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Abstract

Langmuir plasma oscillations around rotating gravitating objects such as black holes, neutron

stars etc. in the Kerr metric, are investigated. A wave equation is derived which describes the

various plasma modes in Kerr plasmas. The radial and theta dependence of the equilibrium

quantities due to gravity and rotation are considered. GR e�ects on equilibrium quantities

are signi�cant near the event horizon. The Langmuir oscillations in the Kerr plasma with

the system of perturbed equations are studied. The lapse function entering in the de�nition

of plasma frequency describes the gravito-rotational e�ects on plasma oscillation. It is noted

that the event horizon for Kerr metric lies inside the gravitational radius and Kerr parameter is

always less than half of the gravitational radius. A strong GR e�ect is found at the event horizon.

Langmuir oscillations go to zero near the event horizon, while it increases sharply near but away

from the horizon and reaches a maximum value at a certain distance from it. A general equation

describing the Langmuir oscillations in Kerr plasma is derived and a gravitoplasma dispersion

relation is obtained. The results of this study are foundational and can be extended for further

study of Kerr plasma phenomenon around gravito-rotating compact objects.
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I. INTRODUCTION

Recently, the study of plasmas around black holes and other gravito-rotating compact ob-

jects has become of much interest [1-3]. It may yield the spectroscopic signatures of radiation

emitted from plasma of a rotating black hole. MacDonald and Thorne [4,5] have introduced

Maxwell's equations in 3+1 coordinates, which provides a foundation for the formulation of

general relativistic (GR) set of plasma physics equations. It provides a means by which the

electrodynamics equations and the plasma physics look more familiar to the usual formulations

in 
at space-time while taking account of general relativistic e�ects such as space time curva-

ture. It is possible to obtain the various wave modes at a range of �xed values of the lapse

function �. Secondly, gravitational and rotational e�ects on the equilibrium plasma are very

much important to understand the Langmuir oscillations in such environment.

In this paper, we formulate the wave equation in the Kerr metric. As a �rst attempt,

we concentrate only on the Langmuir oscillations in Kerr plasma. We study the radial and

theta dependence of the equilibrium quantities. For the perturbed quantities, we study the

Langmuir frequency of plasma oscillations. It is found that plasma frequency is zero at the

event horizon, but at almost twice the distance of the gravitational radius, the plasma frequency

is maximum, while at a larger distance it attains a constant value even if the background

plasma density itself is assumed to be constant. When there is density variation, the plasma

frequency varies additionally in the known fashion. We formulate a second order di�erential

equation for Langmuir �eld under gravity and rotation. The gravito-plasma dispersion relation

is obtained and it is analysed. It shows that away from the compact objects, we have usual

plasma oscillations but near the event horizons, Langmuir oscillations go to zero near the event

horizon, while it increases sharply near but away from the horizon and reaches a maximum value

at a certain distance from it.

II. WAVE EQUATION IN KERR PLASMA

In this section, we review the 3+1 split of the Kerr metric. The continuity and motion

equations are combined with the Maxwell system to derive the wave equation for plasmas around

rotational gravitating compact objects such as black holes and neutron stars.

A. The 3+1 split of the Kerr metric

In the 3+1 split of the Kerr metric, Thorne et al. 1986 [5] space-time is split into a family of

three dimensional di�erentially rotating hypersurfaces of constant time with internal curvature.

These hypersurfaces of constant time are mentally collapsed into a single three dimensional

"absolute space" in which time is globally measured by the Boyer Lindquist coordinate t. Physics

is described in absolute space of locally non-rotating �ducial observers (FIDOs) with respect to

their local proper time � in their locally 
at frames. The line element of the Kerr metric in 3+1

notation is given by
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ds2 = ��2dt2 + hik(dx
i + �idt)(dxk + �kdt) (1)

where the lapse function is identi�ed with the gravitational red shift.

� = (
d�

dt
)FIDO =

%

�

p
� (2)

t is the time in absolute space and � is the local proper time of locally nonrotating observer

(FIDO).

The shift functions are the components of the gravitomagnetic potential ~� with

�r = �� = 0; �� = �! = (
d�

dt
)FIDO = �argr

�2
(3)

which describes the di�erential rotation of the FIDOs relative to distant observer; ! is the angu-

lar velocity of the locally nonrotating observer (the so-called Lense-Thirring angular velocity).

