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Summary

The purpose of the present article, following "Mach's principle" (the main elements of which
have contributed to the foundations of general relativity) is to propose a new non-loca

interpretation of the inertia interaction. We suggest a novel approach according to which the
inertial interaction can be correctly described by the topological field theory proposed by
Edward Witten in 1988. In this context, the instantaneous propagation and the infinite range of
the inertial interaction can be explained in terms of the topological amplitude associated to a 0

Size singular gravitational instanton.
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1. INTRODUCTION

The phenomenon of inertia - or "pseudo-force" according to E. Mach [1] - has recently been
presented by J.P. Vigier [2] as one of the "unresolved mysteries of modern physics'.
According to us, this important question, which is well formulated in the context of Mach's
principle, cannot be resolved or even understood in the context of conventiona fieldtheory.

Here we suggest anovel approach, adirect outcome of the topological field theory proposed by
Edward Witten in 1988 [3]. According to this approach, beyond the interpretation proposed by
Mach, we consider inertia as purely atopological source, linkedto thetopological chargeQ = 1
of the 0 sizesingular gravitational instanton, identifiable, according [4], to theinitial singularity
of spacetime in the standard model.

Evaluation of thetotal inertial (or inertial potential) contribution resulting from the sum of the
masses in theuniversegives:
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which turns out to be an invariant for each local mass. The topological charge of the singular
gravitationa instanton, of theform

_ 1
3202

Q fd4x R,R=1 @)

is aso an invariant equal to the identity, just as the total inertial contribution. The equality
between the inertial mass and the gravitationa mass is explained here in terms of the
guantisation of thetopological chargeof the singular gravitationa instanton.

Wetherefore suggest that thetopological charge of the singular gravitational instanton of O size
representsthe source of theinertial interaction. Asthe topological charge, the inertial interaction
isequally invariant and propagatesitself instantaneously from one point to another in spacetime.
Such a property is not explicable within the frame of field theory but may find a solution in
topological theory. In this new context, the initial singularity is the source of a topological
amplitude corresponding to the charge of the 0 size singular gravitational instanton, i.e.

Q= f d*x Fﬁwf%“" , detectable at the boundary S3 of the singular gravitational instanton having

the topology of the 4-dimensional Euclidean ball B4. The pseudo-observables of Riemannien
spacetime at the origin are here interpreted as co-cycles on instanton moduli space and are

associated with yj cyclesof theB4  4-manifold (Donal dson application). Considering apoint X

in B4, thetopological amplitude responsible for the propagation of the instantonic charge takes
thentheform:

(0. 0x) = #(S* %)

Thetopological amplitude of thetheory is given by the pseudo-observables of the left member,

while the right member designates the number of intersections of yj CB#%. The function

#(S>,X) is zero if the point X is situated outside the sphere S3 and unity if X is inside S3

(i.e. if X € B4), the casewhere thereexists atopological amplitude.
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The present article is organised as follows. In paragraph 2, we briefly recall the context in
which the problem of inertia rests (in classica mechanics). Equaly we recall the canonical
formulation of Mach's principle, which suggests anon-local approach of the inertial interaction.
In paragraph 3, we consider " Mach's topologica principle”’, a new formulation of Mach's
principlein the context of topological field theory. In paragraph 4, we suggest that propagation
of information characterising the Initial Singularity of spacetime can conveniently be described
by the topologica amplitude associated with a singular gravitational instanton of 0 size We
complete this approach by showing, from another point of view, that if the topological impulse
at theorigin representsaDirac shock (distribution with zero support), then this impulse is sent

toinfinity - i.e. to the sphere S3, the co-boundary of spacetime E4 and the ball B4 representing
the singular gravitational instanton identified to theinitial singularity. In conclusion, we discuss
these diverseresults and conjecturesin paragraph 6.

2. REMINDER : INERTIA AND MACH'SPRINCIPLE

It has long been known in classical mechanics that the inertial interaction demonstrates itself
under theform of an instantaneous reaction to acceleration of any material object :

fi=—-Ma

abeing theacceleration of the system itself. According the Newtonian point of view, - and, to
some extent, in special relativity - , thisconcernsan inherent property of matter, which does not
conflict with the conception of absolute space and time.

On the contrary, according to the general relativity, although independent of the observer, the
intrinsic properties of space-time and its geometry are described by a metric inseparable from
the distribution of the matter. This relationship has been defined on an axiomatic basisin the
"equivalence principle” between inertia and gravitational mass. However, how to explain the
instantaneous propagation (i.e. non-physical in the strict sense) of the inertial interaction ?
How does this interaction propagate itself at infinite speed from one point to another in
spacetime ?

Thefirst attempt to provide a global response was qualitatively formulated by E. Mach [1] for
whom, on the basis of the relativity of any movement, the source of inertia is the
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"interconnection” of al matter in the universe. We take from this the generic expression of
Mach's principle asinitially formulated :

Definition 1.1. (E. Mach) : theinertial reference point defined by local physics coincides
with thereference point in which distant objectsare at rest, where it results that the most distant
masses distributed in the universedetermine theinertial behaviour of local masses.

Numerous other variantsof Mach's principle still exist, developed notably by C. Bras and R.H.
Dicke [5], H. Bondi and J. Samuel [6], and D.R. Brill et a [7]. However, none of these
approachesappearsableto explain, in a compatible framework with relativistic constraints, the
nature of theinertial interaction as well as its mode of propagation.

We therefore propose here to renew the approach of Mach's principle in the context of
topological field theory.

3. TOPOLOGICAL MACH'SPRINCIPLE

We suggest below that the foundation on which Mach's principle rests (the same as the notion
of inertia) is not physical, but fallswithin topological theory, defined by Edward Witten in 1988
[3]. As an example, we consider Foucault's pendulum experiment ¢, which cannot be
explained satisfactorily in either classical or relativistic mechanics. Recalling that the problem

presented is that of the fixity of the plane of oscillation of the pendulum . The " topological
Mach's principle" assumes then that the interaction between 4 and "globa spacetime" E is
itself of the topological type - which by its very nature explains precisely the character at the
same time invariant and globa of the system formed by the plane of oscillation of the

pendulum and the rest of the universe.

