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1 Introduction.

Let a0; a1; � � � ; ar�1 and b0; b1; � � � ; bs�1 (r; s � 2) be some real numbers with ar�1bs�1 6= 0, and

f!i;jg0�i�r�1; 0�j�s�1 be a sequence of real numbers.

Let fWn;mgn; m�0 be the sequence de�ned by Wi; j = !i;j for 0 � i � r � 1, 0 � j � s� 1,

and the following linear recurrence relations

Wn+1;m =
r�1X
i=0

aiWn�i;m and Wn;m+1 =
s�1X
j=0

bjWn;m�j; for n � r � 1; m � s� 1: (1)

In the sequel we shall refer to these sequences as sequences (1).

Let �p;q = fn;mg0�n�p; 0�m�q, where p; q � +1, be a sequence of real numbers and K be a

compact subset of IR2. The K-moment problem associated to �p;q consists of �nding a positive

Borel measure � such that

n;m =

Z
K
xnymd�(t); for 0 � n � p; 0 �m � q and Supp(�) � K; (2)

where Supp(�) is the support of �. A positive measure satisfying (2) is called a representing

measure of �p;q = fn;mg0�n�p; 0�m�q on K. For p = q = +1 the problem (2) is called the

full K-moment problem. When p; q < +1 the problem (2) is called the truncated K-moment

problem.

There is a large amount of literature on the full K-moment problem studied by various

methods and technics (see [1], [3], [4], [5], [12] and [14], for example). In dimension n � 2 the

full K-moment problem has been solved for K compact with nonempty interior (see [4] and [5]),

and for K semi-algebraic compact set (see [12] and [14]).

The truncated K-moment problem is studied by Curto-Fialkow for K � lC, using the positive

matrix approach, and the subcaseK � IR is considered (see [6] and [11] for example). The Curto-

Fialkow's method is motivated, because the classical full K-moment problem argumentations

are obstructed. In [14] (see Question 3.9) the problem of the truncated moment sequences and

its connection with subnormality of commuting multi-operator arose.

The connection between the full and truncated K-moment problems has been studied in [9],

[10] for K = [a; b] � IR.

In [2], we consider the truncated moment problem in the one dimensional case and its

connection with the subnormal completion problem. In this paper we investigate the closed

relation between the full and the truncated K-moment problem for K � IR2. More precisely,

the linear recurrence relations (1) allow us to solve the truncated moment problem (2) for a
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sequence �r;s = f!n;mg0�n�r�1; 0�m�s�1 in the case when �r;s is a set of initial values of a

sequence (1).

This paper is organized as follows. In Section 2 we consider the relation between sequences

(1), linear forms and properties of the representing measures. Section 3 is devoted to the

existence of solutions of the K-moment problem (2) for sequences (1), using Cassier-Vasilescu's

method. Finally, in Section 4 we investigate the connection of our method with Curto-Fialkow

schemes and we give an explicit example.

2 Moment problem for sequences (1).

2.1 Sequences (1) and linear forms.

Let fWn;mgn; m�0 be a sequence (1). A direct computation shows that, for all n � r � 1 and

m � s� 1, we have

Wn+1;m+1 =
Pr�1

i=0 aiWn�i;m+1

=
Pr�1

j=0 bjWn+1;m�j

=
P

0�i�r�1;0�j�s�1 aibjWn�i;m�j:

(3)

Equation (3) gives the compatibility condition of the two relations of (1). Hence the sequence

fWn;mgm; m�0 is well de�ned.

Consider the linear form L : IR[X;Y ] ! IR given by

L(XnY m) =Wn;m ; for all n; m � 0: (4)

From (1) and (3) we derive that, for all n � 0, m � 0 and k � 0, we have

L(XnY kP1(X)) = 0 and L(XkY mP2(Y )) = 0; (5)

where P1(X) = Xr � a0X
r�1 � � � � � ar�1 and P2(Y ) = Y s � b0Y

s�1 � � � � � bs�1. Conversely,

suppose that the linear form (4) satis�es (5). Then the sequence fWn;mgn; m�0 de�ned by

L(XnY m) =Wn;m is a sequence (1), associated to the two polynomials P1(X) and P2(Y ).