The components of the 3-metric hik are:

hik = gik + �i�k=�2: (4)

hrr =
%2

�
; h�� = %2; h�� = $;hik = 0; i 6= k:

Note that hik = gik. The metric functions appearing here are de�ned as

� = r2 � 2Mr + a2 � r2 � rgr + a2; �2 � r2 + a2cos2�;

�2 = (r2 + a2)2 � a2�sin2�;$ =
�

%
sin�: (5)

The parameters of the rotational gravitating object are its mass M , its gravitational radius

(Schwarzchild) radius rg, and angular momentum J and the Kerr parameter a = J
M .

The FIDO- measured velocities are:

vi =
1

�
(
dxi

dt
+ �j); e:g:v� =


� !

�
; (
 =

d�

dt
): (6)

The physical velocity components vi follow by multiplication with (hii)
1=2: The metric has the

sign (�+++) and c = 1.

B. Wave Equation for the Cold Plasma

We consider that radiation pressure in the plasma is much higher than the thermal plasma

pressure. Thus we consider the cold plasma approximation in the Kerr plasma. Such a plasma

is described by the two 
uid MHD system of equations, Novikov et. al.[6], Mo�z et. al. [7],

Khanna [3]:

r �E = �sns
sqs; (7)

r �B = 0; (8)
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r� (�E) = �( @
@t
�$�)B; (9)

r� (�B) = �( @
@t
�$�)E+ 4���sns
svs; (10)

(
@

@t
� ~� � r)(
sns) +r � (�ns
svs) = 0; (11)

ds
svs
d�

= g +
qs
ms

(E+ vs �B) + f ; (12)

where,

ds
d�

=
1

�
f @
@t

+ (�vs � ~�) � rg;

g = �rlnr = � 1

�

M

r2
êr; 
s = (1� v2s)

�1=2;

f is an external force other than electromagnetic. For the Kerr plasma, it is the centrifugal

force to keep the plasma in equilibrium with the gravitational force.

qs is the particle charge, ns is the particle number density and summation is over, for all the

species. $� denotes the Lie derivative along ~� i.e.

$�B = �r� (~� �B)
$�E = �fr� (~� �E)� ~�(r � E)g (13)

is due to the rotation of locally non-rotating observer.

Gradient, curl, divergence are taken along the curvilinear coordinates:

er̂ =

pr
%

er =

pr
%

@

@r
; e� =

1

%
e� =

1

%

@

@�
; e�̂ =

1

$
e� =

1

$

@

@�
: (14)

From the above system of equations, we �nd the following Faraday's and Ampere's laws,

respectively,

@B

@t
= �r� (�E)�r� (~� �B); (15)

@E

@t
= r� (�B)� fr � (~� �E)� ~�(r �E)g � 4��J; (16)

which gives the wave equation

@2E

@t2
= �r� f�r� (�r� (�E)g � 4��

@J

@t

�r� f�r� (~� �B) + (~� � @E

@t
)g+ ~�(r � @E

@t
): (17)

From the above, we see that GR as Kerr e�ects on plasma dynamics is mostly played by the

lapse function �. Therefore we do some analysis of the lapse function of the Kerr metric. It is

given by the expression
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�2 =
(r2 + a2cos2�)(r2 � rgr + a2)

(r2 + a2)2 � a2(r2 � rgr + a2sin2�)
: (18)

For the Kerr parameter a = 0, we �nd the usual Schwarzchild expression

� =

r
1� rg

r
: (19)

The distance at which � = 0, describes the event horizons in Kerr space. In this case, we

�nd two horizons, which are given by

r1 =
rg
2
(1 +

s
1� 4a2

r2g
); (20)

r2 =
rg
2
(1�

s
1� 4a2

r2g
): (21)

It is to be noted that both r1 and r2 are less than rg. Thus for Kerr metric, event horizons lie

within the gravitational radius. r1 > r2 but r1 � r2 for a! rg
2 : Secondly to satisfy �2 > 0, we

�nd the Kerr parameter should satisfy the relation a � rg
2 .

