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1. Introduction.

In his seminal article [11] MacMahon initiated the systematic study of a new class of symmetric

functions that he called symmetric functions of several systems of quantities. This class of

functions had been previously considered by Cayley [2] and by Schl�ai [20] in their investigations

on the roots of polynomials. Following Ira Gessel [5, 6], and in honor of Major Percy MacMahon,

we call this class of symmetric functions MacMahon symmetric functions.

The original motivation for the study of MacMahon symmetric functions comes from the

following analogy with symmetric functions. On the other ahnd, symmetric functions appear

when expressing a monic polynomial in terms of its roots. On the other hand, suppose that

we can express the coe�cients of a polynomial in two variables as a product of linear factors.

That is, suppose that e(0;0) + � � � + e(1;1)xy + � � � + e(n;n)x
nyn can be written as (1 + �1x +

�1y) � � � (1 + �nx + �ny): Expanding the product of linear factors in the previous equation, we

obtain symmetric functions like e(0;0) = 1, e(1;0) = �1+�2+� � �+�n, and e(0;1) = �1+�2+� � �+�n.

But, we also get some things that are di�erent, like

e(1;1) = �1�2 + �2�1 + � � �+ �n�1�n:

e(2;1) = �1�2�3 + �1�3�2 + � � � + �n�2�n�1�n:

The relevant fact about this new class of symmetric functions is that they are invariant under

the diagonal action of the symmetric group, but not under its full action. (The diagonal action of

� in Sn on a monomial �i1�i2 � � ��in�j1�j2 � � � �jn is de�ned as ��i1��i2 � � ���in��j1��j2 � � � ��jn .)

This class of functions that we just have found are the elementary MacMahon symmetric func-

tions in two �nite alphabets of size n. G.-C. Rota and J. Stein [19] have developed the analogy

between symmetric functions and MacMahon symmetric functions even further in their studies

on the theory of resultants.

As noted by MacMahon [10], in order to avoid syzygies between the elementary MacMahon

symmetric functions, it is necessary to take the number of linear factors, or equivalently, the size

of alphabets X = �1 +�2 + : : : and Y = �1 + �2 + � � � , to be in�nite. This observation leads to

the following de�nition. A MacMahon symmetric function is a formal power series of bounded

degree, in a �nite number of in�nite alphabets, that is invariant under the diagonal action of

the symmetric group. As in the case of symmetric functions, each homogeneous piece of the

algebra of MacMahon symmetric functions has the elementary MacMahon symmetric functions

as an integral basis.

Probably, it is the fact that not all polynomials in several variables are expressable as products

of linear forms, even over an algebraically closed �eld, which makes the MacMahon symmetric

functions less ubiquitous than their symmetric relatives.

In this article we look at the plethystic Hopf algebra structure of the MacMahon symmetric

functions from a combinatorial point of view. Barnabei, Brini, Joni, and Rota [3, 8, 16] have

suggested a combinatorial interpretation of the product and the coproduct of a bialgebra. They
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have proposed that the product corresponds to the process of putting things together, and that

the coproduct corresponds to the process of splitting them apart. We use their ideas as a starting

point towards a combinatorial interpretation of some instances of the theory of plethystic Hopf

algebras developed by Stein and Rota [7, 17, 18, 19]. In particular, we obtain a combinatorial

interpretation for the plethystic Hopf algebra of MacMahon symmetric functions that extends

the one developed by the author [13, 14, 15] for their vector space structure.

We assume that the reader is familiar with the basic notions of algebra, coalgebra, bialgebra,

Hopf algebra, and with Sweedler's notation. A �ne exposition of these topics is given in [1].

2. The plethystic Hopf algebra Gessel(A)

2.1. The Hopf algebra Super[A]. Grosshans, Stein, and Rota [7] have constructed a gener-

alization of the ordinary algebra of polynomials in a set of variables A to the case where the

variables can be of three di�erent kinds: positively signed, neutral, and negatively signed. This

new structure is called the supersymmetric algebra associated with the signed alphabet A, and

denoted by Super[A].

Let A+ be a set of positive letters. The set of divided powers of A+, denoted by Div(A+),

is constructed as follows. Let Div(A+) be the quotient of A+ �N by the equivalence relation

obtained by prescribing that a(n), the equivalente class of (a; n), behaves algebraically as ai=i!.

The map that sends the pair (a; n) to its equivalence class a(n) is called the divided powers

operator. The details of this algebraic construction can be found in [7].

In this article, we introduce Div(A+) in an equivalent way that has the advantage of showing

its combinatorial nature. Let the pair (a; n) in A+�N represent a set of n distinguishable balls

of weight a. We de�ne the divided powers operator acting on A+�N as the operator that makes

us to forget how to distinguish between objects of the same weight. In consequence, the image of

(a; n) under the divided power operator, denoted by a(n), represents a set of n undistinguishable

balls weight a.

