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1 Introduction

Hyporeductive algebras were introduced (see [5],[6]) as an in�nitesimal tool for the study of

smooth hyporeductive loops which are a generalization both of smooth Bol loops and smooth

reductive loops (i.e. smooth A-loops with monoalternative property [7]). By way of fact it

is shown that the fundamental vector �elds of any smooth hyporeductive loop constitute an

algebra called a hyporeductive algebra of vector �elds. Further (see [2],[3]) this notion has

been extended to the one of abstract hyporeductive triple algebras (h.t.a for brevity) meaning

a �nite-dimensional linear space with two binary and one ternary operations satisfying some

speci�c identities. It turns out that hyporeductive algebras generalize Bol algebras and Lie

triple algebras (see [7],[9] about Bol and Lie triple algebras).

In this paper we consider 2-dimensional h.t.a and the prospecting of explicit expressions of

operations for such algebras led us to their classi�cation. In section 2 some speci�cations of

hyporeductive algebras are given and the classi�cation theorem is stated. Section 3 is devoted

to its proof (this proof gives the classi�cation process). As a consequence it is pointed out that

there is no proper 2-dimensional Lie triple algebra. We conclude with some remarks in section 4.

2 Background and results.

Hyporeductive algebras were originally introduced ([5],[6]) as algebras of vector �elds on a

smooth �nite-dimensional manifold, satisfying a speci�c condition. More exactly it was given

the following

De�nition 1 [5],[6]. A linear space V of vector �elds on an n-dimensional manifold with a

singled out point e, satisfying

[X; [Y; Z]] = [X; a(Y; Z)]+ r(X ; Y; Z) (1)

is called a hyporeductive algebra of vector �elds with determining operations a and r, if dimfX(e) :

X 2 V g = n.

Obviously a(Y; Z) is a bilinear operation and r(X ; Y; Z) a trilinear one on V and a(Y; Y ) = 0,

r(X ; Y; Y ) = 0. The relation (1) we called (see [2],[3]) the hyporeductive condition for alge-

bras of vector �elds. Considering a hyporeductive algebra as a tangent algebra at the iden-

tity e of a smooth hyporeductive loop it is shown ([5]) that a hyporeductive algebra may

be viewed as an algebra with two binary operations a(X; Y ); Te(X; Y ) = [X; Y ](e) and one

ternary operation r(Z;X; Y ) and then working out the Jacobi identities in the correspond-

ing enveloping Lie algebra, one can get the whole system of identities linking the operations

a; Te; r. A similar construction is carried out in [2],[3], where instead of Te(X; Y ) the operation

b(X; Y ) = [X; Y ](e)�a(X; Y ) is introduced (this is made in connection with a more suitable dif-

ferential geometric interpretation of a hyporeductive algebra of vector �elds and then the system

of identities above mentioned constitutes the integratibility criteria of the structure equations

of the a�nely connected smooth manifold associated with a local smooth hyporeductive loop).

This led us to introduce the notion of (abstract) hyporeductive triple algebras (h.t.a):
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De�nition 2 [2],[3]. Let V be a �nite-dimensional linear space. Assume that on V are de�ned

two binary anticommutative operations (:); (�) and one ternary operation < �;�;� > skew-

symmetric with respect to the two last variables. We say that the algebra (V ; :; �; < �;�;� >)

is an abstract h.t.a if, for any �; �; �; �; �; � in V the following identities hold:

� f � : (� : �)� < �; �; � > g = 0 (2)

� f � � (� : �) g = 0 (3)

� f < �; �; � : � > g = 0 (4)

�: < �; �; � > ��: < �; �; � > + < �:�; �; � >=

< � � �; �; � > � < � � �; �; � >

+�� < �; �; � > ��� < �; �; � >

+(� � �) � (� � �) + (� � �):(� � �) (5)

�:(�: < �; �; � > ��: < �; �; � > + < �:�; �; � >)

+ << �; �; � >; �; � > � << �; �; � >; �; � >

+ < �; �; < �; �; � >> � < �; �;< �; �; � >>= 0 (6)

� � (�: < �; �; � > ��: < �; �; � > + < �:�; �; � >) = 0 (7)

< �;�; �: < �; �; � > ��: < �; �; � > + < �:�; �; � >>= 0; (8)

where � denotes the cyclic sum with respect to �; �; �.

