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Abstract

We prove that if G is a semisimple adjoint group over an algebraically closed �eld of arbitrary
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1 Introduction

In [4], what are known as \wonderful compacti�cations" of symmetric varieties were constructed

and studied by C. De Concini and C. Procesi. More precisely, if G is a semisimple adjoint group

over the �eld of complex numbers, H is the subgroup of all �xed points of an involution � of

G that is induced by an involution b� of the simply connected covering bG of G, then, they have

constructed a complete embedding G=H of the homogeneous space G=H, with boundary being a

union of normal crossing divisors. In particular, one gets such a compacti�cation G for the group

G (G being considered as (G�G)=�(G)). In [10], E.Strickland has proved that the wonderful

compacti�cations for the group exists over algebraically closed �elds of positive characteristics.

In [5], C. De Concini and T.A. Springer have proved that these compacti�cations for arbitrary

symmetric space G=H exists when the base �eld is of characteristic p 6= 2. In [6], G. Faltings

raised the question: For what bG- linearised line bundles L, the cone over G=H given by L is

normal?

The aim of this paper is to provide an a�rmative answer to his question for the case of the

wonderful compacti�cation of a semisimple adjoint group G over an algebraically closed �eld of

arbitrary characteristic. To be more precise, we prove that if G is a semisimple adjoint group

over an algebraically closed �eld of arbitrary characteritic, bG is a simply connected covering of

G, then for any bG� bG- linearised very ample line bundle L over the woderful compacti�cation

G, the cone over G given by L is normal. In section 3, we prove this result when the base �eld is

the �eld of complex numbers. For a more precise statement, see Theorem 3.4. In section 4, we

prove the result for algebraically closed �elds of positive characteristic by using the properties

of good �ltrations.

2 Notations and basic Theorems

Throughout sections 2 and 3, we �x the following notations: Let G be a semisimple

adjoint group over the �eld of complex numbers. Let � : bG �! G be a simply connected covering

of G. Let k[ bG] denote the co-ordinate ring of bG. Let T be a maximal torus of G and B be a

Borel subgroup of G containing T . Let B� be the opposite Borel subgroup of G determined by

T and B. Let bT denote the pull back of T in bG. Let bB (resp. dB�) denote the pull back of B

(resp. B�) in bG. Let W denote the Weyl group of G with respect to T .

Let � denote the set of roots with respect to T as above and �+ � � denote the set of

positive roots with respect to B as above.
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Let � � �+ denote the set of simple roots. We label the elements of � by :

� := f�1; �2; :::�lg; l = rank(G):

Let � denote the weight lattice of G with respect to T . Let E := �
N
R denote the R span of �.

Let (:; :) denote the positive de�nite bilinear form on E induced by the Killing form of the Lie

algebra of G and de�ne h�; �i = 2(�;�)
(�;�) . Now, consider the fundamental weights. Since, they

form a dual basis of the simple coroots, we label them:

f$1; :::$lg;

where $i is dual to �i. Let w0 denote the longest element of W with respect to �.

In this paragraph, we recall some basic properties of the wonderful compacti�cation of the

symmetric spaces. Let G be a semisimple adjoint group, let � be an involution of G that is

induced by an involution b� of bG. Let H denote the subgroup of all �xed points of � in G. Let

H 0 denote the �xed points of b� in bG. Then, there exist a �- stable maximal torus T of G and a

Borel subgroup B of G containing T with the following property :

1. The dimension of ft 2 T : �(t) = t�1g is maximal.

2. For any positive root � (with respect to B), if �(�) is a positive root, then �(�) = �.

Let f
1; 
2; � � � 
jg be the set of all simple roots that are not �xed by �. Then, � induces a

permutation e� on the set f1; 2; � � � jg.

Also, there is only one closed G-orbit in the wonderful compacti�cation G=H, say G=P and

the restriction map Pic(G=H) �! Pic(G=P ) is injective. For a dominant weight �, let V�

denote the irreducible representation of bG with highest weight �. Let � be a dominant weight

such that V H0

� is non zero. Then, [by Theorem 8.3, pp 30-31 [4]], the global sections of the line

bundle L� on G=H is given by:

2.1 H0(G=H;L�) =
L

�2��
V �
� , where �� denote the set of all dominant weights � that are of

the form � = �� (
P

i�e�(i)mi(
i � �(
i))), with mi 2 Z�0.

Now, we apply these to our special involution � : G�G �! G�G sending (x; y) 7! (y; x).

Here, the symmetric space is the group G = (G � G)=�(G). Let X denote the wonderful

compacti�cation of G.

Here, we should take T � T as a �- stable maximal torus with the above maximal property.