In [4] the existence of a0 scalelimit in pre-spacetime was suggested, the said limit concentrates
then the energy density of the "entire universe”, in the Mach sense. Webegin by shoving that in
the context of such an approach, the O scale configuration has no physical content (there exists
no stable physical length inferior to the Planck length) but is a topological configuration,
corresponding to asingular gravitational instanton of O size.
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0 scale of spacetime and topological theory

Beginning with theresults of S. Weinberg [8], one can reasonably consider that spacetime at the
Planck scaleforms a system globally in thermal equilibrium. From an algebraic point of view, a

state of equilibrium is a state on a C*- quasi-local algebra, generated by a sub-algebra
corresponding to the kinematic observables of the sub-system. Starting from the equilibrium
state, it has been shown in[4] that pre-spacetime at the Planck level can be seen as subject to the
Kubo-Martin-Schwinger (KM S] condition [9]. In thelimits of the holomorphic KMS strip, it is
therefore natural to consider the direction of thetimelike metric as complex, the metric taking on
thenew form:

My - disgd, 1,1, €% 3

The signature of the metric (3), endowed with a supplementary degree of liberty on the Qa4
component, is Lorentzian for 6 = * 7t and can become Euclidean for 6 = 0. The modular theory

of Tomita [10] suggests then the "dualisation” of the signature given by the generalised
automorphisms of thealgebra A, which can bewritten:

a, = efelp g Pef (4)

Tc

Thetemporal flow associated to (4) is formally holomorphic in the variable B¢ = R+ il € C.

The group of modular automorphisms <, generates two dual flows, of which one partis:

a = effa g B

% ()

corresponding to the algebra of observablesand to the Lorentzian flow in real time. On the other
hand, thedua current, is:

a — eBrHAe_BrH

. (6)

giving on A a semi-group of non-bounded and non-stellar operators. The flow o, of A is

defined not throughout the whole of A but on anideal {<¥} of A and coupled to the topological

flow in pure B =i t imaginary time. In the proposed model [4], the algebra of observables
described by (5) isreplaced at scale0 of spacetime by an "algebra of pseudo-observables’, dual

to the algebra of Helsenberg “* in the form (6). Atthesingular 3 = 0 scale, it is naturally no
longer possible to conservethe notion of physical observables; instead, we consider homology

-5 -
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cyclesin modulespace of (0 size) gravitational instanton. This latter conclusionremainstrue, in
pureimaginary time, for all real (3> 0. Such an approach allows us to distinguish three different
domainsin the "cosmological light cone", each of these domains being described by a specific

Von Neumann algebra. If wecall Mp,1 = R ® F the factor Rg,1 of type Il corresponding to
thesingular O scale, as all ergodictransformations startingfrom Mg,1  (flows associated with O
scale) are weakly equivalent [11], therefore M 1 is a hyperfinite factor of the Araki-Woods

ITPFI type[12]. Thefactor Mg, 1 isthen canonical. Moregenerally, thereexist thus three scales
(corresponding to the threeregions of the of cosmological light cone) :

(i) theclassical scale(3>1 pianck), described by thefactor M of typel «;

(i) the quantumsuperposition scale (0<R<A planck) described by the ITPFI of type 111, i.e.

R = llec =<l 7. Wewrite then Mg=M 0,1 >=<lp 7,

(iii) the topological scale (0 scale associated with 3=0) described by the ITPFI of type Il
Mo,1.

Tofinish, we notethat the algebraic flow of weights associated to the factor M, 1 of type Il
at 0 scaleof spacetime is an invariant of Mg 1. Thus, it has equally been shown, againin [4],

that theinitial singularity, out of reach of quantum field theory but well defined by topological
theory, can be considered not in terms of divergences of physical fields but in terms of
topological field symmetries and associated invariants (such as the first Donaldson invariant
[13-14]) :

1= 3" 7)

A possible resolution of the Initial Singularity consists then of considering that O scale, which
cannot be described by the (perturbative) physical theory, should be described by the (non-
perturbative) dual theory, of thetopological type.

Topological singularity invariant

Starting from Witten [3], one normally defines topological theory as the quantisation of zero,
the Lagrangian of the theory being either (i) a0 mode, or (ii) a characteristic class ¢, (V) of a

vectorial bundle V—— M built on spacetime. A new topological limit of the theory has
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therefore been defined [4], which is both non-trivial and no longer basedonH =0 but on 3 = 0
and henceindependent of H. The ordinary topological limit of quantum field theory, described
by the Witten invariant Z = Tr(-1)" is given by the limit of the partition function

Z = Tr(-1)Ne-BH for zero (or invariant) values of H. Onthe contrary, in our case, we choose the
0 mode of thescale (3 = 0). Hence Z becomes (s representing the number of instantons of the
theory) :

Z =Tr(s ®)

This new invariant, isomorphic to the Witten invariant Z = Tr(-1)", can be explicitly associated
totheinitial singularity of the pre-spacetime, reached for the value 3 = O of the states partition
function. One can therefore extend the iso-dimensional monopole / instanton dudity
demonstrated in [4] by suggesting that such a duality symmetry links the BRST cohomology
ring (physical sector of the theory) and the cohomology ring of the instanton module space
(topological sector). The BRST cohomology groups [15], having the generic form

ker Q(g)
H@)__ = BRST 9
BRST o@D ©)

we then consider that the topological theory realise theinjection of rings:

AU,

-ty e ——H* (30 ) = ® ' HO(ac{3) (10

*
HBRST = ® mod

which provides an injective path of the physical mode into the topological mode. In terms of
observables O; and homology cycles Hj CM ,oq in module space M g of configurations of

the gravitational instanton type 3[¢(x)] on the gravitationa fields ¢ of the theory, we bring out

theequivaence:
(0,0, ... 0, = #(H,NH, N ... NH,) (11)
where the physical sector of the theory is described by the observables O; and the dual sector,

of thetopological type, by the homology cyclesH; CM,oq- The oscillation of the signature of
the metric between physica and topological sectors is then induced by the
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divergenceAUy =f(?“ju d*x of theghost flow [16][15] j, . When AU = 0, as there exists no

embedding space for module space, we suggest that the theory is then projected in the Coulomb
branch, at the origin of Mg, on a singular instanton of O size [17] which we identify to

gpacetime at O scale. The theory is ramified on the purely topological sector H, the
corresponding signature at this sector being Euclidean (++++).