2.2 Representing measure.

Let �p;q = fn;mg0�n�p; 0�m�q be a sequence of real numbers. A generating measure � associated

to �p;q is a real Borel measure satisfying:

n;m =

Z
K
xnymd�(x; y) ; for 0 � n � p, 0 � m � q and Supp(�) � K; (6)
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Let fWn;mgn�0; m�0 be a sequence (1) associated to polynomials P1(X) and P2(Y ). Let f�0 �

�1 � � � � � �r�1g and f�0 � �1 � � � � � �r�1g be the two sets of characteristic roots of P1(X)

and P2(Y ) respectively.

It is obvious from (1) that for anym0 (respectively n0) the sequence fWn;m0gn�0 (respectively

fWn0;mgm�0) is a recursive sequence. Hence, in the case of moment sequences, fWn;m0gn�0

(respectively fWn0;mgm�0) is associated with a minimal polynomial Pm0 (respectively Qn0)

with distinct roots, where Pm0 is a divisor of P1 (respectively Qn0 is a divisor of P2) (see [2]).

Hence we can suppose without loss of generality that P1(X) and P2(Y ) have distinct roots. We

have the following.

Proposition 1 Let fWn;mg1�n�r�1;1�m�s�1 be a sequence (1). Suppose that the two polynomi-

als P1(X) = Xr�a0X
r�1�� � ��ar�1 and P2(Y ) = Y s�b0Y

s�1�� � ��bs�1 have distinct real roots

f�0 < �1 < � � � < �r�1g and f�0 < �1 < � � � < �r�1g respectively. Then fWn;mg1�n�r�1;1�m�s�1

admits a generating atomic measure.

Proof : Consider the atomic measure given by

� =
X

0�i�r�1

0�j�s�1

�i;j�(�i;�j):

Then � is a generating measure associated to fWn;mgn;m�0 if, and only if the sequence

f�i;jg1�0�r�1;0�j�s�1 satis�es the following linear system of r:s equations

X
0�i�r�1

0�j�s�1

�i;j�
n
i �

m
j =Wn;m for 1 � n � r � 1; 1 � m � s� 1:

As the determinant of the preceding system of equations is nonzero (namely its absolute value

is
Q
i<j

(�i � �j)
r(�i � �j)

s), we derive the existence of the atomic measure �. 2

In the proof of Proposition 1, if p = r � 1 < q = s � 1 for example, we can complete our

system of equations recursively to get q2 equations (explicit computations in the case where

r = s = 2 are given in section 4).

Let � be a generating measure of a sequence �p;q = fn;mg0�n�p; 0�m�q on K. If � � 0 we

say that � is a representing measure of �p;q = fn;mg0�n�p; 0�m�q on K.

In the sequel we consider thatK = [�0; �r�1]�[�0; �s�1]. ThenK = f(x; y) 2 IR2;Qj(x; y) �

0; j = 1; 2; 3; 4g, where Q1(x; y) = �r�1 � x, Q2(x; y) = �s�1 � y, Q3(x; y) = x � �0 and

Q4(x; y) = y � �0. Thus K is a semi-algebraic compact subset of IR2 (see [5] and [14] for

example).

The linear recurrence relations (1) allow us to establish the following reduction property.
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Lemma 1 Let fWn;mgn;m�0 be a sequence (1) and � be a positive measure supported by K.

The following are equivalent.

(i) � is a representing measure of the sequence fWn;mgn;m�0 .

(ii) � is a representing measure of the truncated sequence fWn;mg0�n�2r;0�m�2s.

