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1. INTRODUCTION

Let G be a simple Chevalley group defined over F;. In this manuscript, we prove a theorem
on a new presentation for the algebra of endomorphisms Y, (q) associated to the induced repre-
sentation of the trivial representaion of U up to G, where U is a maximal unipotent subgroup
of G. In [6], this theorem was proved for the case when the Cartan matrix of G is symmetric,
that is when G is of type A;, D;, Fg, F7 or Eg. In this manuscript, we prove the theorem for
the other simple Chevalley groups also. More precisely, we prove the nonstandard presentation
theorem for the simple Chevalley groups of type B;, Cj, Fy and Gs.

In [7], T. Yokonuma has given a description (presentation) of this algebra Y, (¢) in terms of
the standard generators, that is, in terms of generators given by the double cosets (see 11.30[3]).
So, we call the algebra Y, (q), the Yokonuma-Hecke algebra. The presentation of Yokonuma is
analogous to the classical presentation of the Iwahori-Hecke algebra (see [5]).

In Theorem 2.18[6], the first author of this article has proved that this algebra )),(q) has
a presentation with non standard generators for the simple Chevalley groups G whose Cartan
matrix is symmetric. This presentation uses non-standard generators defined by a pre-fixed
non-trivial additive character of I, and a certain non-trivial linear combination involving the
standard basis of ), (q) (see Definition 1). Originally, these generators were defined in a geo-
metrical way for the group G L, (F;), that is, like Fourier Transforms on the space of functions
of flags vectors on Ij. As an application of our main theorem, we recall that abstracting the
presentation in the case when G is of type Ay, it is posible to define a certain finite dimensional
algebra, involving braids and ties, which give new matrix representation for the Artin group of
type A, see [1] . It is a natural question to study the representation for the Artin groups of
types By, Cj, Fy and G5 that arising from our theorem.

The aim of this note is to prove that the above mentioned non standard generators give a
presentation for the algebra ), (¢) for the simple Chevalley groups of type By, C;, Fy and Go.

For more precise statement, see Theorem 2.

The layout of this manuscript is as follows:

Section 2 consists of preliminaries and statement of the main Theorem (for a more precise
statement, see Theorem 2.) Section 3 consists of the proof for the case when G is of type By, C)
or Fy. Section 4 consists of the proof for the case when G is of type Go.

2. PRELIMINARES AND STATEMENT OF THE MAIN RESULT

2.1. Let k denote a finite field with ¢ elements. Let G be a simple simply connected Chevalley
group defined over k. Let T be a “maximally split” torus of G. Let B be a Borel subgroup of
G containing T'. Let U be the unipotent radical of B. We will denote the rank of G by .

We denote the set of all roots with respect to T" by ®.

Let A be the set of all simple roots with respect to T and B. Let N be the normaliser of T'
in G and let W = N/T be the Weyl group of G with S = {s, : a € A} being the set of simple
reflections. The pair (W, S) is a Coxeter system and we have the presentation:

W = (sq : (sas8)™* =1,0,8 € A),

where m,3 denote the order of s,s3.

Let m be the canonical homomorphism from N onto W. Using 7, we have an action of the
Weyl group W on T: (w,t) — w(t) := wtw™!, where w € N is such that 7(w) = w.

We recall that for any root o € ®, there is an w, € N such that m(ws) = s and there is a
homomorphism ¢, : SLy — G such that

wa:¢a<_01 (1)>, ha(r):¢a(g 7"91)’ (r € kX).

2.2. Let Y,(q) be the algebra of endomorphism of the induced (permutation) representation
Indgl, over the field of complex numbers. We call the algebra ), (¢q) as the Yokonuma-Hecke
algebra.
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From the Bruhat decomposition, G = [,y UnU, we have that the standard basis of the
Yokonuma-Hecke algebra is parametrised by N. Let {R,, |n € N} be the standard basis.

If n = w,, we denote R, by R,.

If n =t €T, we call the elements R; in ), (q) operators of homothety corresponding to ¢. In
the case t = ho(r), we denote Ry by H,(r). With these notations, we define F, by

Ey:i= Y Hy(r) (a€?).
rekx
It is clear that the E,’s commute among themselves, and a direct computation shows that
(1) Ez = (q - 1)Ea-
Now, we recall a Theorem due to T. Yokonuma.
Theorem 1. (See [7]) The Yokonuma-Hecke algebra Y, (q) is generated, as an algebra, by

R, (o € ®), and the homotheties Ry (t € T). Moreover, these generators with the relations
below define a presentation for YV,(q).

(1.1) R? = qH,(—1) + RyE, (quadratic relation)

(1.2) RyR3RoRj--- = RgRoRgRy -+ (braid relation)
S

(1.3) RiR, = RyRy, where t = watwgl (teT)

(1.4) R,R, =Ry, (u,v€eT).

