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We prove under certain natural conditions the �niteness of the number of isomorphism classes

of Zariski dense subgroups in semisimple groups with isomorphic p-adic closures.
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Introduction.

The present paper was inspired by Mazur [Ma], where he considered various types of local-global

principles in number theory and also the problem, for a given number �eld k, to determine

the companions of a given algebraic k-variety V (i.e. those k-forms of V , locally everywhere

kv-isomorphic to V ). He also conjectured that for projective smooth varieties V over k, there

are, up to k-isomorphism, only �nite number of companions of V . For algebraic groups which

are not necessarily linear, such a (well-known) question was answered in a�rmative by Borel

and Serre [BS]. We consider here an analog in the case of Zariski dense subgroups of semisimple

groups. The following provides a connection with similar question. Let k be a number �eld, S a

�nite set of valuations of k, containing the set1 of archimedean ones. Let O = O(S) be the ring

of S-integers of k, 
 be a �xed universal domain containing k. For a valuation v of k we denote

by kv the v-adic completion of k, Ov = v-adic integers of kv, mv = maximal ideal of Ov , A =

ad�ele ring of k. Algebraic groups under consideration are identi�ed with their points over 
.

Assume that G � G(k), G ,! GLn(
), where G denotes the Zariski-closure of G in GLn, G(B)

will denote the B-points of a linear algebraic group G, with respect to the matrix realization of

G ,! GLn and for some ring B. Clv(G) denotes the (v-adic) closure of G in G(kv) with respect

to the v-adic topology on G(kv). So there attaches to a given G a collection (Clv(G))v of v-adic

closures of G, which measures how big G is locally. One may ask the following natural question:

(�) To what extent the collection (Clv(G))v determines the group G up to isomorphism ? Is

the number of isomorphism classes �nite ?

We are most interested in the �niteness aspect of above question, i.e., given topological iso-

morphisms Clv(G) ' Clv(Gi) for all v, where i runs over a set of indices I, we ask whether the

set of isomorphism classes of fGigi is �nite.

These questions are closely related also to the congruence subgroup problem and strong

approximation in simply connected algebraic groups in its wide sense.

It is our objective to establish the �niteness of the number of isomorphism classes in the case

of semisimple groups (a partial answer to (�)).

In general, this is a di�cult question and we will show the �niteness to hold under certain

restrictions. The �rst restriction is to require the groups Gi to be "big" in the sense below.

For simplicity we restrict ourselves to the case k = Q. Let I be a set of indices. For each

i 2 I let Gi be a Zariski dense subgroup of simply connected absolutely almost simple Q-group

Gi ,! GLni , such that Gi � Gi(Z) and Gi 6' Gj if i 6= j. Assume that each Gi satis�es the

following condition

\p(Gi(Q) \ Clp(Gi))) = Gi: (B)

Here Clp(�) means taking the closure in the p-adic topology of Gi(Qp). This condition means

that Gi are "big" so that one can recover the group Gi from local closures. A Zariski dense
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subgroup Gi � Gi satisfying this condition (B) such that all closures Clp(Gi) are open and

compact subgroups of Gi(Qp) will be called big.

1 The Theorem

Our main result can be stated as follows.

Theorem. With the above notation and convention, let I be a set of indices and for i 2 I,

Gi be a big subgroup of a simply connected absolutely almost simple Q-group Gi. Then the

number of isomorphic classes of groups Gi with isomorphic p-adic closures is �nite.

The proof of the theorem will be given in few steps.

We �x two groups G, H from the set B(G) := fGigi2I . L(G) will denote the Lie algebra

of a Lie (resp. v-adic or algebraic) group G and we �x once for all a matrix realization of G

into GLn(
). Ad(G) will denote the adjoint group of G.

1. Lemma. The set B(G) is a disjoint union of �nitely many classes of groups Gi with

Q-isomorphic Zariski closures.

Proof. By our assumption, each p-adic closure Clp(Gi) is an open and compact subgroup of

Gi(Qp) and they are isomorphic to each other as topological groups. Denote by fp : Clp(G) '

Clp(H) the given topological isomorphism, where G and H are two �xed groups from fGigi.

By [Pin], Corollary 0.3, fp can be extended uniquely to a Qp-isomorphism �fp : G ' H, so G

and H are Q-linear algebraic groups which are Qp-isomorphic for all p. By Borel - Serre [BS],

Th�eor�eme 7.1, it follows that such groups lie in �nitely many Q-isomorphic classes.

� � � � �

From now on we assume that all groups Gi have Q-isomorphic Zariski closures.

The following lemma shows the ad�ele nature of the family (fp).

2. Lemma. With notation as in the proof of Lemma 1, for almost all p, �fp is a Zp-polynomial

isomorphism with respect to the given matrix realization of the groups G and H.