The study of h.t.a is more handy if they are given in terms of identities as in the de�nition

above. For instance, we notice that if in (2)-(8) we set �:� = 0 for any �; � of V then we get the

determining identities of Bol algebras. On the other hand, setting � � � = 0, we get Lie triple

algebras (i.e. generalized Lie triple systems) and if, moreover, we put �:� = 0 then we obtain

Lie triple systems (L.t.s).

The question naturally arises whether there exist proper abstract h.t.a. The answer to this

problem is easier to seek among low-dimensional h.t.a because of the speci�c properties of op-

erations (:); (�) and < �;�;� >. Thus we are led to the study of two-dimensional h.t.a, that

is to �nd the explicit expressions for their determining operations. Our investigations led us to

the following classi�cation theorem for such h.t.a.

Theorem. There exist proper 2-dimensional h.t.a. Moreover any 2-dimensional h.t.a is iso-

morphic to one of the algebras described in the table below:
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type x1 � x2 x1:x2 < x1; x1; x2 > < x2; x1; x2 > observations

I �x1 + �x2 0 �x2 �x1
II �x1 + �x2 0 �(x1 + �x2) �(�x1 � x2) � 6= 0

III �x1 �x1 + �x2 0 �x1 + �x2 � 6= 0; � 6= 0,
� 6= 0; � 6= 0,
�� � �� 6= 0

IV �x1 �x2 0 �x1 + �x2 � 6= 0; � 6= 0,
� 6= 0; � 6= 0

V ��x1 �x1 0 �(�x1 + x2) � 6= 0; � 6= 0

VI �x2 �x1 + �x2 �x1 + �x2 0 � 6= 0; � 6= 0,
� 6= 0; � 6= 0
�� � �� 6= 0

VII �x2 �x1 �x1 + �x2 0 � 6= 0; � 6= 0,
� 6= 0; � 6= 0

VIII ��x2 �x2 �(x1 + �x2) 0 � 6= 0; � 6= 0

3 Proof.

First we shall prove the following two lemmas.

Lemma 1. If fx1; x2g is a basis of a 2-dimensional h.t.a V, then the determining identities

(2)-(8) of abstract h.t.a has the following type:

J(x1; x2) � < x1:x2; x1; x2 >

+x1: < x2; x1; x2 > �x2: < x1; x1; x2 >= 0 (9)

xi:J(x1; x2) � < xi; x1; < x2; x1; x2 >>

+ < xi; x2; < x1; x1; x2 >>= 0 (10)

xi � J(x1; x2) = 0 (11)

< xj ; xi; J(x1; x2) = 0; (12)

where J(x1; x2) = x1� < x2; x1; x2 > �x2� < x1; x1; x2 > and i; j = 1; 2.

Proof. With respect to the basis fx1; x2g, (2),(3) and (4) are clearly satis�ed identically. Next the

left-hand side of (5) now reads xi: < xj ; x1; x2 > �xj : < xi; x1; x2 > + < xj :xi; x1; x2 > while

the right-hand side reads < x1 � x2; xj; xi > � < xj � xi; x1; x2 > +xj� < xi; x1; x2 > �xi� <

xj ; x1; x2 > +(x1 � x2) � (xj � xi) + (x1 � x2):(xj �xi), with i; j = 1; 2. Furthermore, appealing to

the skew-symmetry of operations (:); (�); (< �;�;� >) one observes that the identity (5) gets

the form x1� < x2; x1; x2 > �x2� < x1; x1; x2 >=< x1:x2; x1; x2 > �x1: < x2; x1; x2 > +x2: <

x1; x1; x2 > so that we obtain (9).

In view of (9), the identities (7) and (8) are straightforward transformed into (11) and (12)

respectively.

Finally, and again appealing to (9), we work out the identity (6) as follows: we replace �; �; �; �; �

by x1; x2; xk; xj ; xi respectively where i; j; k = 1; 2 and then keeping in mind (9), we see that (6)

gets the form
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xi:(x1� < x2; x1; x2 > �x2� < x1; x1; x2 >)+ < xi; x2; < x1; x1; x2 >> � < xi; x1,

< x2; x1; x2 >>= 0 that is, we get (10). }

Lemma 2. If fx1; x2g is a basis of a 2-dimensional h.t.a with zero binary operations, then

< x1; x1; x2 >= �x1 + �x2; < x2; x1; x2 >= 
x1� �x2, where �; �; 
 are real numbers.