From this viewpoint, the image of 0 symmetry, described by the non-broken gauge group of
type SU(2) ® SU(2), is given by the first Donaldson invariant [13][14], associated with the

existence of a"topological amplitude” characterising the theory. When the dimension dims#/  of
instanton module space is non-zero, the Donaldson invariants are given by the correlation
function of thetheory :

Z(yy . v¢) = [DXe l_[fWkl <1‘[ fm> (Dim Mk = 0) (12)

Thus, our most surprising formal result is that at scale 3 = 0 associated with the high
temperature limit, instanton module space being zero at this limit, the partition function, given

by

z -1 e M (13)
B=0
must give againthefirst Donaldsoninvariant
= > D", (14)
i
anon-polynomial topological invariant, reduced to an integer for dim ¢ k = 0[14]. Thislimit

Z - Tr(-1)° (15)

of the partition function (13) corresponds to a generalised symmetry of all possible states of the
metric, all instantonic states of gy.y, given by thetopological charge of the singular gravitational

instanton, being equivalent at 0 scale. We cal "0 symmetry” the generalised symmetry
characterising the singular O scale. The above approach establishing, in the context of a model

o, the coupling at the Planck scale between 3-dimensional Euclidean gravity and a
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2-dimensional "target space" (scalar sector), this provides a qualitative image of the initial
2

spacetime singularity as aconicorbifold (or conifold) G such that T'; = ;— .
n

In effect, we suggest as a geometric model of the instanton the ball B4 bounded by the sphere

S3. The propagation of the solution depends then on the support of the gravitational instanton :
in the region of O limit, there exists an accumulation of topological charge above the singular

point So such that the topologica charge density RR® — o« ; in the dua situation,
corresponding to the fundamental state, the support of theinstanton is extended to infinity and
RR* — 0. Thetransition of O at infinity is then described by the conformal transformations of
the sphere.

From this point of view, the Machian interaction established between the pendulum # and the
global universe is described exactly by the interaction between 4 and the O size instanton -
amost like a renormalisation transformation. We therefore propose reformulating Mach's
principle in the context of topological field theory :

3.1 Topological Mach's principle : the topological amplitudes associated with
propagation of thetopological charge of the O size singular gravitational instanton, the solution
of thelnitial Sngularity of spacetime, determines theinertial behaviour of local masses.

In thefollowing paragraph, we put forward a number of natural arguments to establish Mach's
topological principle. In particular, we consider that the propagation of information
characterising the Initial Singularity of spacetime can conveniently be described by the
topological amplitude associated with the O size singular gravitational instanton.

4. OSIZE SINGULAR INSTANTON AND TOPOLOGICAL INTERACTION

The principal argument demonstrating the existence of an interaction between ¢ and the charge
Q resides in the fact that the topological charge of the instanton is entirely determined by the
asymptotic behaviour of the gauge field (A, in the Yang et Mills case and g,y in N = 2

supergravity). The field F, non-zero in E4 = R4 instanton space, cancels itself out at the

boundary §E4 = S3, thethree-dimensional sphere or the gauge potential becoming a pure gauge.

Hence, we suggest that 9E# = S3 represents the curved and compact three-dimensional physical
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space R3 in which therotation plane # isinscribed. Wedraw from this a relation of topological
type between the topological charge defined by ¢E4 and the fixed orientation of the oscillation
plane [12 of 4, equally definedby 9E4 = S3.

Proposition 4.1. The topological charge Q of the Yang and Mills instanton is entirely
determined by the asymptotic behaviour of the gauge field Ay, at the boundary JE4 represented

by the three-dimensional sphere S3 where the gauge potential becomes a pure gauge. JE# = S3
represents the curved and compact three-dimensional physical space /48 in which the plane of

rotation [J2 of # isinscribed.

Demonstration 4.2. The Lagrangian of the Yang and Mills theory in Euclidean spacetime
hastheform:

_ 1 4 o auv
L= Efd XFMVF (16)

with f‘"‘bC being the structure constants of the gauge group SU(2) :

Fsv = (9#'6\/ - aVAM + fabcp)sp\/c (17)

Theclassical Yang and Mills action can then be written:
_ i d4x (Fa - lgauv)Z m8_:n’2
= 8ng uv — gz Q (18)

with F¥Y = %eumﬁ Fﬁv, Q being the topological charge (or Pontryagin index) of the

instanton:
Q= —1_ [d*xF2 Fa (19)
32n2f mv

- 10 -
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Astheaction of the configuration must be finite, on spheres at infinity of radiusr — oo, the field

Fffv must fall to O morerapidly than r3:

Fa(X=r)—0 (20)
such that A; must be apure gauge at infinity (r — <):

AST? = iU(x)7,U(X) (21)

T? being the generators of the gauge group, i.e. in the case of the fundamental representation

. . . 1 S
with Pauli matrices ¢® | T%= > o® for SU(2). The element U € SU(2). Considering the

chargeQ, itis possibleto represent it by an integral over thetota derivative :

1
3252

Q= fd4x 3, K, (22)

that isto say, according the Gauss theorem :

1
Q= 5.2 [ (23)

[x|=r

where the vector K . represents the Chern-Simons current :

a a 1 C pd C
Ko = 26 (AT AT + S TP ASALA) (24)

From equ. (24) we conclude that the topological charge Q is thus entirely determined by the
asymptotic behaviour of the field Af As established in [18], Q depends solely on the global

propertiesof the function Af(lxl =r). Indeed, at infinity we have:

IXI%OO

F 0

- 11 -
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but thisis not (necessarily) the casefor the gauge potential Ai‘ which becomesa pure gauge:

A7 U ()6,U (%) (25)

the void of the theory being non-trivial. The gauge elements U(x) €SU(2), xeS® are such
that :

U= A+ioB A2+B2=1 (26)
and U(x) represents:
U S —-3su@)=5s (27)

where we find the applications of the sphere s representing the compact physical space ES3,
boundary of the space E4, on theisotopic space of SU(2), equally isomorphic to S®. We draw

theidentification of S3, boundary of the 4-dimensional instanton solution to physical space, of
the double embedding of SU(2) in SL(2, C) - the universal convening of the Lorentz group -

and in SU(2) ® SU(2), the convening of SO(4). As SU(2) — S3, we therefore propose to

interpret S3 both (i) as the 3-dimensional boundary of the 4-dimensional instanton Euclidean
solution B4 and (ii) as the 3-dimensional boundary of spacetime. From this identification, the

application S° — S° is designated by m3(S®) and is such that ;
n3(S%) =7 (28)

such that the applications $* - S ae classfied according to the homotopy classes

characterised by integers, in our casen = 1. Thus, the 2-dimensiona plane of oscillation []2 of
Foucault's pendulumisimmersed in the 3-dimensional physical space corresponding precisely

to S°. Asthetopological chargeQ of theinstanton is determined by the behaviour of the gauge
fieldon S°, it follows from thisthat [12 is determined by Q, asrequired. [J

- 12 -
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We have demonstrated the relation between Q and []2 inthecaseof Yang and Mills instantons.
One can extend this result to supergravity, insofar as, in the context of non-linear curvature

theories, the field R is, like F, asymptotically free. The action of the gravitational instanton
becomes:

1 4 v 4 - v
S== —— [d"xR,, R +9(d"xTr R,,R" (29)
gy ¢ X R BT R
thetopological termbeing :

Q=19 fd4x Tr Ry R™ (30)
In this case, the surfaceterm K, associated with the Chern-Simons topological flow, becomes:

0 ol 2.3
Q(T,R) tr\FdF+3F)

0 ol 2 3
Q(w,R tr\wdw+3w) (31)

I" representing the Christophel symbols, « thespinorial connections and R the curvature of the

4-manifold. In putting R = d" + T2 or R = do + 02, we therefore find again the result of the

first part of (4.1.) in supergravity. Concerning the Chern-Simons form, we recall that Witten
has shown [19] that general relativity in dimension (2+1) is equivalent to Chern-Simons
topological theory [20] in dimension 3. The Chern-Simons Lagrangianis:

h(A) =fTI’(A/\ dA)+‘723A/\ Anr A (32
Hence, the action of thetheory of gravity in dimension (2+1) hastheform:
L=¢ abcgijkqaijkc (w)

(33)

C bc be ec :
ik = djw +wjwe = (] <=Kk)

Analysisof the two Lagrangians (32) and (33) shows the equivalence between gravity (2+1)
and the Chern-Simon theory at the limit of O scale associated with O energy modes. In

- 13 -
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dimension 4, we find then that at the limit of O scale, Lorentzian (3+1) field theory must be
replaced by Donaldson topological theory [21] (4,0).

One can therefore consider that the propagation of the initial singularity is induced by the
existence of atopological amplitude — the charge of the O size singular gravitational instanton,

i.e. Q= f d*x R“,IE\‘“V , - detectable at the boundary S3 of the singular gravitational instanton
provided with the topology of the B4 Euclidean ball of dimension D=4. The pseudo-
observables are here interpreted as co-cycles on instanton module space and are associated with
cyclesyj of the B4 4-manifold (Donaldson application). Considering a point X of B4, the

topological amplitude responsible for the propagation of the instantonic charge takes then the
form:

(0. 0x) = #(S* %)

Thetopological amplitude of thetheory is given by the pseudo-observables of the left member,

while the right member designates the number of intersections of yi CB4. The function

#(S3,X) iszeroif thepoint X is situated outside the sphere S3 and equals 1 if X is inside S3

(i.e. if X € BA), the case where there exists atopological amplitude.

Now, we return to the inertia interaction. In the following proposition, we suggest that the
source of inertiais not, in the strict sense, physical but has a topological content, linked to the
topological charge Q=1 of the singular instanton.

Conjecture 4.3. Theinertial interaction is atopological interaction, of which the sourceis the
topological charge of the 0 size singular gravitational instanton.

Elements of demonstration 4.4. We have shown that the total inertial force likely to
contribute in the case where the entire Universe would be submitted to an acceleration a in

respect to agiven object, could be obtained by summing theforces F'lz on masses other than m
itself :

GM
Firertiee = maE 2
cr (34)

- 14 -
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: . N GM
If M representsthetotality of the mass of the Universe, a good approximation of E? gives

us:

GM

Z =1 (@)

Fiotale= E

univers

Thetotal inertial interaction Fyy, ¢ iStherefore of the order of unity and represents a topological
invariant - i.e. invariant of gravitational gauge and scale invariant -. In all points of space, the
contribution of F;5 Of is identical. Hence, we suggest that the total inertia Fiyq¢ has its

originin thetopological chargeQ:

1
3212

Q - ——[d*xR,,R"=1 (36)

Indeed, we have seen that the topological charge Q of theinstanton is entirely determined by the
asymptotic behaviour of the gauge field at the boundary 9E 4 represented by the three-

dimensional sphere S3 where the gauge potential becomes a pure gauge. We show then that at
the O scalelimit, Fygiq¢ iSisomorphicto Q:

I:totale = Q

At the O scale limit, E CM is identifiable to the Schwartzshild radius |5 of spacetime

universC2r

quotiented by theradiusr — ¢ of theconfiguration inregion of O scale, i.e. :

GM I
> > (37)
universC T urivers'
GM . . :
Wetherefore draw from (37) that e represents the Gaussian curvatureof the manifold, which
gives:

GM

== =K
c2r

" (39)

Ky, being the Gaussian curvature of the geodesic surface (r, ¢). Hence, at the Planck scale,

we must extend Einstein's gravitational term R towards an asymptoticaly free non-linear