To summarize: A positively signed letters represents the weight of an undistinguishable ob-

ject. A monomial element in Div(A+) has the form a(i)b(j) � � � c(k) and represents a set consisting

of i undistiguishable objects of weight a, j undistinguishable objects of weight b, and k undistin-

guishable objects of weight c. (We can always distinguish between object of di�erent weights.)

We interpret a sum of monomial elements of Div(A+) as a disjoint union. In consequence, an

element of Div(A+) corresponds to a disjoint union of sets of undistinguishable objects.

Sometimes, it is convenient to think of an object of weight a as an object that has been

colored a. In this framework, each positively signed letter correponds to a color. Moreover,

(a; n) represents a set of n distinguishable balls that have been colored a, and a(i) corresponds

to a set of i undistinguishable objects colored a. Again, the e�ect of the divided power operator

is that we forget how to distinguish between objects of the same color.
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Following Barnabei, Brini, Joni, and Rota [3, 8, 16], we interpret the product of element of

Div(A+) as the process of putting objects togheter. From this combinatorial interpretation, we

get the following algebraic rule for the product of elements of Div(A+) :

a(i)a(j) =

�
i+ j

i

�
a(i+j);

because having a set consisting of i undistinguishable objects, together with another set that

consists of j undistinguishable objects, is the same as having a set with i+ j undistinguishable

objects, together with a distinguished subset of i elements.

Similarly, we the operation of exponentiation is de�ned by

(a(i))(j) =
(ij)!

j!(i!)j
a(ij);

because a set whose j elements are sets consisting of i objects is the same as a set with ij objects

partitioned into j disjoint subsets, each of them consisting of i objects.

Finally, the following analog of Newton's Identity for Div(A+) relates the sum with the

product:

(a+ b)(i) =
X
j+k=i

a(j)b(k);

because a set with i objects, k of then of weight a and j of them of weight b, is equivalent to a

set of k undistinguishable objects of weight a, together with a set of j undistinguishable objects

of weight b.

The unit of this product is given by the weight of the empty set, and denoted by 1. Multiplying

an element W of Div(A+) by 1 corresponds to adding nothing to the object in W .

So far, we have described an algebra structure on Super[A]. To introduce its coalgebra

structure, we follow Barnabei, Brini, Joni, and Rota [3, 8, 16] in interpreting the coproduct of

Div(A+) as the process of splitting objects apart. In consequence, the coproduct of a monomial

element W , denoted by �W , describes all di�erent ways of splitting the objects being weight by

W into two di�erent boxes. We interpret the boxes in terms of the tensor product. For instance,

the term a
 a(2)b indicates that in the �rst box we have an object of weight a, and that in the

second box we have two undistinguishable objects of weight a and an object of weight b.

The order in which we place balls of di�erent weights do not a�ect the result. Hence, the

coproduct should be multiplicative. We obtain the following algebraic rule for the coproduct of

positive signed letters

�a(i) =
X
j+k=i

a(j) 
 a(k);(1)

�(WW 0) = �W�W 0(2)

For example,

�a(2)b = (a(2) 
 1 + a
 a+ 1
 a(2))(b
 1 + 1
 b)

= a(2)b
 1 + ab
 a+ b
 a(2) + a(2) 
 b+ a
 ab+ 1
 a(2)b:
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Let � be the counit of our coalgebra. Using Sdweeler's notation, the counitary property says

that W =
P

W(1)�(W2) =
P

�(W1)W(2): Hencefort, from our combinatorial description we

obtain that �(W ) equals 1 if W = 0, and �(W ) equals 0 if W 6= 0

The study of neutral variables is the algebraic analog of the study of weighted distinguishable

objects. They behave as ordinary commuting variables. In consequence, the multiplication and

the exponentiation are de�ned by aiaj = ai+j and (ai)j = aij; respectively. Moreover, Newton's

identity relates the sum of neutral letters with their product.

The coproduct of neutral letters is de�ned in terms of placing distinguishable balls into dis-

tinguishable boxes. Therefore, we get the following rule: �a = a 
 1 + 1 
 a: Moreover, the

order in which we place distinguishable objects into the boxes does not a�ect the result, so

the coproduct should be multiplicative. As in the case of positive letters, the coproduct is un-

derstood in terms of placing distinguishable objects into distinguishable boxes. For example,

�a2b = a2b 
 1 + 2ab 
 a + b 
 a2 + a2 
 b + 2a 
 ab + 1 
 a2b; gives us all di�erent ways

of distributing two distinguishable objects of weight a, and a object of weight b between two

di�erent boxes. The occurrence of the factor 2 in terms ab
 a and a
 ab comes from the fact

that objects of weight a are distinguishable. As in the case of positive letters, the counit is

de�ned by saying that �(W ) equals 1 if W = 0, and �(W ) equals 0 if W 6= 0

Let A be an alphabet consisting of neutral and positively signed letters. (Negative letters do

not appear in our study of the plethystic Hopf algebra structure of the MacMahon symmetric

functions.) The superalgebra Super(A) is the algebra spanned by monomials in Div(A+) [

A0; where all letters commute and cocommute. So far, we have shown that Super(A) has

structure of a bialgebra. But it has a richer structure, it is a graded, Z=2 graded, commutative,

cocommutative Hopf algebra, i.e., it is a supersymmetric algebra.