Since � = �(r; �), we consider all physical variables as the functions of r and � only. Then

the 
uid equations for Langmuir oscillations may be written as

�

r2
@

@r
(r2Er) +

�

rsin�

@

@�
(sin�E�) = 4��sqs
sns; (22)

@

@t
(
sns) +

�

r2

@

@r
(�r2ns
sv

r
s) +

�

rsin�

@

@�
(�sin�
snsv

�
s) = 0; (23)

1

�

@

@t
(
sv

r
s) + (vrs

@

@r
+ v�s

@

r@�
)(
sv

r
s) = � 1

�

M

r2
+

qs
ms

Er + (
̂� r)� 
̂; (24)

1

�

@

@t
(
sv

�
s) + (vrs

@

@r
+ v�s

@

r@�
)(
sv

�
s) =

qs
ms

E�; (25)

where, 
̂ = 
�!
� :

For the simplicity, we consider E� = 0, which implies that v�s = 0. Thus the above system

of equations is more simpli�ed and thus we may analyse the following system of equations for

the study of Langmuir oscillations in Kerr plasma, i.e.

�

r2
@

@r
(r2Er) = 4��sqs
sns; (26)

@

@t
(
sns) +

�

r2

@

@r
(�r2ns
sv

r
s) = 0; (27)

1

�

@

@t
(
sv

r
s) + vrs

@

@r
(
sv

r
s) = � 1

�

M

r2
+

qs
ms

Er + (
̂� r)� 
̂: (28)

We linearize the above system of equations (26)-(28), using the following perturbations:
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ns(r; �; t) = ns0(r; �) + ns1(r; �; t); (29)

vrs(r; �; t) = vrs0(r; �) + vrs1(r; �; t); (30)

Er(r; �; t) = Er
1(r; �; t): (31)

The equilibrium equations are:

4��sqs
0ns0 = 0; (32)

�

r2

@

@r
(�r2ns0
0v

r
s0) = 0; (33)

vrs0
@

@r
(
0v

r
s0) = � 1

�

M

r2
+ (
̂� r)� 
̂; (34)

and the perturbed equations are:

�

r2
@

@r
(r2Er

1) = 4��sqs
0ns1; (35)

@

@t
(
0ns1) +

�

r2

@

@r
(�r2ns0
0v

r
s1) +

�

r2

@

@r
(�r2ns1
0v

r
s0) = 0; (36)

1

�

@

@t
(
0v

r
s1) + vrs0

@

@r
(
0v

r
s1) + vrs1

@

@r
(
0v

r
s0) =

qs
ms

Er: (37)

III. RADIAL AND THETA DEPENDENCE OF EQUILIBRIUM QUANTITIES

The equilibrium quantities depend on r due to gravity and on � due to rotation of the

gravitating object. Equation (32) shows the quasineutrality of the equilibrium plasma, while

from equation (33), we �nd �r2ns0v
r
s0 = f(�), which may be a constant or any arbitrary function

�.

We consider that in the equilibrium, the gravitational force is balanced by the centrifugal

force. Thus from equation (34), it follows that vrs0 = vrs0(�), which also may be a constant

including zero or any arbitrary function of �. We calculate the Keppler frequency of rotation

around a rotational gravitating object, which is


(r; �) = !(r; �) + (
�M

r3
)1=2; (38)

and


0 = (1� v2�
c2
)�1=2; v� = r
(r; �): (39)

We plot the Keppler frequency as a function of r for a �xed value of � = �
2 (equatorial

region) and it is shown in Fig.1.
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FIG. 1. Keppler frequency as a function of r for a �xed value � = �
2 (equatorial region),

a = :05; rg = 1;M = rg
2 .

From Fig.1, we see the that the Kepplerian rotation around a compact gravitating object is

highly di�erential. Close to the event horizon the rotation is zero, but it sharply increases near

the horizon, reaches a maximum value almost at twice the distance of the horizon and then falls

as 1
r3=2

.