Proof. If x1:x2 = 0 and x1 � x2 = 0 then (9)-(12) give

< xi; x1; < x2; x1; x2 >> � < xi; x2; < x1; x1; x2 >>= 0; (13)

i = 1; 2. Now let < xs; x1; x2 >= r1sx1+ r2sx2; s = 1; 2. Then, by the skew-symmetry, (13) reads

r2
2
< xi; x1; x2 > �r1

1
< xi; x2; x1 >= 0 that is (r1

1
+ r2

2
) < xi; x1; x2 >= 0. So that if r1

1
+ r2

2
6=0,

then r1i = r2i = 0 i.e. r1
1
= r2

1
= 0; r1

2
= r2

2
= 0 and this leads to a contradiction. }

Remark. Lemma 2 is actually another version of lemma 5.1 in [8]. This is expected since h.t.a

with zero binary operations are precisely L.t.s. Therefore the Yamaguti's classi�cation for 2-

dimensional L.t.s (see also [4], p.312) is included in 2-dimensional h.t.a of types I and II.

We now set ourself about the proof of the theorem.

Proof of the theorem. Since J(x1; x2) seems to be conclusive for the system (9)-(12), it would

be rational to work out this system according to whether J(x1; x2) is zero or not. Thus we shall

consider the two cases J(x1; x2) = 0 and J(x1; x2)6=0.

A/ J(x1; x2) = 0.

If we set < xs; x1; x2 >= r1sx1 + r2sx2; s = 1; 2 then we get J(x1; x2) = (r1
1
+ r2

2
)x1 � x2 and

J(x1; x2) = 0 amounts to r1
1
+ r2

2
= 0 or x1 � x2 = 0.

1/. Let r1
1
+ r2

2
= 0 and x1 � x2 be any.

a). If r1
1
= r2

2
= 0, then < x1; x1; x2 >= �x2 and < x2; x1; x2 >= �x1, where � and � are some

reals. Therefore from (9)-(12) we draw < x1:x2; x1; x2 >= 0 i.e. x1:x2 = 0. Hence we get the

following �rst set of values for < xs; x1; x2 >; x1 � x2 and x1:x2 :

x1 � x2 = �x1 + �x2; < x1; x1; x2 >= �x2;

< x2; x1; x2 >= �x1; x1:x2 = 0 (14)

(with any reals �; �; �; �).

b). If r1
1
= �r2

2
with r1

1
6=0; r2

2
6=0, then from (9) one infers < x1:x2; x1; x2 >= 0, whence x1:x2 = 0

so that lemma 2 gives the expressions for < xs; x1; x2 >; s = 1; 2. Thus we have the following

set of operations values:

x1 � x2 = �x1 + �x2; < x1; x1; x2 >= �(x1 + �x2);

< x2; x1; x2 >= �(�x1� x2); x1:x2 = 0 (15)

(with any reals �; �; �; � and �6=0).

2/. Now let r1
1
+ r2

2
6=0 and x1 � x2 = 0.

Under such assumptions the system (9)-(12) leads to the following system :

< x1:x2; x1; x2 >= (r1
1
+ r2

2
)x1:x2 (16)

5



< xi; x1; < x2; x1; x2 >> � < xi; x2; < x1; x1; x2 >>= 0: (17)

Whence, from the proof of lemma 2 (since (17) is (13)), we get < xi; x1; x2 >= 0; i = 1; 2 and

then x1:x2 = 0. Thus we obtain the trivial algebra (i.e. the algebra with zero operations) that

is included in the algebras of type (14).

B/. J(x1; x2)6=0.