Theorem 1 (Rota-Stein). Let A be a signed alphabet, then Super(A) has the structure of a

supersymmetric algebra.

Given a monomial element W in Super(A), the degree W is de�ned as the number of objects

that W is weighting, and denoted by jW j. There are no negatively signed letters, so it is

automatically Z=2 graded. The antipode sends W to (�1)deg(W )W .

2.2. The plethystic Hopf algebra Gessel(A). In this section we give a combinatorial overview

of the construction of the plethystic Hopf algebra Gessel(A) from Super[A] introduced by G-C.

Rota and J. Stein [17]. Since the objective of this paper is to study the plethystic Hopf algebra

of MacMahon symmetric functions, from now on, we assume that alphabet A is composed of

neutral letters. Positively signed letters will appear as the result of the construction of Gessel(A).

Let A be an alphabet of neutral letters. We consider the monomials in Super[A] to be the

positive letters of a new alphabet, also denoted by Super[A]. Using the procedure described in

the previous section, we construct the supersymmetric algebra, Super(Div(Super[A])), associated

to the set of positive letters Div(Super[A]): A monomial element in Div(Super[A]) looks like
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(!)(i)(!0)(j) � � � (!00)(k) where !, !0, and !00 are di�erent monomial elements in Super[A]. We set

(1) = 1. Letters in Super[A] correspond to weights of distinguishable balls. Similarly, letters in

Div(Super[A]) correspond to weights of undistinguishable packages of balls. Monomial elements

of Super(Div(Super[A])) are made out of positive letters, this de�nes a supersymmetric algebra

structure on them. In particular, Super(Div(Super[A])) is graded by saying that the degree of

W is the number of packages of balls that W is weighting. We denote the degree of W by jW j.

A fundamental part of the plethystic algebra structure of Gessel(A) is the existence of a

Laplace pairing that we proceed to describe combinatorially. The Laplace pairing maps the ele-

ment (W;W 0) of Super(Div(Super[A]))�Super(Div(Super[A])) to (W jW 0) in Super(Div(Super[A]))

as follows. First, it �nds all possible bijections between the set of packages of W and the set of

packages of W 0. Then, for each such bijection, if package (!) corresponds to package (!0), the

Laplace pairing puts all balls in ! and !0 together in the same package of (W jW 0).

Theorem 2. Suppose that (u1)(u2) � � � (un) and (v1)(v2) � � � (vn) are monomial elements of

Super(Div(Super[A])):. Let M be the square matrix obtained from W = (u1)(u2) � � � (un) and

W 0 = (v1)(v2) � � � (vn) by making (uivj) be its ij entry. Then,

((u1)(u2) � � � (un)j(v1)(v2) � � � (vn)) = Per(M):

Proof. The symmetric group Sn is the set of bijections of [n] onto itself. Therefore,

((u1)(u2) � � � (un)j(v1)(v2) � � � (vn)) =
X
�2Sn

(u1v�1)(u2v�2) � � � (unv�n):

By de�nition, this is the permanent of matrix M , see [12].

From the combinatorial de�nition of the Laplace pairing, we can deduce a recursive de�nition

[17].

1. Set (1j1) = 1:

If we pair the empty package with itself, we obtain the empty package.

2. If W = (!)(i) and if W 0 = (!0)(j), with j!j > 0 and j!0j > 0, then (W jW 0) = (!!0)(i) if

i = j and (W jW 0) = 0 otherwise.

Given packages (!)(i) and (!0)(j). The Laplace pairing �nds all bijections between

packages of (!)(i) and packages of (!0)(j): If i equals j, then there is exactly one such

bijection. On the other hand, if i is di�erent from j, there can be not such a bijection.

3. IfW have packages of di�erent weights, then (W jW 0) can de�ned recursively by the Laplace

identity:

(UV jW ) =
X

(U jW(1))(V jW(2))

where �W =
P

W(1) 
W(2):

Suppose that W have more than one class of packages. Let UV be an arbitrary partition

ofW into two non-empty parts. The Laplace pairing splits the packages weighted byW 0 in

all possible ways by taking its coproduct. Then, it proceeds recursively. The only nonzero
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terms that it can possibly obtain are those where the degree of U equals the degree of W(1)

and where the degree of V equals the degree of W(2). In particular, (W jW 0) is equal to

zero if the degree of W is di�erent than the degree of W 0.

