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Abstract

Starting from an unintegrated gluon distribution which satisfies a ‘unified’ equation
which embodies both BFKL and DGLAP behaviour, we compute the shadowing correc-
tions to the integrated gluon in the small x domain that will be accessible at the LHC.
The corrections are calculated via the Korchegov equation, which incorporates the lead-
ing ln(1/x) triple-Pomeron vertex, and are approximately resummed using a simple Padé
technique. We find that the shadowing corrections to xg(x,Q2) are rather small in the
HERA domain, but lead to a factor of 2 suppression in the region x ∼ 10−6, Q2 ∼ 4 GeV2

accessible to experiments at the LHC.

Experiments at HERA and the Tevatron have confirmed the rapid increase of the gluon

distribution as x decreases, which is expected both in the pure DGLAP framework and in the

BFKL-motivated approach. It is anticipated, however, that at sufficiently small x, this increase

will be tamed by shadowing corrections.

The first quantitative studies of gluon shadowing were made by Gribov, Levin and Ryskin [1]

(GLR) and by Mueller and Qiu [2]. It was found that the shadowing contribution, fshad(Y, k2),

to the gluon distribution f(Y, k2), unintegrated over the gluon transverse momentum k, is of

the form
∂fshad(Y, k2)

∂Y
= −C

α2
S

R2

1

k2

[
xg(x, k2)

]2
, (1)
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where Y ≡ ln(1/x), πR2 denotes the transverse area populated by the gluons and g is the

integrated gluon distribution. The constant C will be specified later. When the shadowing

term is combined with DGLAP evolution in the double leading log approximation (DLLA)

then we obtain the GLR equation for the integrated gluon at scale k2

∂g(x, k2)

∂Y ∂ ln(k2/Λ2)
=

NCαS

π
xg(x, k2) − C

α2
S

R2k2

[
xg(x, k2)

]2
, (2)

where the last quadratic term, which originates from shadowing, is simply the right-hand-side

of eq. (1).

The GLR equation effectively resums the ‘fan’ diagrams generated by the branching of QCD

Pomerons, which correspond in the GLR approach to gluonic ladders in the DLLA to DGLAP

evolution. In this approach the triple-Pomeron vertex, which couple the ladders, is computed

in the leading ln k2 approximation. The GLR equation has stimulated an enormous literature

[3–18] connected with shadowing effects in deep inelastic and related hard scattering processes.

One of the important results to emerge from these studies is the computation of the exact

triple-Pomeron vertex beyond leading ln k2, but staying within the more appropriate leading

ln 1/x approximation.

The aim of the present study is to take advantage of this precise knowledge of the triple-

Pomeron vertex in order to perform a quantitative estimate of the gluon shadowing effects

which can be probed in the low x domain which is accessible at the LHC. To be precise, we

start from the solution fL of the unshadowed linear equation which embodies both BFKL and

DGLAP evolution, as well as subleading ln 1/x effects [19]. Then we compute the quadratic

shadowing contribution, −f
(0)
shad, from the solution fL using the more complete triple Pomeron

vertex. We resum the shadowing contributions using a simple (1,1) Padé-type representation

f =
fL

1 + f
(0)
shad/fL

, (3)

and the gluon distribution is then calculated from

xg(x, Q2) = xg(x, k2
0) +

∫ Q2

k2
0

dk2

k2
f(x, k2). (4)

The structure of the triple-Pomeron vertex can be extracted from an equation, formulated

by Kovchegov [16], for the quantity N(r, b, Y ). N is closely related to the dipole cross section

σ(r, Y ) describing the interaction of the qq̄ dipole of transverse size r with the proton target.

