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Abstract

On the basis of semiclassical kinetic equations for quark-gluon plasma (QGP) and Yang-Mills

equation in covariant gauge, Langmuir oscillation and linear Landau damping is investigated.

It is found that plasma eigen modes are directly related with the wave number and it is highly

coupled with the thermal part of QGP. The linear Landau damping also exists in QGP, which

shows that plasma modes heavily damp for j k j! 0.
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I. INTRODUCTION

Recently, there has been much interest in theoretical and experimental study of quark-gluon

plasma (QGP) [1-3]. Because of asymptotic freedom of QCD, quarks are liberated at su�eciently

high temperature and densities. There is a phase transition which occurs at temperatures of

several hundred MeV. The thermodynamic properties of a quark-gluon plasma were considered

in detail in Ref.[4], in which fairly good expressions were obtained for its free energy. Kinetic

properties of the quark-gluon plasma and its collective excitations are investigated in Ref. [5].

Kalashnikov and Klimov [6] investigated the properties of the polarization operator calculated

in QCD at �nite temperatures and densities in the "one-loop" approximation and the spectrum

of the elementary excitations in such a system is found explicitly.

Most of the theoretical analyses of the dynamics and signatures of QGP plasma phase have

relied on the assumption of local thermal and chemical equilibrium. These assumptions have

promoted the construction of a kinetic frame work for plasmas with non-abelian interactions,

which allow discussions of nonequilibrium phenomenon with the approach to equilibrium.

Heinz and Siemens [7] carried out an analyses of colored collective modes in a QGP on the

basis of 'quark-gluon transport theory' near equilibrium. They found that two optical modes

(one longitudinal and one transverse) exist starting for k=0 at the plasma frequency, while there

is no acoustic mode starting at ! = 0. An important conclusion is done here, that linear Landau

damping is absent in QGP due to the contribution of massless gluon in the collective modes.

Further, Markov and Markova [8] developed the theory of nonlinear Landau damping on the

basis of hard thermal loop approximation. Linear Landau damping is abandoned on the basis

of an earlier paper [7].

In this paper, we re-examine the Linear Landau damping in QGP on the basis of semi-

classical kinetic equations and Yang-Mills [SU(3)] equation in a covariant gauge. In Sec.II. we

formulate the linearized system of equations for quark-gluon plasma with thermal and chemical

equilibrium. The regular distribution functions are bosonic for quarks and anti quarks, while

it is fermionic for the gluons with the global equilibrium in QGP. In Sec.III. we do the Fourier

transformation of the linearized system and a generalized expression for the conductivity (polar-

ization) tensor is obtained. The Langmuir oscillation and linear Landau damping is studied in

detail. It is found that the eigen modes in QGP is strongly related to the wave number and also

to the thermal part of the system. Linear Landau damping, depending stongly on the wave num-

ber and temperature, also exists in QGP. For smaller j k j! 0; we �nd that !p � j k j
1

3 ;� � 1
jkj :

II. EQUATIONS FOR DISTRIBUTION FUNCTIONS AND GAUGE FIELDS

We consider an ultrarelativistic quark-gluon plasma in, or, close to thermal equilibrium, at a

temperature T . We use the natural units, c = kB = 1 and the metric g�;� = diag(1;�1;�1;�1).

We consider a SU(Nc) gauge theory with Nf avors of quarks. The color indices a; b; :: run from

1 to N2
c � 1. The generators of the gauge group are denoted by ta and T a, respectively, for the

fundamental and the adjoint representations, and are normalized such that Tr(tatb) = 1
2�ab and

Tr(T aT b) = Nc�
ab. It follows that (T a)bc = �ifabc, and tata = Cf ; where Cf = (Nc � 1)=(2Nc)

is the Casimir of the fundamental representation and fabc are the structure constants of the
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group: [ta; tb] = ifabctc. Furthermore, D� and D̂� are the covariant derivatives which act as

D� = @� � ig[A�(x); �]; D̂� = @� � ig[Â�(x); �]; [; ] denotes the commutator, f; g denotes the

anticommutator, and A� = Aa
�t

a for the fundamental representation and Â� = Aa
�T

a for the

adjoint representation. The �eld F�� = F a
��t

a with

F a
�� = @�A

a
� � @�A

a
� + gfabcAa

�A
a
� ; (1)

obeys the Yang-Mills (YM) equation in a covariant gauge

@�F
��(x)� ig[A�(x); F

��(x)]� ��1@�@�A�(x) = �J�(x); (2)

where, � is a gauge parameter and g is the dimensionless coupling parameter. J� is the color

current

J� = gta
Z
d4pp� [Trta(fq � f�q) + Tr(T afg)]: (3)

We are neglecting the spin e�ects. Thus the distribution functions of quarks fq, antiquarks

f�q, and gluons fg satisfy the semiclassical kinetic equations

p�D�fq;�q �
1

2
gp�fF�� ;

@fq;�q
@p�

g = 0;

p�D̂�fg +
1

2
gp�fF̂�� ;

@fg
@p�

g = 0; (4)

where, the upper sign refers to quarks and the lower one to antiquarks, and F̂�� = F a
��T

a.