Similarly, if W 0 have packages of di�erent weights, then (W jW 0) can de�ned recursively

by the dual Laplace identities:

(U jV W ) =
X

(U(1)jV )(U(2)jW );

where �U =
P

U(1) 
 U(2):

The Laplace pairing allows us to de�ne the circle product between elements of Super(Div(Super[A]))

by

U � V =
X

U(1)(U(2)jV(1))V(2) =
X

U(1)V(1)(U(2)jV(2)):(3)

Note that the second equality follows from the fact that the coproduct is cocomutative. The pair

(Super(Div(Super[A])); �) is the Cli�ordization of Super[A]; and is denoted by Pleth(Super(A)).

The construction of Cli�ordization of a supersymmetric algebra is studied in a more general

setting in [17], where they obtained the following result.

Theorem 3 (Rota-Stein). Let A be any signed alphabet. The Cli�ordization of Super[A], de-

noted by Pleth(Super[A]) is an associative Hopf algebra. The antipode is given by the Smith's

formula

s(W ) = �(W ) +
X
k>0

(�1)k(W(1) � �(W(1))) � � � � � (W(k) � �(W(k))):(4)

If A is an alphabet of neutral letters, we follow Rota and Stein and denote Pleth(Super[A])

by Gessel(A). In the next section, we show that Gessel(A) is isomorphic, as a plethystic Hopf

algebra, to the MacMahon symmetric functions.

Remark. There are two di�erent products on Gessel(A). One that comes from the algebra

structure of Super[A], and is called the juxtaposition product, and another one that comes from

the plethystic Hopf algebra structure, and is called the circle product. Later, we see that it is

useful to introduce a third product on Gessel(A), the square product.

3. A combinatorial overview of the phletystic Hopf algebra of MacMahon

symmetric functions.

Joel Stein and Gian-Carlo Rota have introduced an isomorphism between the plethystic Hopf

algebra Gessel(A), where A is an alphabet consisiting of n neutral letters, and the MacMahon

symmetric functions in n alphabets, denoted by Mn: They called this map the Gessel map [18].

In particular, if A consists of just one neutral letter, the Gessel map de�nes an isomorphism

between Gessel(A) and the plethystic Hopf algebra of symmetric functions.

Rota and Stein have shown how to associate a plethystic Hopf algebra Pleth(H) to any super-

symmetric algebra H [17] obtaining a generalization of the plethystic Hopf algebra of MacMahon
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symmetric functions. This is an intriguing object of study that we do not pursue here. A par-

ticularly striking case appears when A is an alphabet of negative letters. Then, Pleth(Super[A])

is isomorphic under the Gessel map to the skew-symmetric MacMahon symmetric functions. In

this case, the role of the permanent will be played by the determinant function.

3.1. The Gessel map. As suggested by the work of the author [13, 14], we interpret the Gessel

map as the generating function for a process of placing balls into boxes according to certain rules.

Suppose that we have an in�nite set of boxes labeled by the natural numbers. Let a be a letter

in A. We write (aji) to indicate that we have placed a ball of weight a in box i. Sometimes, we

denote (aji) by xi, (bji) by yi, (cji) by zi, and so on.

De�nition 4. We de�ne the Gessel map

G : Gessel(A)!Mn

as the map that sends W in Gessel(A) to the generating function for the process of placings

of the balls being weighted by W into distinguishable boxes labeled by the natural numbers

according to the following rules:

� Balls that belong to di�erent packages are placed into di�erent boxes.

� Balls that belong to the same package are placed into the same box.

The Gessel map de�nes an isomorphism between Gessel(A) and the MacMahon symmetric

functions on jAj letters. To see that this important result holds, we introduce some de�ni-

tions. There is a bijection between monomial elements in Gessel(A) and vector partitions.

It associates to the monomial element W = (!1)
(i1)(!2)

(i2) � � � (!l)
(il) the vector partition � =

(a1; b1; � � � ; c1)
i1(a2; b2; � � � ; c2)

i2 � � � (al; bl; � � � ; cl)
il ; where aj is the number of elements of weight

a in !j, bj is the number of elements of weight b in !j, and so on. We say that � is the vector

partition associated to the monomial element W . In particular, if there are no two balls in W

of the same weight, then W is a set partition. In this case, we say that � is a unitary vector

partition.