2.3. In the following, we fix a non-trivial additive character 1) of (k,+). For any « in @, we
define ¥, as the following linear combination of elements in Y, (q),

U= Y h(r)Ho(r).
rekx
From a direct computation, we have that ¥, commutes with E,, and

(2) UoEy = —E,.
Definition 1. Let o € ¥. We define the element L, as
Lo :=q ' (Ey + RyT,).
Our main goal is to prove the following Theorem.

Theorem 2. The Yokonuma-Hecke algebra YV, (q) is generated (as an algebra), by Ly (o € @),
and the homotheties Ry (t € T). Moreover, these generators with the relations below define a
presentation for Y, (q).

(2.1) L2 =1—q " (B, — LoE,) (quadratic relation)

(2.2) LoLgLoLg--- = LgLoLgLy---  (braid relation)
m:5 m:g

(2.3) RiLo = LoRy, where t =uwatw,t (teT)

(2.4) R,R, =Ry, (u,v€eT).

To prove this Theorem, we introduce some notations and one useful Proposition. We denote
by EY the effect of w on E,, arising from the action of the Weyl group W on T'. That is,

EY = Z Hy(r) (ve®weW),
rekx

where 7 is the root defined by w(a) = 7.
In the similar way, we denote by ¥¥ the effect of w on ¥,.
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Proposition 3. Let s be the reflection corresponding to o, and let 3 € ®. We have

(13.1) EsR, = R.E}, UsR, = RV}
(3.2) Ep, = E,

(13.3) B,V = —E, = E,7,

(3.4) Vo Wy =W Va = qHo(—1) — Ea.

Proof. The proof of the assertions in 3.1 is an inmediate consequence of Yokonuma’s Theorem,
part 1.3 and the proofs of 3.2, 3.3 and 3.4 are straightforward computations. O

2.4. We are now going to sketch the proof of Theorem 2 for the simple Chevalley groups of
type By, C;, Fy and G5. The only statement of Theorem 2 that involves the Dynkin diagram of
the group is the statement about the braid relation, that is 2.2. Since Theorem 2 was proved
for the cases of type A;, D;, Es, E7 and Eg in [6], to prove the Theorem, we need to prove
only 2.2 for the cases when G is of type Bj, C}, Fy and G5. In Section 2, we prove 2.2 for the
case when G is of type B, C; and Fy. In Section 3, we prove 3.2 for the case when G is of type
G2. The method of proof involves the one parameter subgroups H,(t), t € k™, o € ®, and some
automorphisms of the two dimensional torus k> x k*.

3. CaAsEes B, C; AND F}

3.1. Let A ={ai,...,q 1,0} denote the set of all simple roots of type B;. So, the Dynkin
diagram is as follows:

(631 a2 « B
Bl: O—O— . o —O———0

where @ = o1 and 3 = . Let s (respectively s’) be the reflection corresponding to the root
a (respectively f3).

Notice that the simple roots a;, ..., oy_1 of B; turn to the set of simple roots of 4;_; and
so from Theorem 2.12[6], we deduce:
Lo;Lo;, = LojLa, if Ji—j|>1
Lo;Lo;Lo; = LojLa;La;, if |i—j]=1.

Therefore, to prove Theorem 2, we need to prove only the relation LoLgLoLg = LgLoLgL,.
In the proof of this braid relation, we will use the following lemma. The same proof holds for
the cases: C; and Fy. ( The only difference is « = oy, 8 = 1 in the case of C; and o = ao,
B = a3 in the case of Fy).

Lemma 4. We have

(4.1) E} Eg = E3E, = EoFjp
(4.2) (E3)* =By, (B = Ej
(4.3) ESES = E,Ep

(4.4) (BY)*)* = Ear  ((E})")* =Ep
(4.5) (5 =vs, (T =1

(4.6) (Ho(=1))* = Ha(=1),  (Hp(=1))* = Ha(=1)Hp(=1).
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Proof. We now prove 4.1. We have s'(a) = a+ 23 and so we have Egl = F,425. Hence, we have

EByBEs = ) Hapos(t) Y Hp(r)
tekx rekx
= Z Ha(t)Hﬂ(t2 -7)
(tr) ek xk*
= > Ha(t)Hg(r) = EqEj,
(t,r)ek> xkx
since the map (¢,7) + (t,t2-7) is an automorphism of k* x k*. This proves that Eg; Es = E,Ej.
The equality E3E, = EoEg follows from the fact that s(8) = a4+ and the map (¢,7) — (tr,7)
is an automorphism of k% x k*.
We now prove 4.2. We have s(s'()) = s(a +20) = —a+2(8+ ) = a + 26 = s'(«). This
proves that (ES)* = E¥ .
Proof of (Eé)s' = Ej} follows from the fact:

s'(s(8)) = s'(a+B) = (a+2B) = B=a+ = s(A).