Initially, we are interested with the linear response in the QGP plasma. Therefore, we

decompose the distriburion functions into two parts, namely, regular and random (turbulent)

ones

fs = fRs + fTs ; s = q; �q; g; (5)

so that

< fs >= fRs ; < fTs >= 0; (6)

where angular brackets < : > indicate a statistical ensamble of averaging. Further we set

A� = AR
� +AT

� ; < AT
� >= 0; (7)

by de�nition. For simplicity, the regular part of the �eld AR
� is considered equal to zero. Simi-

larly,

J� = JR� + JT� ; < J� >= JR� ; < JT� >= 0: (8)

Let

fTs = fT (1)s + fT (2)s + :::

JT� = JT (1)� + JT (2)� + ::: (9)

Substituting Eqs. (5) - (9) into Eqs.(2) - (4), and collecting only the �rst order of perturba-

tions, we obtain the following linearized system of equations for the QGP plasma:
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@�(F
T��)L � ��1@�@�AT

� = �JT (1)� = �gta
Z
d4pp�[Trta(fT (1)q � f

T (1)
�q ) + Tr(T afT (1)g )]: (10)

p�@�f
T (1)
q;�q = �

1

2
g
1

2
gp�f(F T

��)L;
@fRq;�q
@p�

g = 0; (11)

p�D̂�f
T (1)
g = �

1

2
gp�f(F̂ T

��)L;
@fRg
@p�

g = 0; (12)

where,

(F T
��)L = @�A

T
� � @�A

T
� = (@�A

Ta
� � @�A

Ta
� )ta � (F Ta

�� )t
a: (13)

(F̂ T
��)L = @�Â

T
� � @�Â

T
� = (@�Â

Ta
� � @�Â

Ta
� )T a � (F̂ Ta

�� )T
a: (14)

We suppose that the characteristic time of relaxation of oscillations is small as compared

to the time of relaxation of the fRs . Therefore, we neglect the variation of the regular part of

the distribution functions in space and time, assuming that these functions are speci�ed and

describe the global equilibrium in QGP [8]

fRq;�q � f0
q;�q = 2

2Nf�(p0)

(2�)3
�(p2)

1

e(pu��)=T + 1
;

fRg � f0
g = 2

2�(p0)

(2�)3
�(p2)

1

e(pu)=T � 1
: (15)

III. LANGMUIR OSCILLATION AND LANDAU DAMPING

Taking the Fourier transformation of the linearized equations (11) and (12), we �nd

f
(1)
q;�q (k; p) = �

g���

p � k + i�p0
A�(k)

@f
(0)
q;�q

@p�
; (16)

f (1)
g (k; p) = �

g���

p � k + i�p0
Â�(k)

@f
(0)
g

@p�
; (17)

where,

��� � (p � kg�� � p�k�): (18)

Thus, the Fourier transformation of equation (10) takes the form

k�(k
�A�0

� k�
0

A�)� ��1k�
0

k�A� = �J�
0

(k)

= g2
Z
d4p

p�
0

���

p � k + i�p0
fA�(k)(

@f
(0)
q

@p�
+
@f

(0)
�q

@p�
) + Â�(k)

@f
(0)
g

@p�
g: (19)

We may write
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J (1)�0

(k) = g2
Z
d4p

p�
0

p � k + i�p0
(p�k �

@

@p
� p � k

@

@p�
)[f (0)

q + f
(0)
�q +Ncf

(0)
g ]A�(k): (20)

In the above, for simplicity, we omit the su�x " T " for the gauge �eld.

Now, we can write the linear current as

J�
0

(k) = ��0�A�(k); (21)

where,

��0� = g2
Z
d4p

p�
0

p � k + i�p0
(p�k �

@

@p
� p � k

@

@p�
)Neq; (22)

with Neq =
1
2(f

(0)
q + f

(0)
�q ) +Ncf

(0)
g , is the conductivity (polarization) tensor of QGP.

We are interested in the study of oscillation and Landau damping of Langmuir mode in

QGP. The term �00 represents such oscillation, thus we study �00 in detail.

�00 = g2
Z
d4p

p0

p � k + i�p0
(p0~k �

@

@~p
� ~p � ~k

@

@p0
)Neq (23)

For an easy calculation of the integral, we begin with the one dimensional case of the problem.

Therefore, we consider ~p k ~k k ~u. Then

�00 = �
g2

T

2Nf

(2�)3
4�

Z 1

0
dp

p0ku+ u0kp

p0k0 � kp+ i�p0
F (p): (24)

where,

F (p) = �s�s
e(p

0u0�pu��s)=T

(e(p0u0�pu��s)=T + 1)2
; (25)

with �q = ��q = 1; �g = 2Nc; �q = �; ��q = �q; �g = 0; represents a combined distribution of

quarks, antiquarks and gluons.