We should take B � B� (T � B) as a Borel subgroup of G � G containing T � T with the

above property. Here, the unique closed G � G- orbit is G=B � G=B�, and the image of

Pic(X) �! Pic(G=B�G=B�) consists of line bundles associated to weights of the form (�;��).

For any dominant weight �, let L� denote the line bundle over X associated to � and let
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H0(X;L�) denote the global sections of L� over X. Let � denote the dominant ordering on �.

That is � � � if and only if �� � =
P

i=1mi�i for some mi 2 Z�0.

Now, applying the above statement 2.1 to our special involution of G�G, we have

2.2 H0(X;L�) =
L

���End(V
�
� ), where the sum is taken over all dominant weights � such that

� � �.

3 Projective normality

We now prove that for any line bundle L� on X, there is a unique (up to multiplication by a

constant) injective homomorphism

�� : H
0(X;L�) �! k[ bG] (3:0:1)

of bG� bG modules.

For a proof of this fact: Since G = G � G=�(G) is a G � G stable open subset of X, and

the natural map � : bG = bG � bG=�( bG) �! G = G � G=�(G) is a surjection, the natural

map � : bG = bG � bG=�( bG) �! X is a dominant map and hence for any line bundle L over

X, H0(X;L) is a bG � bG- sub module of the bG � bG module H0( bG;L). Since k[ bG] is a unique

factorisation domain, the pull back ��(L) on bG is trivial and hence we have

H0( bG;L) = k[ bG]:
Moreover, this identi�cation is unique up to constants since the units of the k- algebra k[ bG] are
only nonzero constants. Thus, (3.0.1) holds.

We now prove that for any two line bundles L� and L�, the following diagram is commutative:

H0(X;L�)
N

H0(X;L�) �! H0(X;L�
N

L�)??y
??y

k[ bG]N k[ bG] �! k[ bG]
(3:0:2)

Here the horizontal arrows are the natural maps, the vertical map on the left is ��
�� and

the vertical map on the right is ��+�.

For a proof of this observation:

By the Peter-Weyl Theorem, the bG � bG- module k[ bG] = L� End(V
�
� ), where the sum is

taken over all dominant weights �. Using this and the fact that H0(X;L�) =
L

���End(V
�
� ),

it is easy to see that (3.0.2) holds.

Now, we prove the following Lemma.
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Lemma 3.1. Let � and � be two dominant weights. Let �1 be a dominant weight such that

�1 � � and �1 be a dominant weight such that �1 � �. Let � be a dominant weight such that V�

is a bG- submodule of the tensor product V�1
N

V�1 . Then, the image of End(V �
�1
)
N

End(V �
�1
)

under the multiplication map H0(X;L�)
N

H0(X;L�) �! H0(X;L�+�) contains End(V
�
� ).

Proof: Since bG is linearly reductive and V �
� is a quotient of V �

�1

N
V �
�1
, we can assume that

V �
� is a submodule of V �

�1

N
V �
�1
.

Now, consider the bB action onEnd(V �
�1
) on the right and consider thedB� action on End(V �

�1
)

on the right. By the observation 2.2 and the hypothesis �1 � � and �1 � �, we have End(V �
�1
) �

H0(X;L�) and End(V �
�1
) � H0(X;L�). So, by our identi�cation (3.0.1), we have End(V �

�1
) �

H0(X;L�) � k[ bG] and End(V �
�1
) � H0(X;L�) � k[ bG]. Therefore, by the Borel-Weil Theorem [cf

[1]], we have V �
�1

= ff 2 End(V �
�1
) : f(xb) = �1(b):f(x) for x 2 bG; b 2 bBg = ff 2 k[ bG] : f(xb) =

�1(b):f(x) for x 2 bG; b 2 bBg and V �
�1

= ff 2 End(V �
�1
) : f(xb�) = w0(�1)(b

�):f(x) for x 2

bG; b� 2dB�g = ff 2 k[ bG] : f(xb�) = w0(�1)(b
�):f(x) for x 2 bG; b� 2dB�g.

Fix our choice of V �
�1

and V �
�1

as above and let f =
P

i fi 
 gi 2 V �
�1

N
V �
�1
, fi 2 V �

�1
,

gi 2 V �
�1

be such that (
P

i fi 
 gi)(x; x) is zero, for every x 2 bG . Then, we have f((xb; xb�)) =

(�1(b))(w0(�1)(b
�))f(x; x) = 0 for every x 2 bG, b 2 B and b� 2 B�. Since the elements

(xb; xb�) form a dense open set in bG� bG, f must vanish identically on bG� bG. Thus, V �
�1

N
V �
�1

is

mapped injectively via the multiplication map End(V �
�1
)
N

End(V �
�1
) � k[ bG]N k[ bG] �! k[ bG].