Proof. Recall that we have �xed an embedding G � GLn(Q). Since fp is a topological iso-

morphism, it is also an isomorphism of p-adic analytic Lie groups, thus it maps a open uniform

powerful subgroup SG (p-saturable subgroup in terminology of [La], or standard subgroup in ter-

minology of [Se]) of Clp(G) onto a open uniform powerful subgroup SH of Clp(H) (see [DDMS],
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Ch. 4, [Se], Ch. 4, [La] for more details). It follows from the de�nition of Lie algebras of ana-

lytic groups ([Se], Ch. 5, [DDMS], Sec. 8.2, 10.4) and the construction of standard subgroups

that L(SG) ' L(SH) as Zp-Lie algebras, i.e., with structural constants belonging to Zp (loc.

cit.) so dfp must be a Zp-linear map with repsect to a given matrix realization (which is always

�xed). Since SG is an open uniform subgroup of Clp(G), its Lie algebra L(SG) is a Zp-lattice

of L(Clp(G)), in particular, L(Clp(G)) = L(SG) 
Zp Qp, and the same is true for H instead

of G. Therefore dfp : L(Clp(G)) ' L(Clp(H)) is de�ned over Zp, thus the same is true for

isomorphism L(G) ' L(H), thus also for dp : Aut(L(G)) ' Aut(L(H)). Since the map dp is

given by the following rule :

dp : � 7! dfp � � � df
�1
p ;

it follows that �f 0p : Ad(G) ! Ad(H) will be a Zp-polynomial isomorphism. Since fp extends

uniquely to Qp-isomorphism �fp : G ! H by [Pin], Corollary 0.3, the following diagram is

commutative :

G
�fp
! H

�1
??y �2

??y

Ad(G)
�f 0p
! Ad(H)

here �i denotes the corresponding isogeny. It follows that for those p not lying in the set T

of primes dividing m, where m = Card(Ker (�1)), �fp is also de�ned over Zp. Therefore �fp is

de�ned over Zp for all p not belonging to T .

We need the following lemma in the sequel in order to realise Aut(G) as linear algebraic

group over Q.

3. Lemma. With the above notation, let f1; : : : ; fN be Q-rational functions over G which

are linearly independent over Q. Then there exists x1; : : : ; xN 2 G(Q) such that

det(fi(xj))1�i;j;�N 2 Q n f0g:

Proof. We prove by induction on N . The case N = 1 is trivial. Recall that G(Q) is Zariski

dense in G. Denote

f(x1; :::; xn) := det(fi(xj))1�i;j;�N :

Let N > 1 and assume that we have found N � 1 points x1; : : : ; xN�1 such that

c = det(fi(xj)1�i;j�N�1) 6= 0:

Consider the following Q-rational function g(z) on G de�ned as follows

g(z) := f(x1; :::; xN�1; z);
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and expand the determinant g(z) after the last row we have

g(z) = a1f1(z) + � � �+ aN�1fN�1(z) + cfN (z):

If for all z 2 G(Q) we had g(z) = 0, then due to the Zariski density of G(Q) in G, it would

follow that g(z) = 0, hence c = 0 since f1; :::; fN are Q-linearly independent, which contradicts

the choice of c.

Denote by M = Aut(G) the group of rational automorphisms of G. It is well-known that

M has a natural structure of linear Q-algebraic group (see, e.g., [BS], [HM]) We need a speci�c

realization of the group M , which plays a crucial role in our proof, as follows. Recall that A

denotes the ad�ele ring of Q.

4. Proposition. With the above notation there is a realization of M as a linear algebraic

Q-group such that for every H 2 B(G) and for any Q-isomorphism g : H ! G, the family

(g � fp) (p runs over all prime numbers) is belong to M(A).

Proof. First we �x a universal domain 
. It follows from results of [HM] that G is a conserva-

tive Q-group, i.e., the group M acts locally �nitely on the Q-algebra Q[G] of regular functions

de�ned over Q on G. As before, we �x an embedding G ,! GLn(
) and let xij(1 � i; j � n)

be the coordinate matrix functions on G. Let V be the smallest �nite dimensional Q-vector

subspace of Q[G] containing xij; 1 � i; j � n; which is M -invariant (i.e. V is generated by

xij and their images under the action of M). Let ff1; :::; fNg be Q-regular functions over G

which form a Q-basis of V containing all xij (notice that all xij are Q-linearly independent). By

multiplying fk with a suitable integer, we may assume that fk are all Z-polynomial functions.