- 15 -
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theory. Our approach is that the presence of terms in R2 in the Lagrangian is the result of a
superposition of two scales of quantum gravity : (i) the gravitational scale - i.e. macroscopic
scale - characterised by the presence of an interaction in R and (ii) the quantum scale - i.e.
microscopic scale - characterised by the presence of dual gravity terms, in R* = iR. The
curvatureterm K, takesthenthe new formin supergravity :

Ky (Planck) = R, R""

|
suchthat Y, ~ isidentifiableto

univers

= [d*R,,R" (39)
Asthetheory is auto-dual, one has thereforeR = R*, and ® becomes:

e= fd4x R. R (40)

which, by construction, isisomorphicto thetopological chargeQ of the gravitational instanton,
asrequired. [

From the above demonstration, we can therefore conclude that the inertial interaction admits the
topological chargeof the O sizegravitational instanton as source. The topological nature of the
inertial interaction explans then (i) its global invariance properties and (ii) its instantaneous
propagation between two points in spacetime.

We complete the conjecture (2.1.6) in specifying why the plane of oscillation [[2 has a static
character.

Corollary 4.5. The static character of the plane of oscillation [J2 of the pendulum # is
induced by the structure of topological invariant of Q :

Elements of demonstration 4.6. Instanton theory has established that Q is a topological

invariant. In our case, Q = 1. Theresulting vacuumtopology 8 - and, as a consequence, that of

- 16 -
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physical space S3, boundary of E4, inwhich [[2 isembeded - isequally invariant. Indeed, the

invariance of the topological charge implies the invariance of the topological structure of S3,
i.e. of thethree-dimensional physical space in the course of temporal evolution. It results from

thisthat []2 C S3isitself invariant - i.e. static -. Furthermore, the static character of []2
implies that the underlying symmetry is Euclidean and can be described by the action of the

group :
G 5= SU(2) ® SU(2) (41)

G s being, precisely, the symmetry group describing the instanton configuration characterised
by thetopological chargeQ, asrequired. [

We now show that agood model of the propagation of the topologica interaction Inttop can be
given by the conformal transformations Conf (S3) of the sphere S3.

Conformal group of S3

We propose to describethe transformations Conf (S3) by the Mdbius group [22], defined from
the inversion of S3. Recalling that the pole inversion ¢, of strengtha € R is the application

i =ic,:X \ c— X \ where c is defined, in X vectoridised in ¢, by i(x)=ﬁ.x. From

this:

Definition 4.8. By inversion of S 3 is meant all restriction to S 3 of an inversion of R 4
globally conserving S 3. The Mébius group Mob (3) of S 3 is the sub-group of the S 3 hijection
group engendered by inversionsof S 3,

Atthispoint, we establish a link between the application defining the topological charge of the

instanton and the similitudes of R4. Werecall first that thegroup GL(n k) operateson M(n, k)
by simillitude :

(P,M) aPM =P.M.P1 (42)

- 17 -
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The equivariant canonica bijection associated to the matrix M is then a diffeomorphism,
representing thesimilitude class of M :

¢(M) : GL(n, B) / Z(M) — O (M) (43)
which leads us to the important definition, taken from the reduction of endomorphisms[22] :

Definition 4.9. The application v : M (n, £ — 0 (M) describing thesimilitude classof M is
given by :

X & exp(X).M.exp(-X) (44)

From this definition, we show in the two following propositions that the application defining
thetopological chargeof theinstanton belongs to the conformal group of S3.

Proposition 4.10. For al similitude h & Sim (/48), the application defining the topological
charge of theinstanton, i.e. f:S3 —S3 | definedby f(nN)=nandf=glohogonS3 \n
belongsto Méb (3) ).

Demonstration 4.11. Letn bethenorth poleand s the south pole of the sphere S3. We can
then show thatg-1 o h o g, conveniently extended to the whole of S3, isin Méb (3) if his an

inversion or a hyperplane symmetry. Yet, the h engender the group of similitudes Sim (3).

Indeed, considering f it has been shown [25] that if the kernel
Ker (f - 1d}) = {0} (45)

then f admits a uniquefixed point corresponding to its centre. Moreover, f € Sim (X)\Is (X),

thereexistsauniquew € X such that f(w ) = w . The point w is the centre of the similitude f

and one can write:

f=hog=goh, heH,, et g€&ls,(X) (46)
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The above assumes convenient extensions, the most immediate consisting of attaching a point at
infinity on @3 and extending g to S3 — 3 by g(n) = «. Thus, following [22], their exists in
Mob (3) the applications

fi= g’loHolA og ae’ OHO,A oe’ (47)

associated with vectorial homothetias of R3. If A > 1, the application f, admits the north pole

as an attractor and the south poleas arepeller, i.e. theiterates f," (n € N) making all points of

S3\ s convergetowards n. Theonly point of S3 out of the attraction of n is the south pole s.
[l

We show now that Mob(3) is the conformal group Conf (S3) of S3. Letting Conf (S5) describe
the scaleinvariance (i.e. the conformal invariance) of the sphere identified here (following the

inclusion S3 C SL(2, C)) tophysical space B3 compactification.

Proposition 4.12. Let Mébt (3) = Conft (S3). V the radius r — 0 of S3 engendering
S ., and V[ € Mob(@3), then SO, belongs to the bundle £ (S3) of spheres S3.

Reciprocally, a bijection of S3 verifying this property necessarily belongs to Méb (3) . The

group Mob (3) presentsanatural isomor phismwith PO(a) of thequadric of equation

4
q-= —Exz X2
=

Demonstration 4.13. Leti. , beaninversionof X of dimension n. Let its derivative be

i'(x) composed of thevectoria hyperplane symmetry x* and the homothetia of ratio o /||

We show thenthat i'(x) inal x&€X \ c is a direct similitude for «" < 0 and an indirect

similitude for «" > 0. In fact, i '(x) conserves the right and right-oriented angles. Since the
composite of two conformal applications is conformal, then Mab(3)C Conf(S3). Reciprocally,
asMob(3) C Conf (S3) is transitive on S3, then f € Conf (S3) leaves the north pole n fixed.