Let � be a discrete positive measure on IR2 with supp(�) � K given by

� =
X

0�i�r�1;0�j�s�1

ai j�(xi;yj);

where ai j 2 IR and �(a;b) is the Dirac measure at (a; b). The moment sequence f�n; mgn;m�0

associated to � on K is

�n; m =

Z
K
xnymd�(x; y) =

X
0�i�r�1;0�j�s�1

ai jx
n
i y

m
j :

We have

�n+1;m =
r�1X
i=0

ci�n�i;m; for n � r � 1 and �n;m+1 =
r�1X
j=0

dj�n;m�j ; for m � s� 1;

where the coe�cients ci (0 � i � r � 1) and dj (0 � j � s � 1) are given as follows Q1(X) =

�r�1
j=0(X�xj) = Xr�c0X

r�1�� � ��cr�1 and Q2(Y ) = �s�1
j=0(Y �yj) = Y s�d0Y

s�1�� � ��ds�1.

Hence f�n mgn;m�0 is a sequence (1), whose initial values are f�n mg0�n�r�1;0�m�s�1.

Let fWn; mgn;m�0 be a sequence (1). Suppose that fWn; mg0�n�2r;0�m�2s has a representing

measure � on K � IR2. From Lemma 1 we derive that Wn; m =
R
K xnymd�(x; y) for all n � 0

and m � 0. The relation (1) implies that
R
K R(x; y)P1(x)d�(x; y) =

R
K S(x; y)P2(y)d�(x; y) = 0

for all R, S in IR[X;Y ]. Thus P1(X)� = P2(Y )� = 0, which implies that supp(�) � f(x; y) 2

IR2;P1(x) = 0g \ f(x; y) 2 IR2;P2(y) = 0g. Hence supp(�) � f�0 < �1 < � � � < �r�1g � f�0 <

�1 < � � � < �r�1g and we have � =
P

0�i�r�1;0�j�s�1 ai j�(�i;�j). Thus we have the following

property.

Proposition 2 Let fWn; mgn;m�0 be a sequence (1). Then the following are equivalent.

(i) There exists a representing measure � of fWn; mgn;m�0 on K.

(ii) There exists a representing measure � of fWn; mg0�n�2r;0�m�2s on K.

(iii) There exists � a representing measure of fWn; mg0�n�2r;0�m�2s on K with a �nite support.

(iv) There exists � a representing measure of fWn; mg0�n�r�1;0�m�s�1 on K with supp(�) �

Z(P1)� Z(P2) = f�0 < �1 < � � � < �r�1g � f�0 < �1 < � � � < �r�1g.

3 Existence of solutions.

3.1 Reduction properties for sequences (1).

In [4] and [5] Cassier gives some criteriums on the existence of the solution of the fullK-moment

problem (2) in dimension n, where K is a semi-algebraic compact set of IRn. Schmudgen had
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studied the K-moment problem for semi-algebraic sets (see [12]). In [14] Vasilescu had considered

the moment problem for multi-sequences on some explicit test set and applied this to establish

the connection between the moment problem and subnormality.

Consider the following notations from [4], let A(K) be the set of a�ne forms on IR2 which

can be identi�ed with IR1[X;Y ] and set

� A+(K) = fT 2 A(K);T � 0 on Kg

� G(K) = fT 2 A+(K); T 6= 0 and generate extremal gernerating in A+(K)g

� G1(K) = fT 2 G(K); kTk = sup(x;y)2K jT (x; y)j = 1g

� �(K) = fT = �p
i=1Ti; p � 1; Ti 2 G1(K)g [ f1g

For r; s � 2, we consider the following IR-vector space

IRr�1; s�1 = fT 2 IR[X;Y ]; degXT � r � 1 and degY (T ) � s� 1g

where degX (respectively degY ) is the degree in the variable X (respectively Y ).

Let P1(X) = Xr�a0X
r�1�� � � �ar�1 and P2(Y ) = Y s� b0Y

s�1�� � � � bs�1. Note that for

all T (X;Y ) 2 IR[X;Y ] there exist Q1(X;Y ), Q2(X;Y ) and R(X;Y ) with degXR(X;Y ) � r� 1

and degYR(X;Y ) � s� 1 such that

T (X;Y ) = Q1(X;Y )P1(X) +Q2(X;Y )P2(Y ) +R(X;Y ): (7)

Set

�r; s(K) = fH := T �Q1P1 �Q2P2 = T 2 �(K) andQ1; Q2 2 IR[X;Y ]g \ IRr�1; s�1[X;Y ]

Thus we derive from (4)-(5) that we have L(T (X;Y )) = L(R(X;Y )), where R(X;Y ) is given

by (7). Hence, using equation (5), we have the following property.