Proof of 4.3 follows from the facts that s(8) = a+ 3, s'(a) = a + 243 and the map (¢,7) —
(tr,tr?) is an automorphism of kX x kX,

Proof of 4.4 follows from the facts that

s'(s(s'(a))) = s'(s(a +20)) = s"(a+28) = (a +20) - 28 =«
and
s(s'(s(8))) = s(s'(@+ B)) =s(a+B) =—a+a+ =0

Proof of 4.5 is similar to the proof of 4.2. We note here that ¥ does not play an important
role in this situation.

We now prove 4.6. We have s’(a) = a + 23 and hence, we have

!

(Ha(=1))" = Ha(=1)(Hp(-1))* = Ha(=1)H5((=1)?) = Ha(~1).
Since s(3) = o+ 3, we have (Hg)(—1)° = Ho(—1)Hp(—1). O

We now prove the following Lemma which will complete the proof of Theorem 2 for the cases
when G is of type By, C; and Fjy.

Lemma 5. LoLgLoLg = LgLoLgLg.
Proof. First, we compute the products:
Dap = qQLQLg, and pgq == qQLgLa.
From the definition of L, and Lg, we have
DPop = (Eo + Raq/a)(Eﬁ + Rﬁqlﬁ)

= EaEg + EaRg\Ifg + Ra\lfaEg + Ra\I/aRg\Ilg

= EoEs+RgE, U5+ RoVoEs+ RoRgVs Uy

S~ Y Y———

a b c d

Notice that b (respectively d) is obtained from E,RgV s (respectively R,V ,RgV ) using propo-
sition 3.
Now, we compute 1%53

pap =a’ + b+ +d° + ab+ ac+ ad + ba + be + bd + ca + cb + cd + da + db + dc.
In the same way, we obtain an analogous expression for p?} ., but in the symbols o, V/, ¢ and
d'.
The proof of this Lemma is as follows. In the expression of piﬁ and p% o> We first bring the
monomials 1, R, Rg, RaRg, RgRa, RaRgRa, RgRaRg, and RaRgRaRg = RgRaRgRa to the
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left. After this procedure, we will check that the coefficients of these monomials in piﬂ with the
corresponding coefficients in p% . are the same. Then, the lemma follows.

Let Xo, Xo, X3, Xag, Xga, Xagas Xgas and Xyga5 be the coefficient of 1, R,, Rg, R.Rpg,
RgRy, RoRgRa, RsRoRa and RoRgR.Rg, respectively in p2s. Let Yo, Ya, Y5, Yag, Yga,
Yosa, Ysap and Yugas be the coefficient of 1, R,, Rg, RoRg, RgR., RoRgR., RgR,R, and
R,RgR,Rg respectively in p% o

We need to prove that X, =Y, for all ¥ (words in o and [3) as above. To do this, we will
compute X, and Y, using essentially the Lemma 4. Now, as the computations are all very
similar, we are going to compute only Xo, Xoga, Yagas Xa, Yo, Xag, Yas, Xagas and Yogas.

Computation of Xy and Yj. It is easy to see that the terms contributing to the constant
coefficient in the expression of pzﬂ (resp. in p?}a ) are only a?, b? and ¢? (resp. (a')?, (b')? and
()?).

We have a® = (E,Ep)? = (EgE,)? = (d')2.

We now compute b?.

We have

V' = Ry UsRsEL Vs = R3((EVp)" E; Vg

From the observation 1.1 of Theorem 1, we have R,QB = qHg(—1) + Rz ;.
Thus, the constant coefficient yielded by b? is qHﬂ(—l)(Ez’\I/,g)s'Ei\I/g.
By a similar computation, it is easy to see that (c/)? yields the same constant coefficient as
that yielded by b2.
A similar proof shows that the constant coeffiicient yielded by ¢? and that yielded by (b')?
are the same and both are equal to ¢Ho(—1)(E3Va)° E5¥q.
Thus, we have Xy = Yy}.
Computation of X,3, and Y,5,. It is clear that the terms having RyRsR, in pag (re-
spectively pge) is only de (respectively b'd’). We have dc = b'd’. Namely,
bd = (RaE3Va)(RsRaVEY,)
= RoRgR.((E}))* (V%) 050,
= RoRgR.Es(T5)° U5,  (from 4.4)
= RoRgR.(T3)° 5T, Fy
= (RoRsT; ) (Ra¥aFp)
= dc.