By the hypothesis �1 � �, �1 � � and by Theorem(2.1), we have End(V �
�1
) � H0(X;L�)

and End(V �
�1
) � H0(X;L�). Therefore, by the observation (3.0.2), the bG module V �

�1

N
V �
�1

is mapped injectively into H0(X;L�+�) via the multiplication map H0(X;L�)
N

H0(X;L�)

�! H0(X;L�+�). Since V �
� is a bG- submodule of V �

�1

N
V �
�1
, V �

� must be isomorphic to a bG
submodule of the image of End(V �

�1
)
N

End(V �
�1
). Since the image of End(V �

�1
)
N

End(V �
�1
) is

a bG� bG submodule of k[ bG], it must contain End(V �
� ).

Therefore, using the diagram (3.0.2), it is easy to see that End(V �
� ) is a

bG� bG-submodule

of the image of H0(X;L�)
N

H0(X;L�) �! H0(X;L�+�) under the multiplication map.

This completes the proof of the Lemma.

We now prove the following Lemma.

Lemma 3.2. Let � and � be two dominant weights. Let � be a dominant weight satisfying

� � � + �. Then, there is a dominant weight �1 � � and there is a dominant weight �1 � �

such that V� is bG- submodule of the tensor product V�1
N

V�1 .

Proof: Let � and � be two dominant weights. Let � be a dominant weight such that

� � �+ �. We wish to prove that there are dominant weights �1, �1 such that �1 � �, �1 � �
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and an element w of the Weyl groupW such that � = �1+w(�1), and then using PRV conjecture

[cf [9]], we prove that V� is a bG- submodule of the tensor product V�1
N

V�1 .

By [sections (13.4) and (21.3)] of [8]], � is a weight of V�+�. Therefore, we have � = �1+ �2,

where �1 is a weight of V� and �2 is a weight of V�. We have � � �1 = (
Pl

imi�i) for some

mi 2 Z�0.

We �rst prove that there is a dominant weight �1 such that �1 � � and there is a weight � 02

of V� such that � = �1 + � 02 by induction on the sum
Pl

imi.

If
Pl

imi = 0, there is nothing to prove.

If
Pl

imi = 1, then, we have �1 = �� �i0 for some i0 2 f1; 2; � � � lg. Now, if �1 is dominant,

then there is nothing to prove. Otherwise, h�1; �i0i is negative. Since � = �1 + �2 is dominant,

h�2; �i0i is positive. But, we know that �1+k�i0 is a weight of V� for any k 2 f0; 1; � � ��h�1; �i0ig

and �2 � k�i0 is a weight of V� for any k 2 f0; 1; � � � h�2; �i0ig [cf [sections (13.4) and (21.3) of

[8]]]. In particular, �1 + �i0 = � is a weight of V� (which is ofcourse trivial) and �2 � �i0 is a

weight of V� and we also have � = � + �2 � �i0 . Therefore, in this case, we take �1 = � and

� 02 = �2 � �i0 .

Now, let N be a positive integer strictly bigger than 1. Let us assume that the statement is

true for all � such that � = �1 + �2, where �1 = � �
Pl

i=1mi�i being a weight of V� with the

sum
Pl

i=1mi � N � 1 and �2 being a weight of V�.

Let � be a dominant weight such that � � � and � = �1 + �2 where �1 is a weight of V�, �2

is a weight of V� with �1 = � �
P

imi�i and the sum
Pl

i=1mi = N . If �1 is dominant, then,

there is nothing to prove. Otherwise, there is a simple root �i0 such that h�1; �i0i < 0.

By a proof similar to the case when
Pl

imi = 1, it is easy to see that �1 + �i0 is a weight

of V� and �2 � �i0 is a weight of V�. Also, we have � = (�1 + �i0) + (�2 � �i0). Therefore, by

induction, there exist a dominant weight �1 � � and a weight �2 of V� such that

� = �1 + � 02:

We �x our choice of �1 and �
0
2 as above. Since �

0
2 is a weight of V�, w(�

0
2) is also a weight of

V� for every w 2 W . Thus, the unique dominant weight (say �1 = w�1(� 02) ) in the W orbit of

� 02 must also be a weight of V�.

Hence, we have � = �1 + w(�1) where �1 is a dominant weight satisfying �1 � �, �1 is a

dominant weight satisfying �1 � � and w is an element of the Weyl group W .

Now, the fact that V� is a bG- submodule of the tensor product V�1
N

V�1 follows from PRV

Conjecture [cf [9]].
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This completes the proof of this Lemma.

We have

Corollary 3.3. Let � and � be two dominant weights. Then, the multiplication map

H0(X;L�)
O

H0(X;L�) �! H0(X;L�+�) is onto:

Proof: Proof of this is an immediate consequence of Lemmas 3.1 and 3.2.