Any vector partition � = (b1; r1; : : : ; w1)(b2; r2; : : : ; w2) : : : determines a monomial x� =

xb11 y
r1
1 � � � zw1

1 xb22 y
r2
2 � � � zw2

2 � � � xbll y
rl
l � � � z

wl

l : The monomial MacMahon symmetric function in-

dexed by � is the sum of all distinct monomials that can be obtained from x� by a permutation

� in S1, where the action of � in x� is the diagonal action. That is,

m� =
X

di�erent monomials

xb1i1 y
r1
i1
� � � zw1

i1
xb2i2 y

r2
i2
� � � zw2

i2
� � �:

Theorem 5. Let W be a monomial element in Gessel(A), and let � be the associated vector

partition. The image under the Gessel map of W is the monomial MacMahon symmetric func-

tion m�. Moreover, if � is a partition of a number, then its image is the symmetric function

m�.



9

Proof. Let W = (a1b1 � � � c1)
i1(a2b2 � � � c2)

i2 � � � (albl � � � cl)
il be a monomial element in Gessel(A).

If f is one of the placing being weight by the Gessel map, then the weight of f is

xa11 yb11 � � � zc11 � � � xall y
bl
l � � � z

cl
l : Hencefort, the image of W under G is the monomial MacMahon

symmetric function m�:

Theorem 5 allows us to de�ne the monomial MacMahon symmetric functions as the image

under the Gessel map of monomial elements of Gessel(A). For instance, assume that A = fa; bg

is an alphabet with two neutral letters. Then, the monomial MacMahon symmetric function

m(2;1)(0;1) is de�ned as G(a
2b)(b) =

P
i 6=j(aji)

(2)(bji)(bjj) =
P

i6=j x
2
i yiyj: Similarly, the monomial

symmetric function m(2)(1) is de�ned as G(a2)(a) =
P

i6=j(aji)
(2)(ajj) =

P
i 6=j x

2
i xj:

A monomial element in Gessel(A) is called elementary if it corresponds to the weight of a set of

packages consisting of exactly one ball. Elementary monomials have the form (a)(i)(b)(j) � � � (c)(k);

with i, j, k greater than or equal to zero. A monomial elementW in Gessel(A) is called primitive

if it is the weight of exactly one package of balls. Primitive elements have the form W = (!),

for some monomial element ! in Super[A].

We can use the previous theorem to de�ne the Elementary MacMahon symmetric functions

and the power sum Macmahon symmetric functions as the image under the Gessel map of

elementary monomials, and of primitive elements of Gessel(A), respectively.

Let W = (a)(i)(b)(j) : : : (c)(k) be an elementary monomial in Gessel(A). Then, the image of W

under the Gessel map is the elementary MacMahon symmetric functions e(i;j;��� ;k). It corresponds

to the generating function for all di�erent ways of placing the balls being weighted by W into

di�erent boxes.

Let (!) be a primitive element in Gessel(A) corresponding to vector partition (i; j; � � � ; k).

Then, its image under the Gessel map is the power sumMacMahon symmetric functions p(i;j;��� ;k).

It corresponds to the generating function for all di�erent ways of placing the balls being weighted

by (!) into one box.

For instance, the elementary symmetric function e(n) is de�ned as G(a)
(n) and the elementary

MacMahon symmetric functions e(1;2) is de�ned asG(a)(b)
(2), it corresponds to

P
ii<i2

all di�erent
xjyi1yi2 .

Moreover, G(an) equals the power sum symmetric function p(n) and G(a
pbq) equals the polarized

power sum symmetric function p(p;q).

3.2. The circle product of monomial elements in Gessel(A). The circle product of ele-

ments in Gessel(A) corresponds to the ordinary product of MacMahon symmetric functions, in

this section we study some of the consequences of this fact. Any monomial element in Gessel(A)

can be thought of as a partition of a multiset. For instance, (a)(2)(b)(ab) corresponds to the

multiset partition ajajbjab. Given two monomial elements W and W 0 in Gessel(A), we asso-

ciate them with a set of multiset partitions denoted by Par(W;W 0), and de�ned as follows: If

jW j � jW 0j, then for each injection of W 0 into W , join the balls of each package of W with those
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of its image. On the other hand, if jW j < jW 0j, set Par(W;W 0) = Par(W 0;W ). For instance,

Par(ajajb; ad) = fa3djajb; ajajabdg:

Let �M be the lattice of multiset partitions having underlying multiset M , ordered by the

re�nement relation. That is, for � and � in �M , we say that � is a re�nement of �, written as

� � �; if every block of � is a sub multiset of some block of �.

Theorem 6. The circle product of two monomial elements W and W 0 is equal to the sum of

all monomials V that are less than or equal to one of the members of Par(W;W 0).

For instance, let W = (a)(2)(ab); and W 0 = (ac). Then, Par(W;W 0) = fa2cjajab; ajaja2bcg.