2

Computation of X, and Y,. The terms having R, in pzﬂ are: ¢, ac, ca, and db. We now

compute ¢2. We have
& = (Ra¥aEs)(RaY,Ep)
= RV} E3U.Eg (from proposition 3)
= (qHa(=1) + RoEo) YV, E3VoEg  (from 1.1).

Hence, ¢? yields the coefficient Ea\IIZEE\I/aEg. Now, using proposition 3 and lemma 4, we get

EoVSE}UaEy = —E.E}U,Es;  (from 3.3)
= —E,E3V,FEj (from 4 4.1)
= —E3(E.V.)Ep

EsE.Eg (from 3.3)
= (¢—1)E.E3 (from 1).



On the other hand, using Proposition 3, we get
ac = (EqEg)(RaVoEp) = RoE,E5V, Ep,
and
ca = R,V FEgE,FEg.
Using Lemma 4, we deduce:
ELE3V.Eg = Vo EgEyEg = —(q — 1) Eq Ep.
Let us compute db,
db = (RaRs¥}¥s)(RyE} Vg)
= RQR%(\I/Z:)SI\II%IE;’\I% (from proposition 3).
Therefore, from 1.1, we have
db = Ro(qHs(—1) + RyBp)(¥5) Y5 EY V.
Thus, db yields the coefficient qHg(—1)(¥5)* U3 ES Uy = qHg(—1)UoT4 ES T g. Now,
qHg(—1) U, U4 ES U = qHg(—1)U, B U5 U4
= qHg(—1)UoE} (¢Hy(~1) — Bg)  (from 3.4)
= PUEL —qHy(~1) Vo B B
= PULES — qHs(—1)UoE,Es  (from 4.1)
= QPUE + qHg(—1)EqEg (from 3.3).

1
1

Thus, db yields
ULES + qE,Ep.
Therefore, we have
Xo = PO, ES + EoEp.
It is easy to see that the terms having R, in pg, are precisely a't/, b'd’, ¢'d’, and (0')2.

Let us compute (b')?,
(b")?

(RaB50,) (R E50,)
— R(EZ)LE,
= R.EREZV;V,
= \Qilal— alya) g qlig\—1) — Lq)-
(qHo(=1) + RoEo) EgEj(qHo(—1) — E,)
Hence (b')? yield the coefficient EoE3Ej(qHo(—-1) — Eq) = qEEgEj — EﬁEﬂE;; Then (b')?
yield precisely
(¢ —1)EyEp.
Now, we have @'t = (EgEq)(RoE5Va) = RoEZEGEZV,. Therefore, using Lemma 4, we
deduce that a’'b’ yield the coefficient

ESESES0, = —(q — 1)E,Ep.

It is easy to see that b'a’ also yield the same coefficient of a't'.
Let us now compute c'd’,

dd = (RsVsE,)(RgR, V5T,
= RZR.(T})*(EL) T30,
= (qHp(=1) + RsEp)Ra(Vj)*(Ep, ) V300
= qHg(—1)Ra(U%)*(ES)* 5Ty + RgEgRo(T5)* (ES )  Th T,
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That is,
dd = qRo(Hg(—1))*(5)*(ES ) T5Ty + RgRa ES(TY)* (ES ) U5 T,
Thus, ¢'d' yields the coefficient
q(Hg(—1))*(05)*(BS) Ty T = q(Hg(—1))* (T Tg)* (B )* Vs

Now, from the observation 3.4 of Proposition 3, and the observation 4.2 of Lemma 4, we have

’

q(Hg(—1)) (U5 p)* (B3 ) Vo = q(Hg(—1))*(¢Hs(~1) — Bp)*E3 U,
= q(Hs(=1))*(q(Hg(=1))* — Ej) B Wq
= ¢*E5 U, —qE}EL U,
= B, + qELEp.
Thus, we have proved Y, = qQEfl'\I/a + EEg = X,.
Computation of X,5 and Y,s. First, notice that there is only one term having R,Rp in
p?} o> Which is b'c¢’. Now,
bd = (RaE3Vo)(RsVsEL)
= RoRg(E})* Ui UsE,
= RoRgEjUSUsE, (from 4.2)
= RoRpUSUsEEs (from 4.1)
— —RoRpV E,Es (from 3.3).
Therefore, we have Y, = —\I/g:EaEg.

On the other side, the only terms having the monomial R, Rz in pzﬁ are: ad, cb, cd, da and
db. We have:

ad = (EoEp)(RaRsU% Up)
= RaRs(E3)" (B3 U5 Vs
= RoRsE; B3V
= RoRy(E,T,)" E5Tp
= RoRs(-E)E3¥s
= —RyR3E,E3Vs (from 4.3)
= RoRgE.Ej.

da = (RoRg¥3Vs)(EaEp)
= RoRsVSVsE,Eps
= —R.RsV: E,Ej.

b = (RaVaEsRg)(ES Wp)
= R.RsViE5E5 Vg
= RoR3(VoEo)" Es¥p
= R.RsE: Eps
= R.R3E.Ez (from 4.1).