For � 2M let the action of � be given as follows

� : fi 7! fi � � = �1�j�Na
(�)
ij fj;

where a
(�)
ij 2 
 (=universal domain). Since the Q-basis ff1; :::; fNg contains all coordinate

functions, it follows that the mapping

� : � 7! (a
(�)
ij )

is a faithful Q-representation of M into GL(V ), where the latter is identi�ed with GLN (
)

by means of the basis ff1; :::; fNg. Further we will identify M with a closed Q-subgroup of

GLN (
). Thus

� 2M(Zp), a
(�)
ij 2 Zp; 8i; j:

Now let

�fp : G ' H
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be the isomorphism extending the isomorphism fp : Clp(G) ' Clp(H) (so �fp is de�ned over Qp)

and let g : H ' G be any Q-isomorphism.

We now choose elements x1; :::; xN as in Lemma 3. For the convenience, we denote aij = a
( �fp)
ij ,

where p is �xed. Then we have the following systems of equations

(A1)

8>>>>><
>>>>>:

f1(g � �fp(x1)) = a11f1(x1) + � � �+ a1NfN(x1)
�
�
�
f1(g � �fp(xN )) = a11f1(xN ) + � � �+ a1NfN (xN )

�

�

�

(AN )

8>>>>><
>>>>>:

fN(g � �fp(x1)) = aN1f1(x1) + � � �+ aNNfN (x1)
�
�
�
fN(g � �fp(xN )) = aN1f1(xN ) + � � � + aNNfN (xN )

Denote

r = c=d := det(fi(xj))(1 � i; j � N);

where c; d 2 Znf0g. Since xi 2 G(Q) are �nite in number, we may assume that xi 2 G(Z[S�1
1 ])

for all i, where Z[S�1
1 ] is the localization at a �nite set S1 of primes, which contains the set

of primes dividing c. By Lemma 2, for certain �nite set S2 of primes the isomorphism �fp (see

notation above) is de�ned over Zp for p 62 S2. For a �nite set S3 of primes, we see that g is

de�ned over Zp for p =2 S3. Let S = S1 [ S2 [ S3. Then by solving the system At above with

respect to at1; :::; atN , we have

aij = (1=r)dij ;8i; j;

where aij 2 Zp[S
�1]. So for p 62 S we have g � fp 2M(Zp) as required.

Denote by

C(G) = f(fp) 2
Q
pM(Qp) : fp(Clp(G)) = Clp(G);8p; and

fp 2M(Zp) for almost all pg .

It is clear that C(G) is an in�nite subgroup ofM(A). Next we want to parametrize the set B(G)

by assigning to each H 2 B(G) a double coset class in M(Q)nM(A)=C(G) de�ned as follows :

If g : H ' G is a Q-isomorphism, �fp : G ' H is the isomorphism extending fp : Clp(G) '

Clp(H) for all p, then we set

a(G;H) :=M(Q)(g � �fp)C(G):
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According to Proposition 4, (g � �fp) 2M(A) so a(G;H) is an element of the set of double coset

classes M(Q)nM(A)=C(G).

5. Proposition. The correspondence de�ned above is a well-de�ned map.

Proof. First we have to show that the class M(Q)(g � �fp)C(G) does not depend on the choice of

g and ( �fp).

Let g0 : H ' G be another Q-isomorphism, f 0p : Clp(G) ' Clp(H) be an isomorphism with

the extension �f 0p : G! H for all p. Then we have

(�) g � �fp = (g � g0�1) � (g0 � �f 0p) � (
�f 0�1
p � �fp):

Since g � g0�1 is a Q-isomorphism of G, g � g0�1 2M(Q). For all p we have

( �f 0p
�1
� �fp)(Clp(G)) = Clp(G):

Hence for all p we have �f 0p
�1
� �fp 2M(Qp) and thus for almost all p, �f 0p

�1
� �fp 2M(Zp), because

�f 0p and
�fp are so. Hence ( �f 0p

�1
� �fp) 2 C(G). Thus

M(Q)(g � �fp)C(G) =M(Q)(g0 � �f 0p)C(G):

The injectivity of the map H 7! a(G;H) now follows from the following

6. Proposition. If (G;H) and (G;K) have the same double coset class then H = K.

Proof. With notation as in the proof of Proposition 5, by the assumption we have for all

primes p

f � �fp = gQ(g � �gp)hp;

where gQ 2M(Q) and (hp) 2 C(G). Denote f
0 = g�1

Q � f , �g0p = �gp � hp. Then for all p we have

f 0 � �fp = g � �g0p;

or

g�1 � f 0 = �g0p �
�f�1
p ;

i.e., g�1 � f 0 is a Q-isomorphism H ' K, mapping Clp(H) onto Clp(K) for all primes p.

For h 2 H � H(Q) we have (g�1 �f 0)(h) 2 K(Q), and (g�1 �f 0)(h) 2 Clp(K) for all p. Thus

(g�1 � f 0)(h) 2 K(Q) \ (\pClp(K)) = K

by the assumption that the groups Gi are big. Hence (g
�1 � f 0)(H) � K: Similarly we have

(f 0�1 � g)(K) � H;
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i.e., (f�1 � f 0)(H) = K; and H ' K, hence H = K since all groups Gi are mutually non-

isomorphic. Proposition 6 is proved.