According to the stereographic projection g of n, for f(n) = n, weobtain:
gofog te Conf (R3) (48)
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g and f being conformal. Applying Liouville's similitudes theorem, we have

gofog e Sm(®3) = f & Mab(3) (49)

It follows from theinversion properties [25] that f(o) conserves the structure of the sphere s3
when theradius r — 0. Reciprocally, on putting f(n) = n, go fog’l transforms the B3 (half)

linesinto (half) lines, such that S: . , belongs to the bundle £(S3) of spheres S3.

Finally, it has been established in [25] that M6b(3) = {zo(ﬂim(a))oz*l: fe PO(u)}, ie.

the Mébius group of S3 corresponds to the restriction of the group PO(cr) on im (cx). [

We now conjecture that the plane of oscillation of 4 conserves the initid singularity S for

inertial reference point, whatever the orientation of this planein physical space B3

Conjecture 4.14. Whatever the orientation in physical space 48 of the plane of oscillation
[12 of the pendulum #, this 2-dimensional plane necessarily intersects the initial singularity

i.e. []2 isalwaysaligned on §.

Elements of demonstration 4.15. We have established the identification between physical
space R3 compactification and S3, boundary of spacetime and equally boundary of the singular
gravitational instanton solution. Each orientation of the plane of oscillation [[2 corresponds

therefore to an orientation in S3. We have also established that S3 can be identified to physical
space

S3 <= B3

such that the three-dimensional information coming from physical 3-geometry is concentrated
on the 3-surface S3 but is not detectable in the interior of the sphere. Thus, the conformal
invariance of S3 implies that the temporal direction x4 is necessarily orthogonal to the tangent

spacein apoint of S3. Putting this point as the south pole s of S3, we have shown above that
thereexistsin Mob (3) the applications
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= g’loHol,1 0og ae” OHg oe” (50)

associated to the vectorial homothetias of 3. If A > 1, the application f3, admits the north pole

as attractor and the south pole as repeller, i.e. the iterations f," (n € N) make al points in

33\ sconvergetowardsn. Theonly pointin S3 escaping the attraction of n is the south pole
s. Thenorth polen of the 3-sphereis therefore the fixed point of the conformal transformation
Conf(S3) and the temporal direction x4, orthogonal to the tangential plane of the sphere in s,
intersects necessarily the centre O of S3 aswell asthe north pole n. Since, by construction, the

planeof oscillation []2 containsx?, then :
x4 C []2

it follows that the plane of oscillation M2 is orthogonal to the tangential plane of the sphere at
the south pole s and cuts therefore necessarily the centre O of S3 aswell as the north pole n, the

singular attractor point of S3. [J

The above conjecture suggests therefore that the symmetry of rotation in B3 (manifested by the
plane of oscillation of Foucault's pendulum) is explicitly linked to the symmetry of the
0 instanton configuration, SU(2) = S3 being a sub-group of both SU(2) ® SU(2) and
SL(2, C). Once the identification Initidl Singularity / instanton O is admitted, the above

approach allows us reasonably to consider that, whatever the orientation of the plane of the
pendulum in physical space, this plane remains necessarily aligned with the singular origin of

spacetime, identified hereto the singular origin n of the sphere S3, n being the north pole of the
3-sphere, the unique fixed point of the system. Indeed. the different possible orientations in
physical space of the plane of oscillation of the pendulum are given by al the possible

orthogonal directions to the tangent plane at S3. We obtain the different orientations of [12 in
B3 by making the south pole s "turn" on the 3-surface S3, this rotation conserving the

alignment between's, O and n in the same plane []2.

We draw from the above that whatever the orientation, the plane of oscillation of Foucault's
pendulumis necessarily aligned with the initia singularity marking the origin of physical space
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S3, that of Euclidean space E4 (described by the family of instantons I of whatever radius B)

and, finally, that of Lorentzian spacetime M4,

The static character of []2 comesthereforein fine from thefact that the direction x4 represents
equally thefourth direction (in 3= it imaginary time) of the Euclidean configuration of the type
instanton E# bounded by S3, such that at each point s of S3, [12 cuts O and the origin of E4
represented by the north polen. We suggest then that thisinterpretation of x4 as imaginary time

explains in a non-trivial way the nature of the inertial force as well as its instantaneous
propagation from one point to another in spacetime.

5. DIRACIMPULSE AND INITIAL SINGULARITY

We complete this paper by suggesting acomplementary argument concerning the propagation of
topological type of a"causal information” from the singular point S, the origin of the system, to
the boundary of spacetime. In the following, we consider that the topological impulse at the

origin representsa Dirac shock and is sent to infinity - i.e. to S3, boundary of spacetime.

In effect, theinitial singularity can be interpreted as acausal signal giving rise to, at instant 0, a
shock at the origin of the Dirac impulse type [23]. The shock at the origin, or Imp (t),
distributed at the O scale of spacetime, must satisfy :

(i) VteR, f(t)=0
N O st=20
(i) Imp(t) = {w § t-0 (51)

(i) fimp (t)dt=1
R

Theunity impulse at the singular origin S can then be considered as an ideal signal, of causal
type.