Hence,

W �W 0 = (a2c)(a)(ab) + (a)(2)(a2bc) + (a)(2)(ab)(ac):

Theorem 7 (Rota-Stein). The Gessel map is an algebra map:

G(W �W 0) = G(W )G(W 0)

We de�ne the elementary MacMahon symmetric functions as the image under the Gessel map

of circle products of elementary monomials.

De�nition 8. LetW1;W2; � � � ;Wl be elementary monomial, and let �1; �2; � � � ; �l be the associ-

ated vectors. We say that � = �1; �2; � � � ; �l is the vector partition associated toW1�W2�� � ��Wl.

If W is an elementary monomial, the the vector partition associated to W has exactly one part.

Corollary 9. Let W1;W2; � � � ;Wl be elementary monomials. Let � be associated vector parti-

tion. The expression of W1 �W2 � � � � �Wl in the monomial basis is the following:

W1 �W2 � � � � �Wl =
X

�^�=0̂

�:

It corresponds to all di�erent ways of placing the balls being weighted by W1 �W2 � � � � �Wl into

boxes, with the condition that balls in di�erent packages of � go into di�erent boxes.

For example,

(a)(2)(b) � (c)2 =(ac)(2)(b) + (a)(ac)(bc)

+ (a)(c)(ac)(b) + (a)(2)(c)(bc) + (a)(2)(b)(c)(2):

This is the characterization of the elementary MacMahon symmetric functions obtained in [13,

14].

We de�ne the power sum MacMahon symmetric functions as the image under the Gessel map

of the circle product of primitive elements.

Corollary 10. The circle product of primitive elements W;W 0; � � �W 00 is the sum of all mono-

mials that are bigger than or equal to the partition WW 0 � � �W 00. It corresponds to all di�erent

ways of placing the balls being weighted by � into boxes, with the condition that balls in the same

package of WW 0 � � �W 00 go into the same box.
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For example,

(an) � (bm) � (cl) = (anbmcl) + (anbm)(cl) + (ancl)(bm)

+ (an)(bmcl) + (an)(bm)(cl):

This is the characterization of the power sum MacMahon symmetric functions obtained in [13,

14].

3.3. The plethysm of MacMahon symmetric functions. The operation induced by the

Laplace pairing on the algebra of MacMahon symmetric functions is very close to the permanent

function. It has a beautiful description on the monomial basis.

Let (!1)(!2) � � � (!k) and (!01)(!
0
2) � � � (!

0
l) be monomial elements of Gessel(A). Let M be the

matrix whose i; j entry is (!i!j). We have seen that

((!1)(!2) � � � (!k)j(!
0
1)(!

0
2) � � � (!

0
l))

equals zero unless k = l: In this case, it equals the permanent of the matrix M whose i; j entry

is (!i!j).

4. Involution ! and the square product.

On the MacMahon symmetric functions there is a remarkable operation called involution !

[9, 21]. It is well-known that it corresponds to the antipode s0 of Gessel(A). In this section,

we use involution ! to de�ne two remarkable basis for the MacMahon symmetric functions: the

homogeneous and the forgotten MacMahon symmetric functions.

Joel Stein and Gian-Carlo Rota have looked at the pull-back of involution !, and used it

to de�ne a new operation on Gessel(A), the bar product. We study their construction in this

section.

Let W<i> = (1� �)W(i). We rewrite the antipode s0 as

s0W =
X
r�1

(�1)rW<1> �W<2> � � � � �W<r>:(5)

See Eq.(4). The antipode acts as follows: For each k the antipode looks for all possible ways of

splitting the packages of balls weighted by W into k di�erent boxes, so that packages of balls

weighted by W<k> are in box k, and such that no box remains empty. Then, it takes the signed

circle product of the weight of the packages obtained in this way. For instance, s0(!) = �! and

s0(!)
(2) = �(!)(2) + (!) � (!) = (!)(2) + (!2):

We de�ne the homogeneous MacMahon symmetric functions as the image under the antipode

of the elementary MacMahon symmetric functions. To get a constructive de�nition, we start by

describing those monomials of Gessel(A) that are the preimage of the homogenous MacMahon

symmetric functions under the Gessel map.
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We follow Rota and Stein [19], and de�ne the box product of monomial elements in Gessel(A)

by

W�W 0 = s0[s0[W ]s0[W
0]]:

Note that (a)�(a) = s0[s0[a]s0[a]] = 2!s0[(a)
(2)] = 2!((a(2) + (a2)): The image under the Gessel

map of 1
2!(a)�(a) is the homogeneous symmetric function h2. Based on these observations, we

de�ne

(a)[n] = (�1)n
(a)�(a)� � � ��(a)

n!
:

A Wronski element is an element of Gessel(A) of the form

(a)[i]�(b)[j] � � ��(c)[k]:

The image of a Wronski element under the Gessel map is a homogeneous MacMahon symmetric

function, as we can easily check by taking the antipode at both sides of the de�ning equation.

