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Introduction

The transient behaviour of superconducting cables is determined by

intrinsically coupled thermal, hydraulic effects. This interaction is observed

in dedicated experiments as well as in operating magnets. Examples of

coupling are the helium induced flow that affects stability and quench

propagation in force-flow cooled cables [1], [2] and the limitation found on

the quench current during ramps in multi-strand cables that is thought to be

caused by premature current sharing due to large current imbalances among

strands [3], [4]. Not only magnet quench, but also field quality in accelerator

magnets is influenced by the current distribution in the superconducting

cables through interaction with the filament magnetization [5], [6]. Finally,

the balance of thermal and electrical strand contacts has been found to affect

greatly the stability of a cable [7], [8].

This abridged list of examples shows that it is of paramount importance to

understand and possibly control the coupling between thermal, hydraulic

and electric phenomena in superconducting cables. In spite of this need, as of

today the quantitative impact of the coupled phenomena involving a non-

uniform current distribution is not well assessed. The reason is that the

coupling of phenomena makes the analytical treatment of the transient

response exceedingly difficult. This is in particular true in kA-class, low-Tc

superconducting cables, where the coupling among the thermal, hydraulic

and electric phenomena takes place on time scales relevant for stability and

operation [9]. As a consequence, many discussions on parameters affecting

the phenomena involved, e.g. interstrand resistance, lack a sound basis.

Experimental results are then frequently open to widely different and

sometimes discordant interpretations.

We believe that the above issues are, at least in part, related to the lack of

proper simulation tools that could be used to disentangle the phenomena. In
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particular while thermal and hydraulic phenomena have been addressed in a

consistent manner for several years, the attempts to deal consistently with

current distribution in a general model for a superconducting cable have been

few and scattered [7], [8], [10]. In [9] we have advocated that a general tool,

providing consistent treatment of thermal, hydraulic and electric transients is

within reach using state-of-the-art numerical solvers for partial differential

equations (PDE). In this paper we describe our approach to achieving this

objective.

Our approach to the problem is to divide the cable in a set of domains. We

then define the differential equations that govern the evolution of the state

variables for each domain. The first domain is the set of the N thermal

components where the temperature field is described by a set of diffusion

equations. The second domain is the set of H cooling channels, the hydraulic

components, where flow pressure, velocity and temperature are described by

mass, momentum and energy conservation balances. Finally the third domain

is the set of E electric, current-carrying components where the current

behaviour is described by a set of semi-continuum circuital equations. The

three domains are coupled explicitly through relations among the state

variables, or implicitly through material properties that depend on the value

of the state variables of other domains.

To derive the system of PDE, we make the fundamental assumption that the

components in the cable have a large ratio of length to cross sectional

dimension, so that the equations can be written in 1-D, neglecting the

transverse dimensions in the cable cross section. Taking several coupled

components in parallel we finally obtain a 1-D model that is topologically

equivalent to the 3-D situation in the cable.

In the paper we will present the equations forming the system of PDE, and

where necessary we will detail their derivation. We will then put the system
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of equations in a form convenient for numerical treatment, and broadly

describe a solution strategy. The flexibility of the model is demonstrated by

an application example involving the interaction among the three coupled

fields.

Heat conduction model

The N thermal components of a superconducting cable can be of varied

nature: superconducting strands, structural components, electrical barriers,

insulators. All these materials can generate Joule heat, transport heat by

conduction, and exchange heat at their mutual interfaces and at the interface

with a cooling medium. Assuming that the transverse dimension of each

component is small with respect to its length we can write a general 1-D heat

transport equation for each component i:
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where Ai is the cross section of the component, in principle a function of

position, ρi its density, Ci the specific heat, ki the thermal conductivity and Ti

the temperature. We allow each component to have an internal structure,

assuming that the temperature within the cross section of the component is

constant. This is for instance the case of a superconducting strand composed

of superconducting filaments embedded in a stabilizer matrix. For each

component the total cross section is obtained as sum of the partial cross

sections of the constituents, The homogenised density and thermal

conductivity are obtained using an area weighting, and the homogenised

specific heat using a weighting based on the mass of the constituents.