To be precise

σ(r, Y ) = 2
∫

d2b N(r, b, Y ), (5)

where Y = ln(1/x) and b is the impact parameter for the interaction of the qq̄ dipole with

the proton. Recall that the dipole cross section is given in terms of the unintegrated gluon

distribution by [20]

σ(r, Y ) =
8αSπ2

NC

∫
dk

k3
[1− J0(kr)] f(Y, k2). (6)
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In the large NC limit, the function N satisfies the integral equation [17]

N(r01, b, Y ) = N0(r01, b, Y ) +
αSNC

2π

∫ Y

0
dy

{
−2 ln

r2
01

ρ2
N(r01, b, y) +

(7)∫
ρ

d2r2

π

r2
01

r2
02r

2
12

[
2N

(
r02, b + 1

2
r12, y

)
− N

(
r02, b + 1

2
r12, y

)
N
(
r12, b− 1

2
r20, y

)]}
,

which is the unfolded version of eq. (15) of Ref. [16]. The linear part of this equation corresponds

to the BFKL equation in dipole transverse coordinate space. The term containing the log

denotes the virtual correction responsible for the Reggeization of the gluon, while the linear term

under the dr2 integral corresponds to real gluon emission. ρ is the ultraviolet cut-off parameter.

The subscripts 01, 02 and 12 enumerate scattering off qq̄, qg and q̄g systems respectively. The

equation resums fan diagrams through the quadratic shadowing term.

If we rewrite (7) in terms of the transformed function

Ñ(`, b, Y ) =
∫ ∞
0

dr

r
J0(`r) N(r, b, Y ), (8)

then the shadowing term has a much simpler form

Ñ(`, b, Y ) = Ñ0(`, b, Y ) +
αSNC

π

∫ Y

0
dy

[
K ⊗ Ñ(`, b, y) − Ñ2(`, b, y)

]
, (9)

where K is the BFKL kernel in momentum space. Here we have made the short-distance

approximation in which we neglect the rij terms in comparison to b, so that N is only a

function of the magnitudes r and b, and Ñ of ` and b.

We may resum the linear BFKL effects and rearrange (9) in the form

Ñ(`, b, Y ) = ÑL(`, b, Y ) − αSNC

π

∫ Y

0
dy G(Y − y) ⊗ Ñ2(`, b, y), (10)

where ÑL is the solution of the linear part of (9) with the shadowing term neglected, and G is

the Green’s function of the BFKL kernel

G(Y − y) = exp
(

αSNC

π
(Y − y)K

)
. (11)

Eq. (10) may be solved by iteration. At large Y (≡ ln 1/x) the dominant region of integration

is y ∼ Y , where G ' 1, and so the first iteration gives

Ñ(`, b, Y ) = ÑL(`, b, Y ) − αSNC

π

∫ Y

0
dy Ñ2

L(`, b, y). (12)

We now assume that the b dependence can be factored out of ÑL as a profile function S(b)

NL(`, b, Y ) = S(b) nL(`, Y ), (13)
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where we use the normalisation ∫
d2b S(b) = 1. (14)

Integrating (12) over d2b then gives

ñ(`, Y ) = ñL(`, Y ) − αSNC

π

1

πR2

∫ Y

0
dy ñ2

L(`, y), (15)

where
1

πR2
≡

∫
d2b S2(b). (16)

We use (6) and (5) to write (15) in terms of the unintegrated gluon distribution. We obtain

f(Y, k2) = fL(Y, k2) − α2
S

R2

(
1 − d

d ln k2

)2

k2
∫ Y

0
dy

[∫ ∞
k2

d`2

`4
ln

(
`2

k2

)
fL(y, `2)

]2

, (17)

where we have used the identities

∫ ∞
0

dr

r
J0(kr) [1− J0(`r)] = 1

2
ln

(
`2

k2

)
Θ(`2 − k2), (18)

(
1 − d

d ln k2

)2

k2
∫ ∞

k2

d`2

`4
ln

(
`2

k2

)
f(Y, `2) = f(Y, k2). (19)

Note that the term in square brackets in (17) is proportional to nL(k, y). Formula (17) is valid

in the large NC limit, but for finite NC we need only multiply the shadowing term by a factor

N2
C/(N2

C − 1) = 9/8. The second term on the right-hand-side of (17) is simply the shadowing

contribution −f
(0)
shad of (3). Recall that (3) represents the (1,1) Padé approximation of the series

whose first two terms are given on the right-hand-side of (17). Moreover, we emphasize again

that for the linear term fL we use the solution of an equation which embodies both BFKL and

DGLAP behaviour and which contains major sub-leading effects in log 1/x [19]. In Fig. 1 we

show the results for the integrated gluon xg(x, Q2) obtained from (3) and (4). The shadowing

term −f
(0)
shad in (17) is computed from the unintegrated gluon fL of Ref. [19], assuming a running

coupling αS(k2).