Theorem 3.4. Let G be a semisimple adjoint group over the �eld of complex numbers. Let

� : bG �! G be a simply connected covering of G. Let X denote the wonderful compacti�cation

of G. Let L be an ample line bundle over X. Consider the embedding of X in P(H0(X;L)�).

Let bX denote the cone over X with respect to this embedding of X. Then, bX is normal.

Proof: By [4], we have L = L� for some regular dominant weight �. By [II (5.14)(d)] of [7],

it su�ces to prove that the multiplication map

H0(X;L�)

N �! H0(X;LN�) (3:4:1)

is surjective for every positive integer N . The proof of this is an immediate consequence of

Corollary 3.3.

We have

Corollary 3.5. Let w be an element of the Weyl group W . Let Xw denote the scheme theoretic

closure of the cell BwB in X. Let L be a bG� bG linearised very ample line bundle over X and

letdXw denote the cone over the embedding given by L. Then,dXw is normal.

Proof: By [Corollary 3, [3]], the restriction map

H0(X;L
n) �! H0(Xw; L

n) is surjective for every positive integer n � � � (3:5:1).

Now, consider the following commutative diagram of maps:

H0(X;L)
n �! H0(X;L
n)??y
??y

H0(Xw; L)

n �! H0(Xw; L


n)

(3:5:2)

Here the horizontal arrows are the natural multiplication maps and the vertical arrows are

restriction maps.

The assertion of the corollary follows from the observations 3.5.1, 3.5.2 and Corollary 3.3.
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4 Appendix:

In this section, we prove the analogue of Theorem 3.4 when the base �eld is of positive charac-

teristic.

Let k be an algebraically closed �eld of positive characteristic. Let G be a semisimple

adjoint group over k. Let bG be a simply connected covering of G. Let X denote the wonderful

compacti�cation of G. Let T , B, B�, bT , bB,dB� be as in section 2.

With the notations as in section 2, we introduce some more notations as follows: Let �

denote the weight lattice of G with respect to T . So, �� � is the weight lattice of G�G with

respect to T � T .

For any weight � 2 �, set V� := H0(G=B;Lw0(��)).

De�nition 4.1. Let bG be as above. Let V be a bG module. A �ltration of bG- submodules

(0) = V0 � V1 � V2 � � � � Vn = V is a good �ltration if each Vi+1=Vi is a direct sum of V (�i(j))'s

for some dominant weights �i(j)'s.

As in section 2, let � = f�1; � � ��lg denote the set of simple roots with respect to T and B.

Let � and � be two dominant weights in �.

Let L� (resp. L�) denote the line bundle over X associated to (�;��) (resp. to (�;��). Let

� be a dominant weight such that � � �+�). Let � : H0(X;L�)
N

H0(X;L�) �! H0(X;L�+�)

denote the multiplication map.

Then, we have

Lemma 4.2. The bG� bG- module Vw0(��)

N
V� is a bG� bG-subquotient of the image

�(H0(X;L�)
N

H0(X;L�)).

Proof: By Donkin's conjecture [cf Theorem 4.4.3, [11]], a tensor product of two modules with

good �ltrations has a good �ltration. By Theorem 5.10 of [5], H0(X;L�1) (resp. H
0(X;L�1)) has

a good �ltration of bG� bG-submodules such that the successive quotients look like Vw0(��)

N
V� ,

� � �1 (resp. � � �1). Therefore, the tensor product H0(X;L�1)
N

H0(X;L�1) has a good

�ltration of bG� bG-submodules.

Now, let H be a semisimple Chevalley algebraic group over the �eld of complex numbers.

Let Hp be the corresponding algebraic group in characteristic p. Now, if Vp is a Hp-module

having a good �ltration in characteristic p such that it comes from a H-module V modulo p,
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then the character of V is same as the chracter of Vp and so the Hp- subquotients of Vp are

precisely the H- direct summands of V .

Now, let M� (resp. M 0
�) be the largest

bG� bG submodule of the tensor product

H0(X;L�1)
N

H0(X;L�1) all of whose B�B- weights are � (�w0(�); �) (resp. < (�w0(�); �)).

Also, let N� and N 0
� be the corresponding submodules of H0(X;L�1+�1). Therefore, from

Lemmas 3.1 and 3.2, and by the observation above, � induces a non zero bG � bG- module

homomorphism from the quotient (V�w0(�)

N
V�)

m = M�=M
0
� �! N�=N

0
� = V�w0(�)

N
V� for

some positive integer m. Therefore, by the Frobenius reciprocity [cf Proposition 2.1.6 [11]], the

assertion follows.

The Theorem (3.4) for positive characteristic follows from Lemma(4.2).
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