Proposition 5.1. Theinitial singularity, distribution of zero support, can be interpreted as a
Dirac impulse. It follows from thisthat the Fourier transform is a function that can be extended
in the complex plane under the form of a holomorphic entire function, or bilateral Laplace
transform.
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Demonstration 5.2. It has been shown in[4] that theinitial singularity can be identified as a
0 sizesingular gravitational instanton, configuration built by E. Witten in[3]. The support of all

associated distributions 8 is therefore reduced to the singular point . The function ¢ associated

to the curvature is therefore a Dirac distribution, such that, as established in [23], its Fourier
transformis holomorphic intire and given by :

Fo1= {000, & *F) [ ™) (52
or, when the scalel3 (or thetimet) of thetheory iszero:

flo] =1 (53)
becomesarea and evendistribution which, insofar as f [1] = 8, must satisfy :
flo]=flo]=1 (54)

The holomorphic function resulting from the Fourier transform of thed function of zero support

can equally be writtenin theform of abilateral Laplace transform f(R3) :

f(R) = = [f(H)e *"dH (55)

where 3isacomplex variable. By decomposing 3into real and imaginary parts, i.e. 3¢ = [} +
iy , weobservethat, for 3 =0:

f(R) = [F(H)e "™ (56)
which, up to the changeof variable, isthe Fourier transformof f(H). For afixed 3, we have:
f(&+if)= fe ™ f(H) e "™dH (57)
whichistheFT of f(H) e S Deriving under the sum the expression for f(I3c) :

didRe f(R0) = [~ Ref (H) e *"dH
(58)

or, ingeneral :
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dMA(RY™ f(Re) = = [~(H)" (H)e "o (59)

and the summability abscissae of —(H)™ f(H) are the same as those of f(H), such that f(R¢) is indefinitely
derivable for all values of 3¢ where f(I3c) exists. f (3 + il ) is therefore holomorphic in al the band of
summability, i.e. for al valuessituated to the right of O in the complex planeformed by (4 > 0 and (3 > O.
The function 3 is therefore analytic in this domain of the complex plane. As the Dirac impulse at the origin

has for support the point S, its FT describestherefore an impulsional response non-decreasing at infinity. [

To understand the necessarily non-compact character of the impulsional response giving the
evolution of the system, we complete the above proposition by thefollowing corollary :

Corollary 5.3. The Fourier transform of the singular distribution ds of punctual support

describing theimpulsional response of the spacetime system cannot be of compact support.
Demonstration 5.4. Considering the Dirac impulse 65 € E(R) and thefunction f = 5‘5 :

f isanayticon R, insofar asitisthetrace of a holomorphic function on €. We suppose that f
is of compact support, hence f cancels itself out on an non-empty open set of . Thus, if a
general analytical functionon R is zero on an non-empty open set, then it is identically zero. It
follows from thisthat f cannot be of compact support. []

The aboveresults suggest in fact that the interaction here considered, ( not physical but purely
topological ), isergodic. AstheDirac impulse at the origin has for support the point &, its FT
describes therefore an impulsional response non-decreasing at infinity. [1 Indeed, (i) the

behaviour of [[2 is scale invariant and (ii) the O size singular gravitational instanton
characterising, according to [4], the initia singularity, represents a critical point S in the
system formed by the pre-spacetime manifold and 4, such that the correlation length of the

system & — . From this viewpoint, the interaction Int top is subject to the action of a

renormalisation group Gn assuring the scaleinvariance of the system.
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6. DISCUSSION

Here, taking the example of Foucault's experiment, we have suggested anew solution, aimed at
resolving two open problems:

(i) theproblemof theinvariance of theinertial interaction at al pointsin spacetime ;

(i1) the problem of the "instantaneous propagation” of inertia from one point to another in
spacetime - i.e. the Machian principle according to which the inertia reference frame defined by
local physics coincides with thereference framein which distant objects are at rest. It follows
that the masses distributed most distantly in the universe determine theinertial behaviour of local
Masses.

Our approach is that the problem of inertia, well placed in the context of Mach's principle,
cannot be resolved by ordinary field theory. Indeed, it has been suggested in [4] that under the
Planck scale, quantum field theory must be analytically continued by topological field theory.
We can thus establish that at O scale, the associated supergravity is exclusively a matter for
topological theory, describing a spacetime provided with a positively defined Euclidean metric.
In such a context, the initial singularity can be interpreted as a O size singular gravitational
instanton marking the origin of the semi-Kahlérienne manifold corresponding to pre-spacetime
between O scaleand the Planck scale.

Our conclusion is then that at O scale, the topological charge Q = 1 of the O size instanton
represents the source of the global topological inertia interaction, which can be tested
experimentally by the fixity of the plane of oscillation of Foucault's pendulum or by the
Thirring- Lense effect.

In asubsequent paper, we will consider that this result can be reinforced by the hypothesis of a
correlation betweenthe singular scale (tp, x0) and the macroscopic scale (t, x). We begin from

the observation of the cosmological radiation at 2.7 ° K and draw from this the existence of a
thermal Green function - or Euclidean Green function GE - describing the correlation between

the O scale (3 = 0) and the macroscopic scale of spacetime. Such an approach suggests the
topological nature of the interaction between 0 and macroscopic scales. Indeed, the correlation
described by

Gelto %o t.X) = [{p(to.X0)9(t, X)) € *dp (60)
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issuch that all points P of spacetime are correlated - by an Euclidean path - to the singular point
O. Insofar as the path between O and P is Euclidean - which is the case since the spacetime
system, considered at the non-zero temperature T = 2.7° K is the concern of dstatistica
mechanics - theinteraction between O and P depends only on the conditions at the boundary and
is thus purely topological. Following this, we specify in this paper to come the notion of
"Euclidean propagation” of inertia, according to the flow of weights of the algebra of states
describing spacetime in the region of the initial singularity. Beginning with the Von Neumann
algebra > describing the singular state corresponding to the O size gravitational instanton, we
conjecture that the sole result from the algebra >, implies the existence of a "pseudo-dynamic”
associated with > and characterised by the flow of weights of >. Such a flow assures the
propagation of the topological charge Q of the O instanton. In agreement with the results of

Connes [24], the homomorphism defining the canonical dynamic o is such that & :

Aut X

R—0uy = e

, thisinvariant having an intrinsic description in terms of flow of weights

of ¥. In other words, the sole result of the algebra 3> implies the existence of a dynamic
associated with > and characterised by the flow of weights of 3. We suggest then that this
dynamic is based on the semi-group of automorphisms:

2 2
ar(M) =ePP M eBP (61)

corresponding to theevolution inimaginary timei t of thestate M - i.e. to the expansion of the
space of statesE. Thisexpansion of [E isindexed by increasing values of 3, theradius of E. As
(61) describestheflow of weights of the system and that this flow is ergodic, I3 is necessarily
increasing intheinterva [0, o ].