The sources in Eq. (1) are the external heating term iq′� , the Joule heat iJouleq ,′�  if

the component is carrying a current, and the heat exchanged with other

thermal components or coolants modeled by the last two summations in Eq.
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(1). In the case of heat exchange among thermal components we have

introduced the thermal resistance per unit length Hij between components i

and j (this last at temperature Tj). The heat exchanged with H different

coolant channels depends on the wetted perimeter pih and heat transfer

coefficient hih with the coolant flowing in channel h at temperature Th. We will

discuss the details of the heat transfer coefficient when dealing with the

model for the hydraulic components.

Boundary conditions

Boundary conditions for the thermal problem can be of two types: prescribed

temperature or prescribed heat flux. The first case, prescribed temperature, is

expressed as:

boundaryi TT = (2)

where Tboundary is the temperature at the boundary. In the case of prescribed flux

we write:

boundary
i

ii q
x

T
kA =−

∂
∂

(3)

where qboundary is the heating power at the boundary. Adiabatic conditions are

obtained if qboundary=0.

Joule heat

The Joule heat term depends on the current carried by the cable component Ii

and on the electric field Vi developed along its length. In general terms we

can write that:

iiiJoule VIq =′ ,� (4)
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where, for consistency with the 1-D approximation made so far, we have

assumed that current and electric field have the same direction. Note that this

assumption is no longer exact if the current redistributes along the length of

the cable. In this case additional heat is generated in the transverse resistance.

As discussed later, for the scope of this discussion we neglect this effect. In

the case of a purely resistive material there is a linear relation between the

electric field and current density in the material:

i
ii

i I
A

V
σ
1= (5)

where σi is the average electrical conductivity of the component. In the case of

a component with an internal structure and several constituent materials we

define an homogeneised electrical conductivity weighted according to the

area.

For a component containing a superconducting material in parallel with a

stabilizing shunt the relation is more complex. The electric field in a

superconducting strand or cable is obtained experimentally and is usually

fitted using a power law:

n

c

i
i

I
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



= 0 (6).

The constant V0 is the electric field set as the criterion to define the critical

current Ic. The typical range for V0 is 10-4 to 10-5 V/m (corresponding to more

common units of 1 to 0.1 µV/cm). The constant n in Eq. (6) defines the electric

field dependence on current in the proximity of the Ic transition. Strands and

cables with uniform properties are characterised by a large value of n, of the

order of 10 and above.
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To obtain a general expression for the Joule heat dissipation in the composite

component containing a superconductor we distinguish the superconducting

cross section Asc from the other (stabilizing) materials, with a total cross

section Ast. For these last we define an equivalent conductivity σst. The total

current in the component Ii splits in a part through the superconductor Isc and

a part in the stabilizer Ist = Ii - Isc such that the longitudinal electric field in

both components is identical. The split itself depends on the non linear

voltage-current relation for the superconductor, which could be different

from Eq. (6) as the measurements used to establish it contain the

contributions of both superconductor and stabilizer to the longitudinal

voltage. In principle a relation of the type of Eq. (6) can be obtained from

measurements for the superconductor only, correcting for the current sharing

in the stabilizer. However it can be shown that in the range of V0 and n

parameters given above the current flowing in the stabilizer is small.

Therefore we can safely assume that Eq. (6) is valid for the superconductor

alone, substituting the total current in the component with the current in the

superconductor.

The longitudinal voltage equality in the superconductor and in the stabilizer

can be therefore written as follows:

n
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which is an implicit equation for the current in the superconductor. Equation

(7) can be solved by an iterative technique to obtain Isc and the longitudinal

electric field. The total Joule heat dissipation is then given by Eq. (4).