Several features of the results of Fig. 1 are noteworthy. First we see, as expected, the effect

of shadowing on xg (x, Q2) decreases with increasing Q2. Second, with increasing ln (1/x), the

start of the ‘turn-over’ towards the saturation limit is evident in the Q2 = 4 GeV2 curves. The

major uncertainty in the predictions arises from the choice of the value of R, as a consequence

of the 1/R2 dependence of the shadowing term. We have chosen values of R that are consistent

with the radius of the proton1. The results of Fig. 1 show that the effects of shadowing are

rather small and difficult to identify at HERA where, at best, the domain x ∼ 10−4 − 10−3

at Q2 ∼ 5 GeV2 can be probed. On the other hand shadowing leads to up to a factor of 2

1If the gluons were concentrated in ‘hot-spots’ within the proton, then shadowing effects would, of course,
be correspondingly larger.
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suppression of xg (x, Q2) in the Q2 ∼ 5 GeV2 and x ∼ 10−6 − 10−5 domain accessible to the

LHC experiments [21].

For completeness we summarize how the Korchegov equation [16], (7), may be reduced to

GLR form [1]. We start with (6) and approximate 1−J0(kr) by (kr)2/4, which is valid provided

k2 � 4/r2. Then we obtain

σ(r, Y ) =
αSπ2

NC
r2
∫ 4/r2 dk2

k2
f(Y, k2), (20)

where the integral can be identified with the integrated gluon xg(x, 4/r2), where Y = ln(1/x).

Thus, from (5), we have

∫
d2b N(r, b, Y ) ' αSπ2

2NC
r2 xg(x, 4/r2). (21)

Now if (7) is evaluated in the strongly-ordered approximation (r2
01 � r2

02 ∼ r2
01) it can be shown,

using (4), that it reduces to the GLR form

∂g(x, Q2)

∂Y ∂ ln(Q2/Λ2)
=

NCαS

π
xg(x, Q2) − α2

Sπ

πR2

1

Q2

[
xg(x, Q2)

]2
. (22)

Comparing with (2) we see that the coefficient2 C = 1.

In summary, we have quantified the size of the shadowing corrections to xg(x, Q2) using

a triple-Pomeron vertex which is valid beyond leading lnQ2, but staying within the leading

ln(1/x) approximation. The corrections are found to be sizeable for Q2 ' 4 GeV2 and x '
10−6 − 10−5, see Fig. 1. This domain may be probed at the LHC by observing prompt photon

production (gq → γq) or Drell-Yan production both at very large rapidities [21]. Of course the

latter process involves a convolution to allow for the g → qq̄ transition, which is required for a

gluon-initiated reaction; consequently somewhat larger values of the gluon x are probed.
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Phys. C62 (1994) 425; J. Bartels and M. Wüsthoff, Z. Phys. C66 (1995) 157; J. Bartels

and C. Ewerz, JHEP 9909 (1999) 026.

[8] J. Bartels and E. M. Levin, Nucl. Phys. B387 (1992) 617.

[9] L. McLerran and R. Venugopalan, Phys. Rev. D49 (1994) 2233, Phys. Rev. D49 (1994)

3352, Phys. Rev. D50 (1994) 2225; A. Kovner, L. McLerran and H. Weigert, Phys.Rev.

D52 (1995) 6231, Phys. Rev. D52 (1995) 3809; R. Venugopalan, Acta. Phys. Polon. B30

(1999) 3731.