We suggest then that atest of the topological natureof theinteraction existing betweenthe O size
singular gravitational instanton and local systems is provided by the fixity of the plane of
oscillation of Foucault's pendulum. We have shown that M6b(3) is the conformal group Conf

(S3) of S3. Conf (S3) describes the scale invariance (i.e. conformal invariance) of the sphere
identified here, following theinclusion S SL(2, C), to physical space R3 compactification.
We have then suggested that the flow of weights of the algebra M giving the modular flow
a t (M) on S3 belongs to the class of similitude SS.

Finally, we note that an interesting conseguence of the above approach is that it allows us to
establish an explicit relation between the automorphism semi-group of the algebra of states A
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and the renormalisation semi-group of the theory. Introduced by Wilson [25] and Kadanoff et
al. [26], therenormalisation programme - in particular the renormalisation group - alows us to
encompassin a unique formalism the different scales of the theory. Experience shows that the
behaviour of Foucault's pendulum, notably the fixity of the plane of oscillation, is scale

invariant. Everything occurs therefore as if the dynamic of 4 were subject to the action of a
renormalisation group GR, the group whose structure we define below. The calculation of the
correlation length & between two localised variables at different points takes then the form,

considering thevariables vy, :

-/
(Wn’ 11Um> - (Wn)(T/Jm> =€ o (62)

where the distance 3 depends on the number of points on the lattice between n et m. At O scale,
the correlation length becomes, considering the couplinggo :

0(90) — = (63)

The correlation length is infinite, such that at O scale, there exists an instantaneous interaction
between the point Sg representing theinitial singularity of spacetime and the boundary at infinity
of the 4-manifold, representing the 3-dimensional physical space. We have shown that the
renormalisation group acting on 4 is isomorphic to the automorphism semi-group of the state
algebra of thetheory at O scale.

From the above, we can conclude :

(i) the identitfication between the flow of weights of the state algebra and the topological flow
responsiblefor the propagation of thetopological chargeQ from O scaleto 3 scale characterising
theradius of thelarge scale physical space;

(i1) the explanation according to which, whatever the orientation in physical space R3 of the
2-dimensional plane of oscillation [[2 of the pendulum #, this plane necessarily intersects the

initial singularity, i.e. [|2 isalwaysalignedon S.

Wetherefore suggest, to conclude, that the interpretation of x4 as a direction in imaginary time
explains in a non-trivial manner the nature of the inertial force as well as its instantaneous
propagation from one point to another in spacetime.

- 27 -



Topological Origin of Inertia

10.

REFERENCES

Mach E.
« LaMeécanique »

Ed. Gabay (1989)

Vigier J.P.
Foundations of Physics, 25 N°10 1461 (1995)

Witten E.

« Topological Quantum Field Theory »
Commun. Math. Phys. 117 353-386 (1988)

Bogdanov G.

« Fluctuations Quantiques de la Métrique al’ Echelle de Planck »
Theése de Doctorat en Physique-Mathématiques. Université de Bourgogne (1999)

BransC. Dicke R.H.
« Mach's principle and arelativistic theory of gravitation »
Physic Review 124 (1964

Bondi H. Samuel J.

« The Lense-Thirring effect and Mach’s principle »
gr-qc-9607009 (1996)

Brill D.R.

« Mach'’s principle : from Newton’s bucket to quantum gravity »
Matter of Gravity 31-33 gr-gc 9402002 (1994)

Weinberg S.
« Gauge and blobal symmetries at high temperature »
Phys. Review D Vol.9 N°12 3367-3377 (1974)

Kubo R.

« Statistical mechanical theory of irreversible processes »
Phys.Soc Japan 12 570-586 (1957)

Takesaki M.

« Tomita s theory of modular Hilbert algebras and its applications »
Lecture Notesin Math, 128 Springer, New-York (1970)

- 28 -



Topological Origin of Inertia

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

ConnesA.

« Non-Commutative Geometry »
Academic Press (1994)

Araki H. Woods E.J.

« A classification of factors »
Publ. Res. Inst. Math. Sci. Ser. A 4 51-130 (1968/69)

Donaldson SK.

« Polynomial invariants for smooth four manifolds »
Topology Vol 29 N° 3 257-315 (1990)

Donaldson S.K. Kronheimer P.B.

« The Geometry of Four Manifolds »
Oxford Science Publications/ Oxford University Press (1990)

Fre P. Soriani P.

« The N=2 Wonderland. From Calabi-Y au Manifolds to Topological Field Theory »
World Scientific Publishing (1995)

Bertlman R.A.

« Anomalies in Quantum Field Theories »
Oxford Science Publications (1996)

Witten E.

« Small Instantons in String Theory »
hep-th / 9511030 (1995)

Shifman M.

« Instantons in Gauge Theories »
World Scientific Publishing (1994)

Seiberg N. Witten E.

«Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD »
Nuclear PhysicsB431 484-550 (1994

Balachandran A.P. Marmo G. Skagersiam B.S. Stern A.

« Classical Topology and Quantum States »
World Scientific Publishing (1991)

Donaldson SK.

« An application of gauge theory to four dimensional topology »
JDifferential Geometry 18, 279-315 (1983)

Berger M.

« Géométrie »
Nathan (1990))

Roddier F.
« Distributions et Transformation de Fourier »

- 29 -



Topological Origin of Inertia

24,

25.

26.

Ediscience (1993)

Connes A., Takesaki M.

« Flots des poids sur les facteurs de type 111 »
C.R. Acad. Sci. Paris, t. 278, Série A, 945-948, (1974)

Sezgin P van Nieuwenhuizen E..

« Renormalizability properties of antisymmetric tensor fields coupled to gravity »
Phys.Review D Vol.22 N°2 301-307 (1980)

Kadanoff L.P.

« Scaling at Critical Points »
in Phase Transition and Critical Phenomena vol 6 ed. Dombs and Green, Academic
Press (1976)

- 30 -



	Topological Origin Inertia.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30