Note finally that in accordance to the power law dependence in Eq. (6), the

electric field is small below the critical current density, rising very quickly to

large values above Ic. For this reason this dependence is often modelled as a
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step function, with a step from zero to infinite electric field located at Ic. Here

we prefer to retain the non-linear expression above for generality, still with

the possibility to specialize it to the simpler case of a step in the electric field

that can be obtained choosing a very large n (ideally infinite).

Thermal resistances

In Eq. (1) we have introduced the thermal resistance among two thermal

components Hij to model thermal coupling within a cable. The corresponding

values can be estimated in the case of soldered cables, where the thermal

coupling takes place through thermal conduction. Such an estimate is not

possible in the case when the thermal coupling takes place through contact

surfaces, such as in multi-strand Rutherford or bundled cables. Lacking

experimental measurements of thermal resistances, estimates can be obtained

assuming that the electrical and thermal contact resistances are correlated

through the Wiedeman-Franz-Lorenz law [8]:

TL

R
H ij

ij

0

= (8)

where Rij is the interstrand resistance per unit length, L0 is the Lorenz number

(2.45 10-8 [ΩW/K2]) and T is the average temperature of the two components.

In this manner we profit from the fact that the electrical resistance is a key

parameter for AC loss considerations, and is therefore often available through

measurements or estimates for multi-strand cables. We stress that the above

approximation is justified only to evaluate orders of magnitude. The analogy

to a conductive material is not necessarily verified, and important effects such

as surface contact nature (e.g. sintering) or the presence of stagnant helium

permeating a cable are not taken into account.

Flow model

The flow model is written for a set of H parallel, 1-D channels that can

exchange mass, momentum and energy among them. The coupling of the
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channels can happen either through convection heat transfer at the mutual

interface, or through direct mass transfer from one flow to the other. In

Appendix A we detail how to obtain the set of the three following equations

for the volumetric flow Vh = Ahvh, the pressure ph, and the temperature Th of

the coolant:
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(11).

where Ah is the cross section of the channel (in principle variable along the

length), ρh, is the density and vh is the velocity of the coolant in the channel.

The equations above contain the isentropic sound speed ch, the specific heat at

constant volume Ch, the specific enthalpy hh and the Gruneisen parameter ϕh.

Note that, as shown in Appendix A, the equations above do not contain any

approximations with respect to the conservative form and they are valid for

any coolant fluid.

The quantity Fh is the friction force defined using the friction factor fh and the

hydraulic diameter Dh as:

hh
h

h
hh vv

D

f
F ρ2= (12).
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The quantities ρ
hkΓ , v

hkΓ  and e
hkΓ  are the distributed sources of mass,

momentum and stagnation enthalpy per unit length of channel, originating

from expulsion (or injection) of helium into (or from) another channel with

index k and from heat exchange. Fluxes are positive if they correspond to a

net massflow from channel h to channel k. Finally the source terms hq′�  and

hcfq ,′�  represent respectively the heat that enters the channel h per unit length

through convection at the wetted perimeter and the heat flux due to the

counterflow mechanism in superfluid conditions. For the moment it is

convenient to maintain the sources in this general notation.

Boundary conditions

The imposition of boundary conditions to the fluid flow is a delicate matter,

that should take into account the sign of the characteristics at the boundary

[11]. We have found that in the non-conservative form described above it is

possible to impose accurate boundary conditions in a simpler manner if we

limit our choice to a closed pipe condition, or alternatively to in- and outflow

into a volume at given pressure and temperature [12]. The first case (closed

pipe) is imposed setting:

Vh = 0 (13).

In the second case, volume in- and out-flow, we match the number of

conditions imposed to the number of characteristics entering or exiting the

boundary surface. In particular we have the following possibilities

Case 1. Subsonic inflow (vh < ch).

In this case we have 2 entering characteristics, 1 exiting characteristic. Two

variables are specified

ph = pboundary (14a)
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Th = Tboundary (14b)

where pboundary and Tboundary are the values of pressure and temperature at the

boundary.

Case 2. Supersonic inflow (vh > ch).