Then r1
1
+ r2

2
6=0 and x1 � x2 6=0. If we set x1 � x2 = b1x1 + b2x2 and x1:x2 = a1x1 + a2x2, one

�nds that the system (9)-(12) splits as follows:

(r1
1
+ r2

2
)x1 � x2 = (a2r

1

2
� a1r

2

2
)x1 + (a1r

2

1
� a2r

1

1
)x2 (18)

(r1
1
+ r2

2
)x1:(x1 � x2) = < x1; x1; < x2; x1; x2 >> �

� < x1; x2; < x1; x1; x2 >> (19)

x1 � (x1 � x2) = 0 (20)

< xj ; x1; x1 � x2 >= 0; (21)

(for i = 1), j = 1; 2, and

(r1
1
+ r2

2
)x1 � x2 = (a2r

1

2
� a1r

2

2
)x1 + (a1r

2

1
� a2r

1

1
)x2 (22)

(r1
1
+ r2

2
)x2:(x1 � x2) = < x2; x1; < x2; x1; x2 >> �

� < x2; x2; < x1; x1; x2 >> (23)

x2 � (x1 � x2) = 0 (24)

< xj ; x2; x1 � x2 >= 0; (25)

(for i = 2), j = 1; 2.

1/. Consider the system (18)-(21). From (20) and (18) we conclude that a1r21 � a2r
1

1
= 0 and

a2r
1

2
� a1r

2

2
6=0 (since x1 � x2 6=0). Thus we have

x1 � x2 = �x1(� 6=0); < x1; x1; x2 >= 0 (from (19));

< x2; x1; x2 > 6=0; x1:x2 6=0 (from (18)): (26)

Next, discussing on the coe�cients a1; a2; r12; r
2

2
and their compatibility with respect to (18)-(21),

(26), the set of values (26) splits as follows:

x1 � x2 = �x1; < x1; x1; x2 >= 0;

< x2; x1; x2 >= �x1 + �x2; x1:x2 = �x2; (27)

(with � 6=0; �6=0; � 6=0; � 6=0),

x1 � x2 = ��x1; < x1; x1; x2 >= 0;

< x2; x1; x2 >= �(�x1+ x2); x1:x2 = �x1; (28)
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(with �6=0; �6=0),

x1 � x2 = �x1; < x1; x1; x2 >= 0;

< x2; x1; x2 >= �x1 + �x2; x1:x2 = �x1 + �x2; (29)

(with �6=0; � 6=0 � 6=0; � 6=0 and �� � ��6=0).

2/. Consider now the system (22)-(25). One may notice that this system is "symmetric" to the

preceeding (18)-(21). Therefore, proceeding as in 1/, we get the following three sets of operations

values:

x1 � x2 = �x2; < x1; x1; x2 >= �x1 + �x2;

< x2; x1; x2 >= 0; x1:x2 = �x1; (30)

(with �6=0; � 6=0; � 6=0; �6=0),

x1 � x2 = ��x2; < x1; x1; x2 >= �(x1 + �x2);

< x2; x1; x2 >= 0; x1:x2 = �x2; (31)

(with � 6=0; �6=0),

x1 � x2 = �x2; < x1; x1; x2 >= �x1 + �x2;

< x2; x1; x2 >= 0; x1:x2 = �x1 + �x2; (32)

(with �6=0; � 6=0; �6=0; � 6=0 and �� � ��6=0).

Hence, gathering the set of values (14), (15), (27)-(29) and (30)-(32), we get the table of the

theorem. This completes our proof. }

Corollary. There is no proper 2-dimensional Lie triple algebra; more precisely the only 2-

dimensional such algebras are L.t.s or the trivial algebra. Proof. As noticed in section 2, any

h.t.a fV ; �; :; < �;�;� >g becomes a Lie triple algebra by setting x � y = 0 for all x; y in V .

So that 2-dimensional Lie triple algebras must be included in algebras of types I,II. But then

x:y = 0, for all x; y in V . This means that we get either the trivial algebra or L.t.s.}

4 Concluding remarks.

1. The algebras of types I,II are 2-dimensional Bol algebras (proper or not). Those of types

III-VIII are proper 2-dimensional h.t.a, and so the class of such algebras is rather wide.

2. Although the survey may be conjectured tedious and lengthy, the classi�cation of 3-dimensional

h.t.a is similar to the 2-dimensional ones. For instance, one easily checks up that any 3-

dimensional h.t.a is completely determined by the given of 15 di�erent binary and ternary

operations on basis elements with respect to operations (�); (:) and (< �;�;� >). Moreover,

for dimension 3 there are nontrivial identities of types (2)-(4). This latter circumstance obvi-

ously makes the classi�cation more fastidious. However it may be helpful to observe that such

a classi�cation must include examples of 3-dimensional Bol algebras that could be drawn from [1].
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