Proposition 3 Let fWn;mgn;m�0 be a sequence (1) and L be the associated linear form de�ned

by (4). Then we have L(T ) � 0 for all T 2 �(K) if and only if L(R) � 0 for all R 2 �r;s(K).

Let P (K) be the convex set of linear forms L on IR[X;Y ] such that L(1) = 1 and L(T ) � 0

for all T 2 �(K). Let Q 2 IR[X;Y ], then we have S = (kQk1+�Q)jK � 0, where kQk =

sup(x;y)2K jQ(x; y)j. This implies that L(S) = kQk+�L(Q) � 0, thus jL(Q)j � kQk. Using

Hahn-Banach Theorem and Proposition 2 we get the following reduction Lemma.

Lemma 2 Let fWn;mgn;m�0 be a sequence (1) and L be the associated linear form de�ned by

(4). Suppose that L 2 P (K). Then the following are equivalent.

(i) There exists a probability measure � on K such that L(T ) =
R
Td� for all T 2 IR[X;Y ].

(ii) There exists a probability measure � on K such that L(T ) =
R
Td� for all R 2 IRr;s[X;Y ].
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Thus we have the following result.

Proposition 4 Let fWn;mgn;m�0 be a sequence (1) and � be a positive Borel measure on K.

Then the following are equivalent.

(i) � is a representing measure of fWn;mgn;m�0 on K.

(ii) L(T ) =
R
K T (x; y)d�(x; y) � 0 for all T 2 �(K).

(iii) L(R) =
R
K R(x; y)d�(x; y) � 0 for all R 2 �r;s(K).

3.2 Links with positive matrices.

Let � = f�i jgi;j�0 be a sequence of real numbers. To any polynomial T (X;Y ) =
P

0�i�k;0�j�p aijX
iY j

of IR[X;Y ], we associate the following in�nite matrix introduced by Cassier (see [4] and [5]).

MT (�) = [m(i1;j1);(i2;j2)] where m(i1;j1);(i2;j2) =
X

(k1;k2)

ak1;k2�i1+i2+k1;j1+j2+k2 :

Using Lemma 2 (of reduction) we obtain the following properties.

Proposition 5 Let fWn; mgn;m�0 be a sequence (1) and K be a compact subset of IR2. The

following are equivalent.

(i) fWn; mgn;m�0 is a moment sequence of a Borelean positive measure on K.

(ii) fWn; mg0�n�2r;0�m�2s is a moment sequence of a Borelean positive measure � of �nite

support.

(iii) The matrix m1(fWn; mg0�n�k;0�m�p) = [mi; j ] is positive for any k, p, where

mi; j = (wi1+i2;j1+j2)0�i1;i2�k;0�j1;j2�p i = (i1; j1); j = (i2; j2):

(iv) The matrix m1(fWn; mg0�n�r�1;0�m�s�1) = [mi; j] is positive, where

mi; j = (wi1+i2;j1+j2)0�i1;i2�r�1;0�j1;j2�s�1:

Proof.

� The equivalence (i)() (ii) is due to Lemma 2 (of reduction).

� For (i)() (iii) see [4] or [5].

� (ii)() (iv).

- (ii) =) (iv) is obtained from a direct computation by considering the linear positive

form L(f) =
R
K f(x; y)d�(x; y).