For supersonic inflow we have 3 entering characteristics and no exiting

characteristic. Three variables must be specified:

ph = pboundary (15a)

Th = Tboundary (15b)

Vh = Aboundarycboundary (15c)

where cboundary is the sound speed at the boundary and Aboundary is the channel

cross section at the boundary.

Case.3 Subsonic outflow (vh < ch).

In this case we have 1 entering characteristic, 2 exiting characteristics, and

only one variable can be specified:

ph = pboundary (16).

Case 4. Supersonic outflow (vh > ch).

For supersonic outflow there is no entering characteristic and 3 exiting

characteristics. In this case no boundary condition can be specified.
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External source terms

The external source for the flow are represented by heat transfer at the wetted

perimeter of the channel, in contact with solid walls. We write the generic

source term as:

( )∑
=

−=′
N

i
hiihihh TThpq

1

� (17)

where the sum is extended on the N solid walls of the thermal components

with index i in thermal contact with the channel h, pih is the wetted perimeter,

hih is the heat transfer coefficient and Ti is the wall temperature.

Counterflow heat exchange in superfluid helium

The counterflow heat transport mechanism is peculiar of heat transfer in

superfluid helium (or helium II). This term has a form of a non-linear

diffusion [13]:
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thermal conductivity function κh as:
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Transverse fluxes

To give an explicit expression for the transverse fluxes we indicate with vhk

the transverse velocity from channel h to channel k, and we assume that the

two channels have a boundary delimited by a perimeter phk of which the

fraction πhk is perforated. We have [14]:
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where hkm�  is the massflow from channel h to channel k per unit channel

length. We assume that the transverse flow between the channels can be

modelled as a discharge between two volumes at different pressure [15]. The

transverse flow velocity vhk is then given by:

( )khhkhk ppv −= α (23)

where the coefficient αhk is given by:

kh
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=
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α 2
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The quantities ρ , v  and h  in Eqs. (20) through (24) are respectively the

density, flow velocity and specific enthalpy taken from the upstream

conditions of the transverse flow, i.e.:
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In Eq. (22) the two terms take into account the fact that energy transfer

between the two channels can happen either through mass convection (first

term on the r.h.s.), or through heat transfer at the boundary (second term on

the r.h.s.). The heat transfer happens on the interface perimeter phk with an

equivalent heat transfer coefficient hhk.

Heat transfer models

The heat transfer coefficients hih between the coolant in channel h and the

solid wall i, or hhk between coolant flows h and k are computed using

empirical correlations. At present this is the most general approach as it relies

on experimental data. Correlation models for the heat transfer coefficient

have typical data fitting accuracy in the range of some 10 %, and predictive

capability within a factor 2.

Friction factor models

Similarly to the heat transfer coefficient, the friction factor of the flow is

computed based on empirical correlations. Correlation models for the friction

factor coefficient have typical data fitting accuracy within a factor 2.

Electrical model

The electrical model adopted here focuses on a cable formed of E parallel

electrically conductive components characterised by a non-linear longitudinal

resistance, mutual and self inductance. Within the frame of the model the

generic component can be a single strands, a cable subunit, a segregated

stabilizer, or any electrically conducting structural component. It is further

assumed that each component has a constant current density in its cross

section, and that current transfer happens along the length of the cable in a

continuous manner through distributed electrical conductances.
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The equations governing the evolution of the currents in the components are

derived in [9], [16] and discussed in detail in [17] in the case of a Rutherford

cable. After straightforward algebra, they can be written in the following

matrix form:

l
∂I
∂t

+ rI −
∂
∂x

c−1 ∂I
∂x

 
 

 
 = ∆vext (28).

where the unknowns are the currents Ie in the components, packed in the

array I. The matrices and vectors depend on the cable geometry (e.g.

inductance per unit cable length l), its properties (e.g. transverse conductivity

per unit cable length c) and operating conditions (e.g. parallel resistance r and

external voltages ∆vext per unit cable length). See [17] for more details on their

structure.