The principal value of the integral related with the combined distribution function F (p) is

given by the integral type

Z 1

0
dp

p0ku+ u0kp

p0k0 � kp+ i�p0
e(p

0u0�pu��)=T

(e(p0u0�pu��)=T + 1)2
; (26)

which is very much complicated to yield any physical results. Therefore, we chose that

F (p) � G(p) = �e��(p�W )2 ; (27)

where �; �;W are some chosen parameters as function of free parameters (�; T; u; u0). The

function F (P ) and G(p) may be close to identical with the proper selection of the parameters

satisfying at least the following conditions:

i) F (0) = G(0); ii) F 0(W ) = G0(W ); iii) F (1) = G(1):

We plot the functions F (p) and G(p) with the �xed values of parameters u0 = P 0 = T =

u = 1; � = :01; Nc = 8; with the chosen parameters � = 4; � = :1;W = :8. These functions

are shown in Fig.1a and Fig.1b, respectively. The �gures validate our approximation to some

extent.
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FIG. 1. Dependence of functions F(p) and G(p) for the �xed values free parameters

Thus, the integral equation (24 ) may be written approximately as

�00 � �
g2

T

8�Nf

(2�)3
�

Z 1

0
dp

p0ku+ u0kp

p0k0 � kp+ i�p0
e��(p�W )2 : (28)
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Let

I =

Z 1

0
dp

p0ku+ u0kp

p0k0 � kp+ i�p0
e��(p�W )2

= �p0u[

I
G1(p)

p� pres
dp+ i�G1(p = pres)]� u0[

I
G2(p)

p� pres
dp+ i�G2(p = pres); (29)

where G1(p) = e��(p�W )2 ; G2(p) = pe��(p�W )2 ; pres =
p0k0res

k , respectively.

Now, expanding

1

p� pres
= �

1

pres
f1 + (

p

pres
) + (

p

pres
)2 + ::::::::g; (30)

and keeping up to 2nd order in ( p
pres

), from the principal and residual values of the integral, we

�nd

�00 =
g2

T

8�Nf

(2�)3
�[
p0u

pr
+ (

p0u

p2r
+
u0

pr
)(
e��p

2

0

2�
+W ) + (

p0u

p3r
+
u0

p2r
)f
1

�
(W �

p0
2
)e��p

2

0 +
1 + 2�

2�
W 2g

�i�f(p0u+ pru
0)e��(pr�W )2g]; (31)

From equation (19) we �nd the dielectric tensor for the Langmuir oscillation

"l = (1� ��1)k20 +�00: (32)

To extract Langmuir oscillation and damping of longitudinal spectrum, we split k0 = k0r+ik
0
i .

In fact, k0r = !r and k0i = !i.

Thus the dielectric tensor splits into two parts

"l = "lr + i"li; (33)

where

"lr(k; k
0
r ) = 0; (34)

determines the Langmuir spectrum and

k0i = �
"li(k; k

0
0)

@"lr(k;k
0
r)

@k0j
k0=k0r

; (35)

gives the Landau damping. Accordingly, from equations (28) and (29), we �nd that

"lr(!r; k) = !2
r �

�Ak

!r
�

�Bk2

!2
r

�
�Ck3

!3
r

; (36)

and

"li(!r; k) =
g2

T

8�2Nf

(2�)3
�(1 + ��1)�1p0(u+

!r
k
)e��(

p0!r
k

�W )2 : (37)

Then the equation

"lr(!r; k) = 0; (38)

yields
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!2
r =

�Ak

!r
+

�Bk2

!2
r

+
�Ck3

!3
r

; (39)

where

�A =
g2

T

8�Nf

(2�)3
�(1 + ��1)�1[u+

u0

p0
(
e��p

2

0

2�
+W )];

�B =
g2

T

8�Nf

(2�)3
�(1 + ��1)�1[

u

p0
(
e��p

2

0

2�
+W ) +

u0

p20
f
1

�
(W �

p0
2
)e��p

2

0 +
1 + 2�

2�
W 2g];

�C =
g2

T

8�Nf

(2�)3
�(1 + ��1)�1[

u0

p30
f
1

�
(W �

p0
2
)e��p

2

0 +
1 + 2�

2�
W 2g]: (40)

Equation (35) determines the Landau damping, which is given by

� = !i = �

g2

T
8�2Nf

(2�)3 �(1 + ��1)�1p0(u+ !r
k )e

��( p
0!r
k

�W )2

2!r +
�Ak
!2r

+
�Bk2

!3r
+

�Ck3

!4r

: (41)

For k ! 0, we �nd

!r � f
g2

T

8�Nf

(2�)3
�(1 + ��1)�1[u+

u0

p0
(
e��p

2

0

2�
+W )]kg

1

3 ; (42)

and

� � �

g2

T
8�2Nf

(2�)3 �(1 + ��1)�1p0(u+ !r
k )e

��( p
0!r
k

�W )2

3!r
(43)

For u = 0 ( thermal bath)

!r �j k j
1

3 ; � �
1

j k j
: (44)
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