- (iv) =) (ii). The �rst relation of (1) means that for any �xedm the sequence fWn; mgn�0

is a linear recursive sequence of order r. Hence there exist r real numbers Cj;m (0 � j �

r � 1) such that

Wn;m = C0;m�
n
0 + C1;m�

n
1 + � � � +Cr�1;m�

n
r�1;
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for any n � 0 (see [8] for example). The second relation of (1) implies that for any �xed j

the sequence fCj;mgm�0 is a recursive sequence of order s. Thus Cj;m = dj;0�
m
0 +dj;1�

m
1 +

� � �+ dj;s�1�
m
s�1, where dj;0, dj;1,...,dj;s�1 are constant real numbers. Hence we derive that

for any n; m � 0 we have Wn;m =
P

0�i�r�1;0�j�s�1 ai;j�
n
i �

m
j . This implies that

Wn;m = L(XnY m) =

Z
K
xnymd�(x; y); (8)

where � =
P

0�i�r�1;0�j�s�1 ai;j�(�i;�j) and K = [�0; �r�1]� [�0; �s�1]. To prove that � is

positive it su�ce to have ai;j � 0 in the expression (8). Consider fi;j =

Q
(k;p)6=(i;j)

(X��k)(Y��p)

Q
(k;p)6=(i;j)

(�i��k)(�j��p)
2

IR[X;Y ]. Hence fi;j(�i; �j) = 1 and fi;j(�k; �p) = 0 for any (k; p) 6= (i; j) and we have

L(f2i;j) =

Z
K
f2i;jd� = ai;j =< Mfi;j; fi;j >� 0:

Hence � is a Borelean positive measure of �nite support.2

3.3 Weakly multiplicative case.

Let fWn; mgn;m�0 be a sequence (1) and consider the linear form L : IR[X;Y ] �! IR de�ned

by L(XnY m) =Wn;m. We say that L is weakly multiplicative if L(XnY m) = L(Xn)L(Y m), for

all n;m � 0. Thus we have W0;0 = 1 and Wn;m = UnVm where Un =Wn;0 and Vm =W0;m. We

can easily derive that fUngn�0 and fVngm�0 are de�ned by classical linear recurrence relations

of order r and s respectively.

Proposition 6 Let fWn; mgn;m�0 be a sequence (1) and K be a compact of IR2. Suppose that

Wn;m = L(XnY m) = L(Xn)L(Y m) for all n; m � 0. Then the following are equivalent.

(i) fWn; mgn;m�0 is a moment sequence of positive Borel measure � with supp(�) � K.

(ii) fUngn�0 and fVngm�0, where Un = Wn;0, Vm = W0;m, are two sequences of moments of

positive Borel measures �1, �2 on IR (respectively).

In this case we have � = �1 
 �2.

Proof.

� (i) =) (ii). We have Wn;m = L(XnY m) =
R
K xnymd�(x; y). We identify IR[X] to a

subspace of IR[X;Y ] and set L1 = LjIR[X]. Hence Un = L1(X
n) =

R
K xnd�(x; y), and for

any S 2 IR[X] such that SjK � 0 we have L1(S) � 0. By a classical process of extension

([4], [5], [9] for example) we get from L1 a positive Borel measure �1 on K1; the projection

of K in IR � IR� f0g, such that Un =
R
K1

xnd�1(x).

Using the same argument we exhibit a positive Borel measure �2 on K2; the projection of

K in IR � f0g 
 IR, such that Un =
R
K1

xnd�1(x).
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� (ii) =) (i). Let �1, �2 be the representing measure of fUngn�0 and fVngm�0 and Kj =

supp(�j) (j = 1; 2). Consider the positive Borelean measure � = �1 � �2 on IR2. Then we

can easily verify that fWn; mgn;m�0 is a moment sequence of � on K = K1 �K2. 2

Let fWn; mgn;m�0 be a sequence (1) such that Wn;m = UnVm. Consider the two Hankel matrices

HU(r � 1) = [Ui+j ]0�i;j�r�1 and HV (s� 1) = [Vi+j ]0�i;j�s�1:

From [2] and Proposition 6 we derive the following,

Proposition 7 Let fWn; mgn;m�0 be a sequence (1) such that Wn;m = UnVm. Let � be a positive

Borel measure on a compact subset K of IR2. Then the following are equivalent.

(i) fWn; mgn;m�0 is a moment sequence of �.

(ii) fWn; mg0�n�2r;0�m�2s is a moment sequence of �.