Boundary conditions

The boundary conditions for the current diffusion in a cable are dominated

by the details of the connection of the cable components within the coil (i.e.

joints) or to the coil ends. In fact, the conditions at the boundary can be the

leading effect for the current distribution along a cable. One such example is

the distribution of transverse contact resistances within a joint. To avoid the

significant complication that could be induced by the necessity of handling

several different types of boundary conditions, we have chosen to include the

details of the connections within the analysed domain. This is possible as the

model described here takes into proper account longitudinal and transverse

resistance variations along the cable length. For the boundary itself we have

then considered only two simple limiting cases: components insulated and

individually fed, or shorted together. In the first case, if the components are

all insulated at the cable end, the current is imposed by an external circuit,

i.e.:

Ie = I boundary (29)
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where Iboundary is the current at the boundary. In any case the total current must

be conserved at the boundaries, and this implies that the above boundary

condition can only be imposed on E-1 of the E electrical components.

In the second case, if all components are shorted together, the voltage

differences are by definition zero and the equivalent boundary condition is

(see also [16] and [17] for a discussion of this boundary condition):

∂Ie

∂x
= 0 (30).

Coupling with heat conduction model

To model the current distribution in a cable, the electrical model needs to be

coupled to the heat conduction model described earlier. This is obtained

matching a set of electrical components to corresponding thermal

components. The coupling between the two domains is based on the fact that

the longitudinal resistance matrix r appearing in the electrical model depends

on the temperature computed in the heat conduction model, while the current

Ii and the Joule heat generation in the thermal component depend on the

current distribution computed in the electrical model. In addition if current

transfer takes place between components, heat is dissipated in the transverse

conductance.

The last effect is important to analyse the AC loss properties of a cable, and is

included in our model using the formalism of [17]. The heating source due to

current transfer is computed using the voltage differences among electric

components. This calculation requires the knowledge of the space derivative

of the current in each component, 
x

I e

∂
∂

, and manipulation of the transverse

conductance matrix. Although conceptually simple, the calculation is rather

cumbersome. For the sake of simplicity we omit here the discussion of this
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additional heat source.  This is justified also considering the fact that in the

case of stability and quench transients in a cable with optimised current

density the heat source associated with transverse current transfer is

generally small compared to the Joule heating.

Finally, and for generality, we assume in the model that the matching is not

necessarily one-to-one, i.e. a single electrical component can model the

current flow in several parallel thermal components, or conversely one

thermal component can model the temperature evolution in several parallel

electrical components. The entries in the longitudinal resistance matrix for an

electrical component are computed as the parallel resistance of all the thermal

components coupled to it. By analogy we distribute the current of an

electrical component among the coupled thermal components according to

the parallel of the longitudinal resistances.

Matrix form and system solution

The equations presented so far are numerous and cumbersome to treat

singularly. It is much more convenient to write in the following compact form

for a parabolic-hyperbolic system of partial differential equations amenable

of unified treatment:

qsu
u

g
u

a
u

m =+




−+

xxxt ∂
∂

∂
∂

∂
∂

∂
∂

(31)

where the vector of unknowns u(x,t) is defined assembling the unknowns of

each PDE as derived for heat conduction in the N thermal componments,

conservation balances in the H cooling channels and current distribution

among E conducting materials, i.e.:
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The vector u has therefore size N+H+E. The matrices appearing in Eq. (5.1)

have a block structure that can be written easily identifying terms in the

equations discussed in the previous sections.

For the solution of the system of PDE Eq. (31) we have chosen a finite element

method in space [18] and a finite difference algorithm of the Beam-Warming

family in time [19]. Practice [12] has shown that the combination of an

independent space discretization and time marching algorithm provides a

flexible and accurate mean to solve large systems that involve coupled

strongly parabolic equations, as is the case for the thermal and electric

components, and hyperbolic equations, as for hydraulic components. We

have programmed the solver using Lagrangian elements with up to 6 nodes

(5th order interpolation). The time marching scheme has up to 4th order

accuracy, automatic step adaption and error control. High accuracy for both

space and time integration is necessary to avoid growing errors such as

numerical quench-back [20].