From the observation 1.1 of Theorem 1, it is easy to see that db yields the coefficient
Eg(U) B Vs = (05)" (Es¥s)* EY U
= U, E3ES U
= —V,EgFE, Vg
= —E,FEp.
Again from the observation 1.1 of Theorem 1, we deduce that cd yield the coefficient
EL(03)" (B 05 0s = (BaW)" B30 Vs
= —EUE5T,
= —(ByU3)(B5Wp)
= —E.Ep.

Thus, we have Xo5 = Yo = — V3 EyEg = E,Ep.

Computation of X,3,3 and Y,g,3. It is easy to see that d? is the only term that yields
Xapap and this coefficient is U5 U z((T3 Wp)%)*".

Also, it is easy to see that Y,g.s is equal to \Ilf;\Ilﬂllla\Ilf}. By Lemma 4, it is clear that
((©5)%)* = ¥y and (¥5)* = Uf. Hence, we have Xogas = Yagas- O

4. CASE G

Let IT = {a, 8} be a system of positive simple root of ®. Let us put
o B
G2t ==

the Dynkin diagram. Let W denote the Weyl group of G,. Let s (respectively s’) denote the
reflection corresponding to the root « (respectively 3). We have, (o, 5) = —1 and (3, a) = —3.
Hence, we have

(3) s(B) =3a+ 6, §(a)=a+p.
In the proof of the braid relation of type G (Lemma 7), we will use the following Lemma.

Lemma 6. We have,

(6.1) (B)) = (1), ((B)") = (B

(6.2) (T5)) = (), (%)) = (¥h)*

(6.3) ELEY = EoEs, EoEsEj=(q—1)E.Ep

(6.4) Ho(=1)E30+428 = E3a+28)  Hat+p(—1)EgE3a428 = EgE3a428
(6.5) EotrpB3a128 = EaEp, FE3arpE30128 = EgE3a128

(6.6) (T W) (TaT5)* ) (EST) = (U5 ) (Lo T5)* (B5)°
(6.7) (EaEp)” = EoEs, UCE,Eg=UYE,Es=—EoE5, weW
(6.8) Ho(~1)E} = Hy(—-1)E}

(6.9) U Eg + U Uy Eg = 0.
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Proof. We have s(s'(a)) = s(a+ ) = —a+ (3a+3) = 2a+ . Therefore, we have s'(s(s'(«))) =
s'2a+ B) =2(a+ B) — B =2a+ [ = s(s'(«)). Using a similar argument, it is easy to see that
s(s'(s(B))) = s'(s(3)). These observations prove 6.1 and 6.2.

Now, we will prove 6.3. We have s'(«) = a + 3, and so we have Eg; = > rerx Ho(r)Hp(r).

Then
BB = Y H(0) Y Hal)
tekX rekx
= Z Ho(rt)Hp(r)
rtekX
= ) t,r €k Hy(t)Hg(r)
= E,Ej

In the above assertion, we use the fact that (¢,7) — (rt,r) is an automorphism of £* x k*.
Proof of the other assertion of 6.3 is similar to this proof.
We now prove 6.4.

We have
Ho(—1)E30425 = Z Ho(—t*)Hg(t)
tekx
= > Ha((—)*)Hz((—1)?)
tekx
= E3ai2p

We note that here, we use the fact that ¢ — —t is a bijection of £* onto itself.
Once again using this fact, we have HgEg = Ej3. Therefore, we have

Hoyp(—1)EgE3at2s = (Hp(—1)Ep)(Ha(—1)E3a+28)
= EpE3ay2s
This proves 6.4.
We now prove 6.5. We have

EoipE30128 = Z H,(ts®)Hp (ts?)
(t,5)ERX x kX
= E.Ej

Here, we use the fact that (t,s) — (ts%,¢s?) is an automorphism of the group k* x k*.

Similarly, the other assertion E3,igE3,428 = EgFE3a425 of 6.5 follows from the fact that
(t,s) — (ts,s~1) is an automorphism of k* x k*.

We now prove the assertion 6.6.

We first compute (¥ ¥%)* (U305) Esqq2s.

We have W, U8 = qH,(—1) — E, and s'(a) = a + 3. Therefore, we have (U,¥%)% =
qHaJrﬂ(_l) - Ea+»3' ,

We also have UgWj = qHg(—1) — Ep.

Thus, we get

(00 22))" (LT3 ((B5))") = (qHaws(~1) — Eass)(aHy(~1) — ) Byoins.