(iii) fUngn�0 and fVngm�0 are two sequences of moments of positive Borel measures �1, �2 on

IR (respectively).

(iv) HU (r � 1) � 0 and HV (s� 1) � 0.

4 Concluding remarks and Example.

4.1 Application to Curto-Fialkow schemes.

Let �2r = fWn;mg0�n+m�2r be a sequence of real numbers. Suppose that �2r is a sequence of

moment of positive measure � on IR2. Then � is a representing measure of �2r and

Wj;k =

Z
xjykd�(x; y);

for 0 � j + k � 2r. Let lC[X;Y ]2r be the lC-vector space of polynomials in two variables X, Y of

degree � 2r. Consider the bilinear form � : lC[X;Y ]2r ! lC de�ned as follows

�(XnY m) =Wn;m;

for any n, m such that 0 � n+m � 2r. Let fUn;mg0�n+m�2r be the sequence de�ned by

Un;m = �([X � iY ]n[X + iY ]m);

where i2 = �1 and 0 � n +m � 2r. Using [6](see section 6.2.2) and also [13], we derive that

�2r = fWn;mg0�n+m�2r is a truncated moment sequence on IR2 if and only if fUn;mg0�n+m�2r

is a truncated moment sequence on lC .

Suppose that fUn;mg0�n+m�2r is a truncated moment sequence on lC. It is also established in

[6] that fUn;mg0�n+m�2r had a representing r-atomic discrete measure � on lC, where we have

� =
r�1X
k=0

ak��k+i�k :
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If we set d�(x; y) = d�(x+iy; x�iy). We derive that � is a representing measure of fWn;mg0�n+m�2r

on IR2 and

Wn;m =

Z
(
z + z

2
)n(

z � z

2i
)md�(z; z) =

Z
xnymd�(x; y) =

r�1X
k=0

ak�
n
k�

m
k :

Hence � is a discrete representing measure of fWn;mg0�n+m�2r on IR2. Thus we have the

following property.

Proposition 8 Let fWn;mg0�n+m�2r be a truncated moment sequence of positive measure � on

IR2. Then there exists fVn;mgn;m�0 a full moment sequence (1) on IR2 such that Vn;m = Wn;m

for all n;m with 0 � n+m � 2r.

The following corollary shows the important role that sequences (1) play in the treatment of

the truncated moment problem.

Corollary 1 Let �2r = fWn;mg0�n+m�2r be real numbers. The following are equivalent.

1. �2r admit a representing measure.

2. �2r admit a �nitely atomic representing measure.

4.2 Example.

We give here an example of truncated sequence in the case of r = s = 2 going through all

computations for generating measure. Let fW0;0(= 1);W0;1;W1;0;W1;1g given real numbers and

fWn;mgn�0;m�0 a sequence (1) associated to the polynomials P1(X) = (X � �0)(X � �1) and

P2(Y ) = (Y � �0)(Y � �1) with �0 6= �1 and �0 6= �1. A measure � = C0;0��0;�0 + C1;0��1;�0 +

C0;1��0;�1 + C1;1��1;�1 is a generating measure for Wn;m if and only if (Ci;j)i�1;j�1 satisfy the

following system of equations
8>>><
>>>:

C0;0 +C1;0 + C0;1 + C1;1 = W0;0(= 1)
C0;0�0 + C1;0�0 + C0;1�1 + C1;1�1 = W0;1

C0;0�0 + C1;0�1 + C0;1�0 + C1;1�1 = W1;0

C0;0�0�0 + C1;0�0�1 +C0;1�1�0 + C1;1�1�1 = W1;1:

The determinant of the preceding system of equations is

���������

1 1 1 1
�0 �0 �1 �1
�0 �1 �0 �1
�0�0 �0�1 �1�0 �1�1

���������
= �((�1�

�0)(�1��0))
2 6= 0, thus we get the existence of �. Suppose that the solutions Ci;j (0 � i; j � 1)

are nonnegative, then the measure � is representing for fWn;mgn�0;m�0 on K.
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