An example of application

As we hinted in the introduction, the model for the evolution of the

temperature and flow has been already applied and verified in several

instances against experimental data (see for instance the CHATS proceedings

[21], [22]). Current distribution in superconducting cables, on the other hand,

has not been extensively measured nor simulated. We have therefore

concentrated on one experiment performed by Krempasky and Schmidt [23]

that involves current distribution, and in particular its coupling to

temperature evolution. The experiment was performed on a two-strand cable
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prepared with a 0.3 mm diameter, NbTi/Cu strand. The cable was twisted

with a pitch of 10 mm and soldered with Sn(50%)In. In the middle of the

cable, and over a length of approximately half a twist pitch (5 mm), a loop

with a cross section of approximately 70 mm2 was formed between the

strands. The cable was wound into a test coil, with the loop placed in the coil

center, normal to the coil axis. The coil was then placed in a background

magnet providing an AC vertical field. The AC field caused a variation of the

flux linked with the loop in the centre of the sample. This induced currents in

opposite directions in the two superconducting strands, closing through the

solder along the whole cable length (supercurrents). The supercurrent

circulating in the centre of the sample was measured by means of a Hall plate

placed in the loop. In this experiment the cable behaved as a bi-filar line with

an inductance per unit length of 0.5 µH/m. The loop in the centre of the cable

length had an estimated inductance of 0.02 µH. The transverse conductivity

per unit length was 58 MS/m. Further details on the experiment, results and

interpretation can be found in [23].

We have modelled the experiment with two thermal components coupled to

two electrical components representing the two strands. An hydraulic

component, a channel with a large cross section thermally coupled to the

strands, was used to model the helium bath. Variable electrical properties

(inductance and transverse conductivity) were taken along the cable length to

model the presence of the extra loop in the centre of the cable. Because of

symmetry, only one half of the total length was modelled.

We show in Figs. 1 through 4 the comparison of experimentally measured

current and simulation results. The measurements reported in Figs. 1 and 2

were made with a sample length of 4.7 m and differ only for the field sweep

(reported in the inset). In the case shown Fig. 3 the sample length was 1.66 m,

and the field sweep was slow enough to reach steady state conditions (see

again inset in Fig. 3). In these first three cases the sample was
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superconducting throughout the transient, and the supercurrent induced

could circulate freely in the sample. The agreement of measurements and

simulations is excellent, especially noting that no geometrical or electrical

parameters were adapted from case to case to fit data.

In the last case presented, in Fig. 4, the supercurrent was induced by a 0.65 T

field sweep in 4 s. Right after the end of the sweep a 4 cm long heater

covering the center of the sample was switched on for 1.6 s. This caused a

quench of the central part of the cable, followed by a recovery as soon as the

heater was switched off. The increased longitudinal resistance pushed the

supercurrent out of the quenched region. The supercurrent still flowed in the

unquenched length of the sample, and, as soon as the central part recovered,

diffused back into the center. In this case the agreement between

experimental and simulation results is still satisfactory, although for this case

the simulation overestimates the peak current by 20 %. Examining in detail

Fig. 4 we note that the maximum error is found at the end of the field sweep,

i.e. before the heater is fired, and that the simulation is in good agreement

with the measurement during the first second. The difference between

simulation and experiment can be explained if we postulate that during the

strong field sweep, and above a certain field, the strands develop a finite

longitudinal resistance caused either by onset of saturation in the filaments or

by AC loss (i.e. a dynamic resistance). These effects are not included explicitly

in the model.

The simulations presented were run using meshes with 250 to 1500 linear or

parabolic elements, and adaptive time integration with second order

accuracy. The typical CPU time required to simulate the transients presented

was modest, ranging from 2’ to 10’ on a DEC-Alpha processor.