[10] A. Bia las and R. Peschanski, Phys. Lett. B355 (1995) 301; Phys. Lett. B378 (1996) 302;

Phys. Lett. B387 (1996) 405; A. Bialas Acta Phys. Polon. B28 (1997) 1239; A. Bialas and

W. Czyz, Acta Phys.Polon. B29 (1998) 2095; A. Bia las, H. Navelet and R. Peschanski,

Phys. Rev. D57 (1998) 6585; Phys. Lett. B427 (1998) 147; hep-ph/0009248.

[11] G.P. Salam, Nucl. Phys. B449 (1995) 589; Nucl. Phys. B461 (1996) 512; Comput. Phys.

Commun. 105 (1997) 62; A.H. Mueller and G.P. Salam, Nucl. Phys. B475 (1996) 293.

[12] E. Gotsman, E. M. Levin and U. Maor, Nucl. Phys. B464 (1996) 251; Nucl. Phys. B493

(1997) 354; Phys. Lett. B245 (1998) 369; Eur. Phys. J. C5 (1998) 303; E. Gotsman, E.

M. Levin, U. Maor and E. Naftali, Nucl. Phys. B539 (1999) 535; A. L. Ayala Filho, M.

B. Gay Ducati and E. M. Levin, Nucl.Phys. B493 (1997) 305; Nucl. Phys. B551 (1998)

355; Eur. Phys. J. C8 (1999) 115; E. Levin and U. Maor, hep-ph/0009217.

[13] Ia. Balitsky, Nucl. Phys. B463 (1996) 99.

6



[14] J. Jalilian-Marian, A. Kovner, L. McLerran and H. Weigert, Phys. Rev. D55 (1997) 5414;

J. Jalilian-Marian, A. Kovner and H. Weigert, Phys. Rev. D59 (1999) 014014; Phys. Rev.

D59 (1999) 014015; Phys. Rev. D59 (1999) 034007; Erratum-ibid. D59 (1999) 099903;

A. Kovner, J.Guilherme Milhano and H. Weigert, OUTP-00-10P, NORDITA-2000-14-HE,

hep-ph/0004014; H. Weigert, NORDITA-2000-34-HE, hep-ph/0004044.

[15] M.A. Braun, Eur. Phys. J. C16 (2000) 337; hep-ph/0101070 .

[16] Y.V. Kovchegov, Phys. Rev. D60 (1999) 034008; Phys. Rev. D61 (2000) 074018.

[17] E. M. Levin and K. Tuchin, Nucl. Phys. B537 (2000) 833; hep-ph/0012167.

[18] Y.V. Kovchegov and L. McLerran, Phys. Rev. D60 (1999) 054025; Erratum-ibid. D62

(2000) 019901; Y.V. Kovchegov and E. M. Levin, Nucl. Phys. B577 (2000) 221.

[19] J. Kwiecinski, A.D. Martin and A.M. Stasto, Phys. Rev. D56 (1997) 5867.

[20] A.Bialas, H.Navelet and R. Peschanski, hep-ph/0009248.

[21] A. De Roeck, Contribution to the First Workshop on Forward Physics at the LHC, Helsinki,

Nov. 2000.

7



)2
xg

(x
,Q

10

20

30

40

50

60

70

unshadowed
-1R=5 GeV

-1R=4 GeV

2=4 GeV2Q

x      
10

-7
10

-6
10

-5
10

-4
10

-3

0

20

40

60

80

100

120

140

160

unshadowed

-1R=5 GeV

-1R=4 GeV

2=20 GeV2Q

Figure 1: The effect of shadowing on the integrated gluon distribution xg(x, Q2), at Q2 =

4 GeV2 and 20 GeV2. The continuous line is simply the unshadowed xg obtained from fL [19].

The dashed and dotted lines show the result of shadowing with R = 4 and 5 GeV−1 respectively,

where the ‘radius’ R is defined in (16) in terms of the proton profile function, S(b).
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