function � ! ~x(�) := RT (�)x

for � =2 �(T ) may have analytic extensions, solutions of the equation (T � �)f(�) = x. If for

every x 2 X any two extensions of RT (�)x agree on thier common domain, T is said to have

the single valued extension property (that we denote SV EP ) [2]. In this case, let �(x; T ) be the

maximal domain of such extensions. The set �(x; T ) = C n�(x; T ) is called the local spectrum of

T at x. It is obvious that T has the SV EP if, and only if, the zero function is the only analytic

function, on a given open set, that satis�es (T � �)f(�) = 0. By the Liouville theorem, it is

clear that T has the SV EP if, and only if, for any nonzero x 2 X, we have �(x; T ) 6= ;. Denote

in the sequel for A � C the closure by A and by Ao the interior.

Recall that, for any arbitrary closed set F in the complex �eld, the spectral subspace associated

to F is : XT (F ) = fx 2 X;�(x; T ) � Fg. The algebraic subspace ET (F ) is the maximal element

(if ordered by inclusion) of subspaces Y � X which satisfy (T � �)Y = Y for all � =2 F . It

is obvious that XT (F ) � ET (F ) (see also [3], [6] and [7]). By the open mapping theorem, we

observe, for a closed set F � C that if ET (F ) is closed, we have ET (F ) = XT (F ) (see [4] for

further information).

For � 2 �(T ), let dist(�; �(T )) be the distance of � to �(T ). As we have:

k(T � �)�1k �
1

dist(�; �(T ))

we see that the resolvent map is never bounded.

The aim of the paper [1] is the study of boundedness of the local resolvent. Examples of operators

with bounded local resolvent (for some x 2 X) and conditions for the existence of such elements

are given. In [5] M.M. Neumann gives a large classe of operators with the same property. We

pursue in this direction by studying properties of the local resolvent. We give in section 2

operators for which all the derivatives of the local resolvent are bounded and we show that if

�(x; T ) has an empty interior, the local resolvent is never uniformly continuous.

Section 3 is devoted to the case where X is a re
exive Banach space. We show that if x 2

X=ET (�(x; T )
o), then there exists an integer p such that the derivative of order p of the local

resolvent at x is unbounded. Section 3 is devoted to admissible operators, we show that if x 2 X

has bounded derivatives, then �(x; T ) = �(x; T )o. In section 4 we introduce a class of spectral

subspaces with growth properties, and we use them to obtain some results of [1].

2 On the boundedness of the local resolvent

Suppose that T has the SV EP and let ~x(�) be the local resolvent, that is the maximal extension

of RT (�)x. We give in the following examples of operators with bounded local resolvent.
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Example 2.1 .

� [1] Let C0(Z) = f(xn)n2Z= lim
jnj!+1

xn = 0g equipped with the supermum norm and (en)n2Z

its canonical basis. Consider the backward shift T (i.e. Ten = en�1). The local resolvent

at e0 is:

~e0(�) =

(
�11 �

n+1en; j�j < 1
�10 � 1

�n+1
e�n; j�j > 1

Hence k~e0(�)k � 1.

� [5] Let 
 � C be a compact set and X = C(
) be the Banach algebra of continuous

functions. Let T 2 L(X) given by T (f)(z) = zf(z) and f0(z) = dist(z; C n 
). If 
o 6= �,

we have f0 6= 0 and

~f0(�)(z) =
dist(z; C n 
)

�� z

so �(f0; T ) = 
o and k ~f0(�)k1 � 1.

� Let H = L2(D ) with D = fz 2 C =jzj � 1g and M be the shift operator on H given by:

M(f)(z) = zf(z). Let f 2 H: f(z) = 1� jzj for all z 2 D . We have �(f;M) = D and the

local resolvent of f is ~f(z)(�) = 1�jzj
z�� for every j�j > 1 . It is clear that ~f(z) is bounded

in H.

We show in the following proposition, in connection with the examples above, that the local

resolvent is never uniformly continuous, when the local spectrum has an empty interior.

Proposition 2.2 Let x 2 X such that �(x; T ) has an empty interior. If the local resolvent ~x is

uniformly continuous, then x = 0.

Proof: Let � 2 �(x; T ) and let �n 2 �(x; T ) converging to �. Then by uniform continuity ~x(�)

converges and hence ~x has a continuous extension through �(x; T ). Such extension is analytic

and we get by usual argument that x = 0.

We give a generalization of theorem 1 of [1].

Proposition 2.3 Let X be a re
exive Banach space, x 2 X and T 2 L(X).

If x 2 X n
T

�2@�(x;T )
(�� T )XT (�(x; T )), then ~x(�) is not bounded.

Proof: Suppose that ~x(�) is bounded and let � 2 @�(x; T ), there exists �n 2 �(x; T ) that is

converging to �. As X is a re
exive Banach space, we can choose �n so that ~x(�n) is a convergent

sequence, let y be its limit, thus (T ��)y = x. It is easy to check that �(x; T ) = �(y; T ). Hence

x 2
T

�2@�(x;T )
(�� T )XT (�(x; T )). Contradiction.