Conclusions

We have presented a consistent and comprehensive model for the thermal,

hydraulic and electric analysis of superconducting cables. The model, to the
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best of our knowledge, is the first that offers the possibility of a unified

treatment of the coupled fields, retains a large flexibility and is suitable for

analysis of long cable lengths. In spite of the significant complexity of the

single equations describing the evolution of temperature, flow and current,

we have finally cast them in a matrix form is simple and can be solved by a

dedicated PDE solver. We have shown that the model is manageable

applying it to a current distribution experiment that involves, in one case, the

interaction of two of the three coupled fields (thermal and electric). In these

simulations we achieved acceptable matching of the experimental data. More

validation work is needed to explore the possibilities and limitations of the

model, but we believe that already in its present status the range of potential

applications is very large, from detailed analysis of cable transients to

assistance in the design of new cable configurations, from stability margin

calculation to consistent analysis of joints.

Acknowledgements

The experimental data used for benchmarking the model were kindly

provided by C. Schmidt, FzK, Germany.

References

[1] J.W. Lue, J.R. Miller, L. Dresner, Stability of Cable-in-Conduit

Superconductors, J. Appl. Phys., 51, 772, 1980.

[2] L. Dresner, Stability of Superconductors, Plenum Press, 1995.

[3] M.M. Steeves, et al., Test Results from the Nb3Sn US-Demonstration

Poloidal Coil, Adv. Cryo. Eng., 37 A, 345-354, 1991.

[4] A. Devred, T. Ogitsu, Ramp-rate Sensitivity of SSC Dipole Magnet

Prototypes, Frontiers of Accelerator Technology, World Scientific, 184-

308, 1996.

[5] R. Stiening, A Possible Mechanism for Enhanced Persistent Current Sextupole

Decay in SSC Dipoles, SSCL-359, 1991.



22

[6] R. Wolf, The Decay of the Field Integral in Superconducting Accelerator

Magnets Wound with Rutherford Cables, Proc. of 15th Int. Mag. Tech. Conf.,

Beijing, pp. 238-241, Science Press, 1998.

[7] N. Amemiya, H. Yonekawa, T. Ogitsu, E. Kobayashi, K. Sasaki, N.

Ohuchi, K. Tsuchiya, K. Miyashita, Influence of Current Re-distribution on

Minimum Quench Energy of Superconducting Triplex Cable Against Local

Disturbance, Cryogenics, 38 (5), 559-568, 1998.

[8] M.N.Wilson, R.Wolf, Calculation of Minimum Quench Energies in

Rutherford Cables, IEEE Trans. Appl. Sup., 7 (2), 950-953, 1997.

[9] L. Bottura, Modelling Stability in Superconducting Cables, Physica C, 310(1-

4) 316-326, 1998.

[10] N. Mitchell, Analysis of Non-Uniform Current Distribution Effects in

Multistage Cable-in-Conduit Conductors, Cryogenics 39, 539-556, 1999.

[11] C. Hirsch, Numerical Computation of Internal and External Flows, J. Wiley

& Sons, 1988.

[12] L. Bottura, A Numerical Model for the Simulation of Quench in the ITER

Magnets, J. Comp. Phys., 125, 26-41,1996.

[13] L. Bottura, C. Rosso, Finite Element Simulation of Steady State and Forced

Convection in Superfluid Helium, Int. J. Num. Methods Fluids, 30, 1091-

1108, 1999.

[14] L. Bottura, Modelling the Compressible Flow in a CICC with Central Cooling

Hole, NET Internal Report N/R/0821/38/B, 1993.

[15] C.A. Luongo, C.L. Chang, Helium Transport Phenomena in the 200 kA

SMES/CICC, Adv. Cryo. Eng., 39, 847-853, 1994.

[16] L. Bottura, M. Breschi, P.L. Ribani, Electromagnetic Analysis of Current

Distribution in Multistrand Superconducting Cables, Inst. Phys. Conf. Ser.,

167, 1191-1194, 2000.

[17] A. Akhmetov, L. Bottura, M. Breschi, P.L. Ribani, A Theoretical

Investigation on Current Imbalance in Flat Two Layer Superconducting

Cables, this issue.



23

[18] O.C. Zienkiewicz, The Finite Element Method, 4th Edition, McGraw-Hill,

1991.