Then, we use induction. A combinatorial interpretation of this class of elements is obtained in

the following theorem.

The image of (a)[i]�(b)[j] � � � (c)[k] under the Gessel map corresponds to the MacMahon sym-

metric functions h(i;j;��� ;k): It gives all di�erent ways of placing the balls being weighted by the

underlying monomial (a)(i)(b)(j) � � � (c)(k) into boxes, with the condition that balls within the

same box are linearly ordered. The combinatorial description follows from [13, 14].

The following Lemma [22] describes some properties of the bar product.

Lemma 11 (Rota-Stein). Properties of the box product

1. s0[W �W 0] = s0[W ] � s0[W
0]

2. so[WW 0] = s0[W ]�s0[W
0]

3. s0[W�W
0] = s0[W ]s0[W

0]

Moreover, the associativity of the juxtaposition product implies the associativity of the box

product.

The �rst property of the box product described in the previous lemma implies that the image

under the Gessel map of circle product of Wronski elements are the homogeneous MacMahon

symmetric functions.

The forgotten MacMahon symmetric functions are de�ned as the image, under the antipode

map, of the monomial MacMahon symmetric functions [4]. We have seen that the monomial

MacMahon symmetric functions correspond to the image under the Gessel map of the monomial

elements of Gessel(A). So, the previous lemma implies that the forgotten MacMahon symmetric

functions are the image of monomial elements when using the bar product instead of the circle

product.

Let D = (!1)
[i]
�(!2)

[j]
� � � ��(!l)

[k] be a Doubilet element with underlying monomial W =

(!1)
(i)(!2)

(j) � � � (!l)
(k). Let � be the vector partition associated with W . The image of D
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under the Gessel map is the forgotten MacMahon symmetric function f�: It corresponds to

the placement of the balls being weighted by W into boxes, where balls coming from the same

package go to the same box. Moreover, we require that within each box, the packages appearing

are linearly ordered.

The Gessel map is the generating function for the process of placing balls into boxes where

balls in the same block go to the same box, and balls in di�erent blocks go into di�erent boxes.

The antipode turns juxtapositions products into square product. The image under the Gessel

map of square products elementary monomials correspond to placings with the only condition

that balls that are in the same box, and that come from the same block are linearly ordered.

5. Operators on the plethystic Hopf algebra of MacMahon symmetric

functions.

In the �rst part of the article, we gave a combinatorial picture of the plethystic Hopf algebra of

MacMahon symmetric functions. The aim of this second part is to put some movement into this

picture by de�ning some operators acting on it. We are particularly interested the polarization

and the substitution operators, described by G.-C. Rota and J. Stein [18], and the projection

and the lifting operator introduced by the author [13, 14].

Let A be an alphabet with k neutral letters. We de�ne a �ner grading on Gessel(A), called

the homogeneous degree, by

Gessel(A) =
[
i�0

[
u2Nk

weight(u)=i

Gesselu(A)

where Gesselu(A) is the set of all monomial elements of Gessel(A) of type u = (u1; u2; � � � ; un).

The type of a monomial is the vector de�ned by the total number of balls of each color that the

monomial is weight of, that is ui is the number of balls of weight i on Gesselu(A).

There are two homogeneous pieces on Gessel(A) that we want to emphasize. On the one

hand, we have Gessel(1;1;��� ;1)(A) that consists of all monomial weights of packages of balls, with

a total number of k balls, each of them colored using a di�erent color. Their image under the

Gessel map are called the unitary symmetric functions. They correspond to set partitions.

On the other hand, there is Gessel(n)(A). It consists of all monomial weights of packages of

balls, with a total number of k balls, and where all balls have been colored with the same color.

Their image under the Gessel map are the symmetric functions. They correspond to partitions

of a number.

5.1. The polarization operator. If A is an alphabet of neutral letters, we de�ne the polar-

ization operator D(b; a) acting on Super[A], with a and b in A, as

D(b; a)akbl!00 =

�
k

1

�
ak�1bl+1!00:

where !00 is a monomial that does not contain letters a nor b. The polarization operator chooses

one of the distinguishable balls of weight a and changes its weight to b in one out of k di�erent



14

ways. Then, we extend this de�nition to Gessel(A) by

D(b; a)(!)(p) = (!)(p�1)(D(a; b)!):

Here, the polarization operator acts on packages of balls. Packages of the same weight are

undistinguishable, so there is only one way of choosing the package where the polarization

operator acts on.