We derive
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Corollary 2.4 ( [1], Theorem 1) Let X be a re
exive Banach space , x 2 X and T 2 L(X).

Suppose that x 2 X n
T

�2C

(� � T )X and �(x; T ) has an empty interior, then the local resolvent

at x is unbounded.

In fact more is given:

Proposition 2.5 Let X be a re
exive Banach space, x 2 X and T 2 L(X).

If x 2 Xn
T

�2@�(x;T )

T
n�0

(��T )nXT (�(x; T )), then there exists some derivative of ~x(�)(� 2 �(T; x))

that is unbounded.

Proof: Suppose that all the derivatives of the local resolvent at x are bounded. Since the set

f~x
0

(�)g is bounded, there exists a positive constant C such that:

k~x(�)� ~x(�)k � Ck�� �k (�; � 2 �(x; T )):

Thus, for �0 2 @�(x; T ), there exists (�n) � �(x; T ) that is converging to �0. As (�n) is a

Cauchy sequence, ~x(�n) is also a Cauchy sequence. Denote x1 its limit, we have: (T ��0)x1 = x

and �(x; T ) = �(x1; T ). Hence (T � �0)(T � �)~x1(�) = (T � �)x(�) and by the SV EP of T , we

obtain (T � �0)~x1(�) = ~x(�), and we have

~x1(�) =
~x(�)� x1
�� �0

= lim
n!+1

~x(�)� ~x(�n)

�� �n

Using the preceding inequality, we obtain k~x1(�)k � C. As the Banach space X is re
exive, we

can choose �n so that ~x1(�n) is a convergent sequence, let x2 be its limit. As before, we get

x1 = (�o � T )x2 with �(x2; T ) = �(x1; T ). By our assumption, there exists positive constants

M1 and M2 such that:

k~x(�)� ~x(�)� (�� �)~x
0

(�)k �M1k�� �k2; �; � 2 �(x; T )

k~x
0

(�)� ~x
0

(�)k �M2k�� �k; �; � 2 �(x; T ):

We derive that ~x
0

(�n) is also a Cauchy sequence (denote z its limit). By the preceding inequality,

we obtain: k~x1(�) � zk � M1k� � �0k. It is clear that: z = x2 and k~x2(�)k � M1. Hence, we

construct by induction a sequence (xn) such that:

x = x0; (�0 � T )xn = xn+1; and �(xn+1; T ) = �(xn; T ):

Thus

x 2

T
� 2 @�(x; T )

T
n � 0

(�� T )nXT (�(x; T ))

which gives a contradiction.

Let A be a subset of C and x 2 X. It is known that x 2 ET (A) if, for every � 2 C nA, there

exists (xn) in X such that (�� T )xn+1 = xn and x = x0 [5].

Using this remark, and the preceding proof we obtain:

Proposition 2.6 Let X be a re
exive Banach space and T 2 L(X) with SV EP . If x 2

X n ET (�(x; T )
o) , then there exists some derivative of ~x(�) that is unbounded.
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3 Admissible operators

An operator T 2 L(X) is said to be admissible if ET (F ) is closed for every closed set F � C .

We have the following result:

Proposition 3.1 Let X be a re
exive Banach space and T 2 L(X) an admissible operator. Let

x 2 X. If all the derivatives of the local resolvent at x are bounded, then �(x; T )o = �(x; T ).

Proof: Let x 2 L(X) with bounded derivatives of its local resolvent and let �0 2 @�(x; T ). By

Proposition 2.5 there exists a sequence (xn) 2 X such that (�0�T )xn+1 = xn and x0 = x. Hence

x 2 ET (�(x; T )
o) � ET (�(x; T )o). As T is admissible , we have ET (�(x; T )o) = XT (�(x; T )o).

Thus XT (�(x; T )) � XT (�(x; T )o) and so �(x; T ) � �(x; T )o. The reverse implication being

obvious, we obtain the proposition.

We give in the following an example of an operator with bounded derivatives of the local resol-

vent.

Example 3.2 Let 
 be a compact set with nonempty interior and f 2 L2(
) given by:

f(z) = exp(�
1

dist(z; C n 
)
) (1)

Then the local resolvent of f is

~f(z)(�) =
exp(� 1

dist(z;C n
)
)

�� z
:

and we have

~fn(z)(�) =
(�1)n(n� 1)!exp(� 1

dist(z;C n
)
)

(�� z)n+1
for all n � 1:

Also, we obtain: �(f; T ) = 
o and f satis�es the required properties of the preceding proposition.

For normal operators, we generalize ( [1], Corollary 3):

Proposition 3.3 Let T be a normal operator on a complex Hilbert space H. Then �(T )o = �(T )

if, and only if, there exists a vector x 2 H with bounded derivatives of its local resolvent are

bounded and �(x; T ) = �(T ).

Proof: The converse implication follows >from the preceding proposition. To prove the direct

implication, assume that �(T )o = �(T ).