[19] R.M. Beam, R.F. Warming, Alternating Direction Implicit Methods for

Parabolic Equations with a Mixed Derivative, SIAM J. Sci. Stat. Comp., 1,

131-159, 1980.

[20] L. Bottura, A. Shajii, Numerical Quenchback in Thermofluid Simulations of

Superconducting Magnets, Int. J.Num. Methods Eng., 43, 1275-1293, 1998.

[21] Proceedings of CHATS-95, J. Fus. Energy, 14 (1), 1995.

[22] Proceedings of CHATS-97, C.A. Luongo ed., Cryogenics, 38 (5), 1998.

[23] L. Krempasky, C. Schmidt, Experimental Verification of “Supercurrents” in

Superconducting Cables Exposed to AC-fields, Cryogenics, 39, 23-33, 1999.

[24] V.D. Arp, Stability and Thermal Quenches in Force-cooled Superconducting

Cables, Proc. of 1980 Superconducting MHD Magnet Design Conference,

MIT, 142-157, 1980.



24

Appendix A. Non-conservative flow equations

The non-conservative form of the flow equations discussed in the text is

convenient because the pressure appears explicitly. This improves the

stability of the numerical solution, as stated in [12]. To obtain it we have

followed Arp [24]. We start from the conservative form of the mass,

momentum and energy conservation in a 1-D channel identified by the index

h:
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where we have introduced the volumetric flux:

Vh = Ahvh (A.4)

To derive the non-conservative form we make use of the following

thermodynamic relations between specific internal energy i, pressure p,

density ρ and temperature T:

di = p
ρ

−ϕCvT
 
 
  

 
 dρ

ρ
+ CdT (A.5)

c
2 −

pϕ
ρ

 
 
  

 
 dρ = dp− ϕρdi (A.6).

The relations involve the isentropic sound speed c, the specific heat at

constant volume C and the Gruneisen parameter ϕ. In addition we remember

that the relation between total and internal specific energy is:

e = i + v2

2
(A.7)

while the specific enthalpy h is related to the internal specific energy by:

h = i + p
ρ

(A.8)
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 We start now with the momentum balance, Eq. (A.2), subtracting the

continuity equation, Eq. (A.1), multiplied by the velocity, and we obtain the

momentum balance in non-conservative form:
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We now take the energy equation, and we explicitate the two terms forming

the total energy, we subtract the continuity equation multiplied by ih+vh

2/2,

and the momentum balance multiplied by vh to obtain:
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We can now use the relation (A.5) to substitute for the dih differentials in Eq.

(A.12), and we obtain:
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that can be reduced using the continuity equation (A.1) to substitute the terms

underlined and to obtain the desired energy balance in non-conservative

form:
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A third equation is needed, the non-conservative form of the continuity

balance. This is obtained substituting the dρh differential using the

thermodynamic identity (A.6) in the continuity equation (A.1):
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We reduce further the equation above, in particular the terms underlined,

adding the non-conservative intermediate form of the energy equation Eq.

(A.10) multiplied by ϕh, and we obtain:
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that is the desired non-conservative continuity balance.
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Figure 1. Measured and simulated supercurrent generated by a field

ramp in the experiment of Krempasky and Schmidt [23]. Sample length 4.7 m,

field ramp as shown in the inset.
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Figure 2. Measured and simulated supercurrent generated by a field

sweep in the experiment of Krempasky and Schmidt [23]. Conditions as in

Fig. 1, but trapezoidal field sweep as shown in the inset.
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Figure 3. Measured and simulated steady state supercurrent generated by

a slow field sweep in the experiment of Krempasky and Schmidt [23]. Sample

length 2.35 m, trapezoidal field sweep as shown in the inset.
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Figure 4. Measured and simulated supercurrent generated by a field

ramp in the experiment of Krempasky and Schmidt [23]. Sample length 2.35

m, fast field ramp as shown in the inset. The center heater was fired at

approximately 4.25 s, for a total of 1.6 s.
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