Then using 6.4, we have

((‘I’a‘yi))s’(‘I’ﬁ‘l’sﬁ’)(((Eﬁ)s)sl)s = ¢*BEsay28 — qB3Esa 195 — (BoEp + (¢ — 1) EoaEp
= ¢*Esat25 — (B3 E30125 — EoEp.

We now prove that q2E3a+25 —qEgE344125 — EqEpg is s- invariant.
To prove this, we prove each of the summand is s- invariant.
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First, we have s(3a + 23) = —3a + 2(3a + 3) = 3a + 20 and so we have E3 ;5 = E3q105.
Secondly, we have
(EBEM-!—ZB)S = E3a+ﬁE3a+2,6
= FEgFEsq193. (from 6.5)
Thirdly, we have
(EqEg)® = E_qFEs3045
= Z Ha(tfls?’)Hg(s)
(t,5)€kX x kX
= E.E;3.
Here, we use the fact that (,s) — (t7's3,s) is an automorphism of the group k* x k.
Thus, we have proved 6.6.
We now prove 6.7.
First, we prove (E,Eg)" = E,Es for any w € W.
Since the Weyl group of G5 is generated by s and s, it is sufficient to prove that
(EoEp)* = EoEg = (EoEp)* .
For a a proof of the first equality, we have

(BaE3)® = F-oFsais
= ) Ha(t's*)Hg(s)

(t,5)€kX X kX
= Z Ho(t)Ha(s)
(t,5)€kX x kX
= E.Ej.
We note that in this proof, we use the fact that the map (¢,s) — (¢ 153, s) is an automorphism
of k* x k*.
The proof of the second equality follows from the fact that the map (t,s) — (t,ts~1) is an
automorphism of k™ x k*.
We now prove that VY E,FEg = —E,FEg for any w € W..
Since (EqEg)" = EoFEg, we have
VPEWEs = (VoEuEp)”
= (—E.Ep)"” (from (6.5) )
— —E.Es.
We now prove 6.8.
We have

Ha(_l)Egz = Ha(_l)EaJrﬂ
= Ho(=1)( Y Ha(t)Hs(t))

tekx
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We now prove 6.9.
We have s'(a) = ae+ 3, and so we have

VS By = > U(t)Ha(t)Hs(ts)
(t,5)€kX x kX

= Z U(t)Ha(t)Hp(s) = Vo Ep.
(t,5) kX x kX

Here, we use the fact that the map (¢, s) — (¢,ts) is an automorphism of k* x k*.
On the other hand, we have

U, (U Eg) = Uo(—Ep) = —ToEg.
Hence, we have
U B + 0o U5 Eg = (U — Uo)Ej = 0.
Thus, we have proved 6.9. U
Lemma 7. We have LoLgLoLgLoLg = LgLoLgLoLgLy,.

Proof. Set pos = q3LaLgLa, and pg, = q3LgLaL5. Then, one can re-write the braid relation
of the lemma as

( 7'1) PapPpa = PpaPas-

According to Proposition 3, Lemma 6 and 1, we obtain

Pag = (q—1)EaEs+qHo(~1)0a V% ES — RyEoEg+ RyEo ES Ug
~ ~ J/ N ~ 7 N, e’ N — | ——
a b c d
+ RoRp U2 W3 E, + RyRa(ES W5)* Uy + Ry Ry Ro (VS W5)° W,
b 7 M
and
Poa = (q—1)EoEs+qHs(—1)004ES — RgEsE, + RaEgE}T,
~ v - N ~ v
a’ b’ c d'
+RgRa U5V Fg+ RoRg(E5To)" Us+ RgRoR(T50,)* Ug.
v 13 v

We are now going to compare the coefficients of the monomials on R, and Rj obtained in
both sides of equation 7.1. For any word v in a and 3, let X, (resp. Y,) be the coefficient of
R, in the expression of L.H.S (resp. R.H.S) of 7.1.

To prove the Lemma, it is sufficient to prove that X, =Y, for all words v in  and 3.

Computation of X,5,3.3 and Y,g,803.- On the left in the product of 7.1 the monomial
RoRgRoRsR,Rs appears only in the multiplication gg', and then the coefficient X,gq843 0f
this monomnial is ((((¥5¥s)*¥a)*)*)¥ (P5Ta) ¥g).