If U = (�p(T ))
o
is nonempty, we consider a sequence (�n) of distinct eigenvalues that is dense

on U , and let (xn) the normalized eigenvectors corresponding to (�n). We de�ne the numbers

cn by:

cn =
exp(� 1

dist(�n;C nU)
)

n
;
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and the vector

x =
X
n�1

cnxn:

It is clear that U = �(x; T ), and the local resolvent is given by:

~xT (�) =
X
n�1

cnxn
�� �n

:

Since all the derivatives of the function

� 2 �(x; T )!
exp(� 1

dist(�n;C nU)
)

�� �n

are bounded, for every integer p, there exists a constant Cp such that:

k~xpT (�)k
2 � Cp

X
n�1

1

n2
; (� 2 �(x; T )):

Hence all the derivatives of the local resolvent are bounded.

If U is empty, we may assume that T is a normal operator having non eigenvalues [see the proof

of [1], Theorem 2]. Hence T is unitarily equivalent to the multiplication operator Mf on L2(�),

given by

(Mfv)(t) := f(t)v(t); v 2 L2(�)

with f a bounded complex valued function on X. Boundedness properties are invariants under

unitary transformations, we can assume without loss of generality that T is the multiplication

operator Mf on L2(�). We have �(Mf ) = f(X) and W := �(Mf )
o is nonempty. Let x 2 L2(�)

given by :

x(t) =

(
exp(� 1

dist(f(t);C nW )
) t 2 f�1(W )

0 otherwise

We have: (~xMf
(�))(t) = x(t)

��f(t) for � 2 �(x;Mf ), and �(Mf ) = W: Since all the derivatives of

the function

� 2 �(x; T )!
exp(� 1

dist(f(t);C nW )
)

�� f(t)

are bounded, there exists, for any p > 0, a positive constant Cp such that.

k~xpT (�)k
2 � Cp

Z
W
ky(t)k2d�(z); � 2 �(x; T ):

Hence

k~xpT (�)k
2 � Cpkyk

2:

We conclude that all the derivatives of the local resolvent at x are bounded on �(x; T ).
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4 Spectral sets and the growth of the local resolvent

Let F � C be a closed set and � : C n F ! X be an analytic function. Set

X�
0 (F ) = fx 2 XT (F ) [XT (C n F ) such that lim

dist(�;F )!0
j
~x(�)

�(�)
j = 0g

We have

Proposition 4.1 Let �0 be an isolated point in �(T ) , then X�
0 (f�0)g is closed.

Proof: Let �0 be an isolated point in �(T ). There exists an open set V such that V \ �(T ) =

f�0g. Consider xn 2 X�
0 (f�0g) a convergent sequence with limit x and let � 2 V n f�0g �

�(T ), we have ~xn(�) = (T � �)�1xn and gn(�) :=
(T��)�1xn

�(�) is also a convergent sequence to

g(�) := (T��)�1x
�(�) for all � 2 V n f�0g � �(T ). As gn(�) =

R


gn(�)
��� d�; where 
 is a Jordan

curve surrounding �0. If we denote � = dist(
; V c) the distance between 
 and V c, we obtain

kgn(�� g(�)k � "
2�� and sup

�2V nf�0g
kgn(�)� g(�)k � "

2�� .

Using the fact that lim
j���0j!0

j ~xn(�)
�(�) j = 0 we get x 2 X�

0 (�0).

Proposition 4.2 Let �0 be an isolated point in �(T ) and �n a sequence of analytic functions

on a neighborhood of �0. Suppose that [n�0X
�n
o (f�0g) = X. Then there exists n0 such that

X
�n0
0 (f�0g) = X.

Proof: By proposition 4.1 X�n
0 (f�og) is closed for every n � 0 and we conclude by using the

Baire category theorem.

We derive the following corollary:

Corollary 4.3 Let � 2 �(T ). If ~x admits a pole in �, for every x 2 X, so is the case for RT .

Proof: By considering x 2 X such that �(x; T ) = �(T ), we see that � is isolated in �(T ).

Applying the proposition with �n(z) =
1

(z��)n , we obtain the corollary.

Remark 4.4 The Kaplansky theorem for locally algebraic operators can be derived by the pre-

ceding proposition in a classical way.

Acknowledgments

This work was done within the Associateship Scheme of the Abdus Salam International

Centre for Theoretical Physics, Trieste, Italy.

7



References

[1] T. Bermudez and M. Gonzalez, On the boundedeness on the local resolvent function. Inte-

gral equation operators theory 34(1999), 1-8

[2] I. Colojoara and C. Foias, Theory of generalized spectral operators. Gordon and Breach,

New York, (1968).

[3] K.B. Laursen, Algebraic spectral subspaces and automatic contnuity, Czechoslovak Math.

J. 38(113)(1988),157-172

[4] K.B. Laursen and P. Vrbova: Some remarks on the surjectivity spectrum of linear operators,

Czech. Math. J. 39(114)(1989), 730-739

[5] M.M. Neumann, On local spectral properties of operators on Banach spaces. Rend. Circ.

Math. Palermo (2) Suppl. 56(1998), 15-25

[6] V. Ptak and P. Vrbova, Algebraic spectral subspaces, Czechoslovak Math. J. 38(113)(1988),

342-351

[7] P.Vrbova, On local spectral properties of operators on Banach spaces. Czechoslovak Math.

J. 23 (98)(1973), 483-492

8