Preceding observations show that the cardinality of B(G) is not greater than the cardinality

of M(Q)nM(A)=C(G). We want to show that the latter is �nite. De�ne

D = D(G) := f(ap) 2 C(G) : ap 2M(Zp) ;8pg;

i.e., D = C(G)\M(A(1)), where A(1) denotes the subring of �nite ad�eles of A. In particular

we have

Card(M(Q)nM(A)=C(G)) � Card(M(Q)nM(A)=D:

The following proposition plays a crucial role in the proof of the �niteness of Card(M(Q)nM(A)=D).

7. Proposition. There is only a �nite number of subgroups of a given �nite index m in

G(Zp).

Proof. Let R be a subgroup of index m in G(Zp). First we assume that R is a normal

subgroup. Then by considering the factor group G(Zp)=R we conclude that R contains the

subgroup G(Zp)
m of G(Zp) generated by the m-powers. It su�ces then only to prove that

[G(Zp) : G(Zp)
m] <1:

Passing to a uniform pro-p-subgroup G0 of G(Zp) we need only show that G0m is of �nite index

in G0. It is known ([DDMS], Theorem 3.16) that G0 is a pro-p-group of �nite rank, say, d,

and G0 is topologically generated by g1; :::; gd. Also, by (loc. cit., Theorem 4.9) there exists a

homeomorphism

 : Zdp ' G0;

such that

 (x1; :::; xd) = gx11 � � � xgdd :

Therefore  ((mZp)
d) is an open subset of G0, since mZp is open in Zp. It is clear that

 ((mZp)
d) � G0m; hence G0m is open in G0 and also of �nite index.

Now we assume that R is not normal inG(Zp). Then it is well-known that R contains a sub-

group R0 normal in G(Zp) and of index [G(Zp) : R0] dividing m!, hence R0 contains G(Zp)
m!.

Then the above proof shows that [G(Zp) : G(Zp)
m!] <1, therefore the proposition follows.

8. Remarks. The same proof of Proposition 7 gives the following (cf. also with [Seg]).

a) For a given compact p-adic analytic group, the number of its subgroups of given index m

is �nite.
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b) There is only a �nite number of subgroups of G(Qp) containing G(Zp) with given index m.

Now we denote by

M(Zp; Clp(G)) := ff 2M(Zp) : f(Clp(G)) = Clp(G)g:

From [MVW], Theorem 7.3, or [N], Theorem 5.4, we know that Clp(G) = G(Zp) for almost

all p (say, for all p outside a �nite set W of primes). By the choice of the functions fj (in

the proof of Proposition 4), they are Z-polynomial functions. So if f 2 M(Zp) then we have

f(G(Zp)) = G(Zp). Hence for p 62W we have

M(Zp; Clp(G)) =M(Zp):

We need also the following

9. Proposition. M(Zp; Clp(G)) is of �nite index in M(Zp).

Proof. By assumption G � G(Z), so it follows that for all p we have Clp(G) � G(Zp) and

it is a subgroup of �nite index in G(Zp) since Clp(G) is an open subgroup of the compact group

G(Zp). Let

t = [G(Zp) : Clp(G)] <1;

and Clp(G) = A1; : : : ; Ak be all subgroups of G(Zp) of index t (see Prop. 7). Then we have for

any f 2M(Zp)

[G(Zp) : f(Aj)] = [f(G(Zp)) : f(Aj)] = [G(Zp) : Aj] = t;

so f acts transitively on the set fA1; : : : ; Akg. Thus we obtain a homomorphism

 :M(Zp)! Sk;

where Sk denotes the symmetric group on k symbols. Consequently we have

[M(Zp) : Ker  ] <1:

It is obvious that Ker  �M(Zp; Clp(G)) and the proposition follows.

Now we are able to show

10. Proposition. With the above notation we have

Card(M(Q)nM(A)=D) <1:
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Proof. We have

Card(M(Q)nM(A)=D) =

= Card(M(Q)nM(A)=(
Q

p62W M(Zp)�
Q
p2W M(Zp; Clp(G))))

� Card(M(Q)nM(A)=M(A(1))) �
Q
p2W [M(Zp) :M(Zp; Clp(G))]

<1

by the main theorem of Borel [Bor] and by Proposition 9.

Summing up all results above we have proved the following

11. Theorem. Let I be a set of indices and for i 2 I, let Gi be a Zariski-dense subgroup

of a simply connected absolutely almost simple Q-group Gi, such that Gi � Gi(Z) are mutually

non-isomorphic, but all their p-adic closures for all p are topologically isomorphic, and each Gi

is big in Gi. Then I is �nite.
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