The polarization operator de�nes a derivation on Gessel(A),

D(b; a)fWW 0g = fD(b; a)WgW 0 +WfD(b; a)W 0g

because when we pick a ball from the set of packages weighted by WW 0, we either take it from

W and leave W 0 �xed, or take it from W 0 and leave W �xed.

The polarization operator does not change the weight of a monomial element of Gessel(A).

But, it does change its homogeneous degree. Suppose that the homogeneous degree of W is

(u1; u2). Then, D(b; a)W has homogeneous degree (u1 � 1; u2 + 1).

The polarization operator acts on the plethystic Hopf algebra of MacMahon symmetric functions.

The polarization operator on Gessel(A) induces an operator of the MacMahon symmetric func-

tions. We abuse notation and also call the operator obtained in this way polarization operator.

The induced operator can be de�ned explicitly by the following formula

X
i

yi
@

@xi
:

as we can easily check on the power sum MacMahon symmetric functions basis. Note that the

polarization operator on the MacMahon symmetric functions sends p(n) to np(n�1;1).

Theorem 12 (Rota-Stein). The polarization operator commutes with the Gessel map.

5.2. The substitution operator. The substitution operator S(!; a) acts on Super[A] as fol-

lows. Let !0 = ak!00, where !00 contains no letter a. Then,

S(!; a)(!0) = S(!; a)(ak!00) = (!k!00)

and extends multiplicatively to the whole algebra.

The substitution operator S(!; a) acts in two stages. First, it selects all balls of weight a

inside each of the packages, and then it substitutes each of the balls of weight a by a set of balls

of weight !. The substitution operator is an algebra map.

5.3. The projection operator. Let W be an element of Gessel(A) of degree n corresponding

to the weight of packages of balls, where no weight is repeated. The image of W under the

Gessel map is a unitary MacMahon symmetric functions. Moreover, W can be identi�ed with

a set partition. Given any composition u = u1 + u2 + � � � + uk of n. The polarization operator

�u gives weight 1 to the �rst u1 balls, weight 2 to the next u2 balls, and so on. Moreover, balls

in the same package of W are kept in the same block of the resulting multiset partition. For
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instance, let u = (3; 1; 2). Then, �u weights 1; 2; and 3 by 1, 4 is weighted 2, and 5 and 6 are

weighted 3.

The projection map de�nes an operator on Gessel(A). Note that if u = (1; 1; � � � ; 1, the

projection map correponds to the identity. On the other hand, if u equals n, the images of the

projection map are the symmetric functions of degree n. We can go from the unitary monomials

to the one-color monomials by making all balls to be of the same color. More generally, we can

move from one homogeneous piece of Gessel(A) to another one of the same weight by changing

the colors of the balls. This idea was pursued by the author in [13, 14] where she de�ned the

projection map

�u : Gessel(1;1;��� ;1)(A)! Gesselu(A)

where u is a partition of weight n.

This map takes some of the balls that have di�erent colors and makes them to have the same

one. The projection map has been used to compute the connection coe�cients between the

di�erent basis of the ring of polynomials [15].

The projection map can be de�ned through the iterated use of the substitution operator, but

it is useful to do it this way.

5.4. The lifting operator. The main property of the polarization operator is that it changes

the weights of the balls being weighted by a monomial element of Gessel(A). Applying it several

times, we get all balls to have di�erent colors. At this point, the monomial element obtained is

unitary and we use the appendices appearing in [13, 4, 14] to work with them. They indicate

how to make a change of basis, and how to take the internal and the Kronecker products.

The problem with this approach is that the unitary monomial obtained in this way depends

on the choices of the polarization operator that we have made. The Lifting operator �̂u does not

have this problem. Let W be a monomial element on Gessel(A), and let u be its homogeneous

degree. We de�ne �̂u(W ) as the sum of all monomial elements in the preimage of W under the

projection map. Note that �̂u(W ) belongs to Gessel(1;1;��� ;1)(A).

5.5. The permanent and Binet formula. The permanent of an n�m matrix is the elemen-

tary MacMahon symmetric function in n alphabets of size m, evaluated at the entries of the

matrix. For instance,

Per

0
@x1 x2 x3 � � � xn
y1 y2 y3 � � � yn
z1 z2 z3 � � � zn

1
A =

nX
i;j;k di�erents

xiyjzk = e
(n)
(1;1;1)

where we use the superindex n to indicate that the alphabets consist of n letters.

Hence, the permanent function gives us the number of ways of placing three balls, one of

weight a, one of weight b, and one of weight c into n di�erent distinguishable boxes.

In [13] the author showed how to use Doubilet's tables for the matrices of change of basis

between the di�erent basis for the MacMahon symmetric functions just mentioned. As an
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application, we obtain Binet's formula [12] for the evaluation of the permanent.

Per(A) =
X
�

�(0̂; �)p�:
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