IV. EQUATION FOR LANGMUIR OSCILLATION IN KERR PLASMA

From the perturbed system of equations (35)-(37), and considering the Lorentz invariant

density, we �nd

@2ns1
@t2

+ !2
pns1 +

qs
ms
0

(�Er
1)

@

@r
(�2ns0)

� �

r2
f�2r2ns0

@

@r
(vrs0v

r
s1)g+

�

r2
@

@r
(�r2vrs0

@ns1
@t

) = 0; (40)

where,
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!2
p =
X
s

4��2(r; �)ns0(r; �)q
2
s

ms
0
; (41)

is the plasma frequency around the rotational gravitating object.

Considering a uniform distribution of plasma, we put ns0(r; �) = n0. Then we may write

!2
p = !2

p1�2(r; �); (42)

where,

!2
p1 =

X
s

4�n0q
2
s

ms
0

is the plasma frequency at r = r1:

We plot the radial dependence of plasma frequency for the �xed values � = �=2; � = 0 with

the �xed values of other parameters. It shows for both the cases the curves are almost the same

and it is shown in Fig. 2.
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m
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a
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FIG. 2. Radial dependence of plasma frequency around a Kerr black hole.

From the above (Fig.2) we see that Langmuir plasma oscillation goes to zero near the Kerr

event horizon i.e. at

r = r0 =
rg
2
(1 +

s
1� 4a

r2g
):

Plasma oscillation sharply increases near the horizon and reaches the maximum at

r = rm =
5rg
6
(1 +

q
1� 36a2=25r2g);

and it attains a constant value away from the gravitating object.

For simplicity, we consider vrs0(�) = 0. De�ning �q1 = �ene1 and ni = n0, from equation

(40), we get

@2�q1
@t2

+ !2
p�q1 = �2e2n0

m
(�Er

1)
@

@r
(�2) (43)

where, �q1 is de�ned by equation (35) i.e.

�q1 =
1

4�

�

r2
@

@r
(r2Er

1): (44)
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Now, eleminating �q1 from equations (43) by Eq.(44 ), we �nd

@

@r
fr2(@

2Er
1

@t2
+ !2

p1�2Er
1)g = 0; (45)

which describes the Langmuir �eld around the rotational gravitating objects.

Considering Er
1 =

�Er
1(r; �)e

�i!(r;�)t, equation (45) may be written as

@

@r
fr2(!2 � !2

p1�2) �Er
1g = 0; (46)

which yields a solution

r2(!2 � !p1
2�2) �Er

1 = F (!; �); (47)

where, F (!; �) is an arbitrary function including zero or constant. In the case F (!; �) = 0, we

get the usual Langmuir plasma oscillation with the eigen frequency

!2 = !2
p1�2: (48)

Thus the electric �eld associated with the Langmuir wave is given as

E(t; r; �) =

Z
F (!; �)

r2(!2 � !2
p1�2)

e�i!t
d!

2�
: (49)

V. CONCLUSION

We have studied the Langmuir oscillations around rotato-gravitating compact objects such

as black holes or neutron stars. The Kerr metric is utilised to study such a plasma. From the

general system of equations, a wave equation is derived ( equation (17) ) which describes the

various modes in the Kerr plasmas. For simplicity, we consider only the Langmuir oscillations.

The system of equations for Langmuir oscillations is derived. The equations are linearized and

the equilibrium as well as the perturbed quantities are studied in detail. We study the radial and

theta dependence of physical quantities due to gravity and rotation of the plasma. It is found that

GR e�ects on the equilibrium quantities are signi�cant near the horizon. From the perturbed

system of equation we derive the equation for Langmuir oscillation. The plasma frequency is

obtained as a function of the lapse function. Lapse function is analysed in detail. It is noted

that for a Kerr metric, the event horizons lie within the gravitational radius. Kerr parameter

is always less than half of the gravitational radius. A strong GR e�ect is found on the plasma

frequency near the event horizon. The lapse function for the Kerr metric enters in the expression

of the plasma frequency similar to that in the Schwarzchild metric. Langmuir oscillation goes

to zero at the event horizon, while it increases sharply near the horizon and reaches a maximum

value near the horizon.The geometry of the Kerr event horizon is of course �-dependent and

inner than that of the Schwarzchild. A general equation describing the Langmuir oscillation in

Kerr plasma is derived and the gravito-plasma dispersion relation is obtained. Results obtained

in this study are foundational and can be extended for further study of Kerr plasma phenomenon

around gravito-rotating compact objects.
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