We have

Xagagas = ((((T))*))¥ () )*)* ((L5)*)* (5)* U5 Wy
= W UH(T5) (U5) U5 Ty (from 6.2)

o
’

= (((T5T0)"Tp))") ") ((T5 Up) Wy). (from 6.2)

This is the coefficient Y,50808 0of RaRgRoRgRoRp on the right of 7.1. Notice that we have
! !
99 =949
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Computation of X343, and Y,ga8,. It is to check that the monomial R,RszR.RzR,
occurs only in the product ge’ on the left of 7.1, and only in the product f’g on the right of 7.1.
Now, the coefficient X,g05q is

Xa,é‘aﬂa = ((‘ygqjﬂ)sqja)S,)s(‘Ij%\IjaEﬂ)
= (B3Wa)" Wp)*)" ) (W5 Wy) W,
= Ya,@a,@‘a-
(notice that from 6.1, (((£5)*)*)*)* = Ep).

Computation of X,g,5 and Y,g,3. On the right of the equation 7.1 the monomial
RoRgR.Rp appears only in the product f'e. We now compute this coefficient.

We have s'(s(s'(s(3)))) = s(8) and so (((Eg)sl)s)' = Ej. Using this observation, we have:

’

Yagag = ((B504)% Wg)%)* (U3 U5E,)

BT (W5 W) (U5 UsE,)
= (E»%Ea)(‘pg‘pﬂ)((‘l’g‘l’,e)s)s, (from above)
= (EpEa)*) (U5 3) (T4 Tp)*)* (since B = E,)
= (~1)'E,Es (from 6.9)

E.E

®

Hence, we have
(7.2) Yopas = EoEjs.

On the other side, the terms on the left of the equation 7.1. that contain the monomial
RoRgRqRg, are the products: cg', ef’, gc', eg’, and gf'.

We now prove that cg’ yields the coefficient E,Ej.

We have

¢g = —RaRsRaRs((EaBs)")")" (T5%a)" U5
= —RoRgRoR3((—1)*En4Es). (from 6.7)
Therefore, the coefficient of Ry RgRRp in the expression of cg’ is
(7.3) —E,Ep.
We now prove that ef’ yields the coefficient E,Eg. We have
ef' = RaRgRaRy((V5UsE.)*)" (E5T,)" g
= RaRgRaRs((EaBp)’)” (W5 05)°)" U5 Uy
= RaRsRoR3(—1)*EnEs. (from 6.7)
Therefore, the coefficient yielded by ef’ is
(7.4) EyEg.
By using 6.7, it is easy to see that gc’ yields the coefficient
(7.5) —(~1)*EoEs = E,Ep.

Now, we compute the coefficient yielded by eg'.
We have

69, = (RaRﬂ\II(SJ:\IIﬂEa)(RﬂRaRﬁ(\I/%\I/a)s’\pﬂ)
= RoRIRRp(((T5U5E,)")*) (U50,)% T
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Now, notice that (U5 ¥3Eq)")*)" (U50,) Wy = (U U5Wa05)* B, W Then using 1.1, we
get
RoR3RoRs3 = Ra(qHz(—1) + RgEg)Ro Ry
= RRs((qHp(—1))*)" + RaRgRaRs((Ep)*)" .

But, we are interested in computing only the coefficient of R,RgR,Rg. From the above
computations, we first compute the E’s (without (¥’s) in coefficient of Ry Rz Ro Rz in the product

eqg’

! !

(Es)")" (((Ea)™))" = (ByEa)*))",
since E;;' = Ej3. We now compute the coefficient together with W’s.
(BsEa)"))s (WaUa )" (05)) 0 = (~1)°EuBs (from 6.7)
= —E.Ep.
Therefore, eg’ yields the coefficient
(7.6) —E,Ep.

By a similar computation, we can see that the coefficient of R,RzR,Rs in the expression of
gf' is equal to

(7.7) (—1)°E,Ep = —E,Ep.
Summing up these five coefficients (from 7.3 to 7.7), we have
(7.8) Xogap = 3BoEs — 2E,Es = EqEj.

From the observations 7.2 and 7.8, we have X505 = Yogas-

Computation of X3, and Y,s,. In the left hand side of 7.1, the products that contain
the monomials RyR3R,, are: ce’, ed’, ee’, ga', gt/ and gd'.

Since E,FEj is occurring in ¢, by using 6.7, it is easy to see that the coefficient of R,RgR, in
the expression of the product ce’ is

(7.9) —(—1)’EqEj = —(q — 1) EoEj.
Since E,Ej is also occurring in a', one can check that the coefficient of R,RgR, in the
expression of ga’ to be equal to
(7.10) (~=1)*(¢ — 1)BaBp = —(q — 1) Eo Ep.
We now compute ed’. We have
ed = RaRpR(V5Us)*(EyEs) Eg¥,
= RoRgR.(—1)’E.E} (from 6.7)
Therefore, ed’ yields the coefficient:

(7.11) —(¢q = 1)EyEj3.
We now compute the coefficient of RyR3R, in the expression of ee'.
We have

e’ = (RaRpV%UsE,)(RgRaThToEp)
— RaRgRa((wg\yﬁEa)s AP
We also have
RoR3Ro = qRoHg(—1)RoEoEg + RoRgRa(Ep)° EoEg.  (from 1.1)

We are interested in computing only the coefficient of RyRzR, in the expression of ee’. We
first compute only the product of E’s (without U’s).
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This coefficient is equal to
((Ea)*)(EsEj) = (EaEp)®)® Es,
since B = Ej.
We now compute the coefficient of R,RzR, (together with the product of ¥’s) in the expres-

sion of ee’.
The coeficient of RyRgR, in the expression of ee is

(U5 T3)° )P UV, (EaEp)® ) Eg = (—1)*E,E; (from 6.7)
= (¢—1)E,Ez.> (from 1)
Hence ee’ yields the coefficient
(7.12) (¢ = 1)EEp.
By a similar computation, one can check that the coeficient of R,RgR, in the expression of
gd' is
(7.13) (¢ = 1)EEp.

We now compute gb'.
It is easy to see that gb' yields the coefficient

(7.14) q(Wo Wp)*Wa WV (Hp(—1)Ey ).

Summing up all these coefficients (using the observations from 7.9 to 7.14): it is easy to see
that the sum of the coefficients coming from ce’, ed’ and ga' is —3(¢ — 1) Eo Eg and that the sum
of the coefficients coming from ee’ and gd' is 2(q — 1) E, Eg.

Therefore, we have

Xopa = —(3(¢ — ) EaEp) +2(q — 1) BaEg + q(Hs(—1) B3 ) (U3 W) Uy U Ty
Thus, we have
(7.15) Xapa = (g~ 1)EaBg + q(Hp(—1)ES (T3 U5) Ta Ul

Now, we will compute Y,5,. The products on the right that contain the monomials R,RgR
are: a'g, Vg, d'f, dg, f'c, and f'f.

Computations are similar to the computations of Xg4.

Since o’ contains E,Es as a factor, by using 6.7, it is easy to see that the coefficient of
RoRgR, in the expression of a’g is

(7.16) (—=1)*(¢ — 1)BaEp = —(q — 1) Eo Ep.

By the same argument, it is easy to see that the coefficient of R,RzR, in the expression of
fleis
(7.17) ~(=1)*(¢ — D)EaEp = —(q — 1)EaEp.

(Here, we use the fact that E,FEjg is a factor of c).
We now compute d'f.
We have

df = RoRsRa((EsE5T,)" ) (ES U5)* T,
= RoRpgR.((EaEp)” )" ((Ej)" ) (V5 ) UiV,.
Therefore, by using 6.7, it is easy to see that the coefficient of R,RgR, in the expression of
df is
(7.18) (—=1)*(¢ — 1)BaBp = —(q — 1) Eo Ep.

By a similar computation in ee’, using 1.1, and 6.7, one can check that the coefficient of
RoRgR, in the expression of f'f is equal to

(7.19) (_1)4(q —1)EqEg = (¢ — 1)EoEp.
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By a similar computation in gd’, using 1.1 and 6.7, one can check that the coefficient of
Ry RgR, in the expression of d'g is equal to
(7.20) (_1)4(q —1)EqEg = (¢ — 1)EoEp.

We now compute the coefficient of RyR3R, in the expression of 0'g.
Using Theorem 1, it is easy to see that the coefficient of R,RgR, in the expression of the
product b'g is:

((gHp(=1) T a5 BY)*)")* (W5 05)° Uq
= qHo(=1)"Hg(=1)*EZ (U5)" (((¥5)°)")* (¥ ¥5) Vg
= qHo(-1)E5 ((25)°)" (((T5)*))° (¥5 Tp)° a.

Then, from 6.8 we obtain that the coefficient of RqRgR,, in the expression of the product ¢'g is

(7.21) gHs(=1)ES ) (W) ((15)°)*)* (05 U5)* T
Summing up these coefficients (using observations 7.16 to 7.21), we have
(7.22) Yaga = —(¢ = VEaEs + qHs(=1)(((T)*)*)*)*((¥5)*)* B (V5 ¥5)° o

To prove X,gq = Yaga, from the observations 7.15 and 7.22, it is sufficient to prove that
(U3)° ((((Lg)*)*)* ) Eq = VYR E .

We now prove this assertion.
By a similar proof of 6.1, it is easy to see that

s(s'(s(5'(8))) = —(3a +28) = s'(s(s'(B)))-

’ !

Hence, we have
() (Ts))* = (((Ts)*)°)°
= ((wv5))”
((¢gHs — Eg)*)®  (from Theorem 1)
= g(Ha(~1)*(Hj(~1))? = (E5)")* (since s's(8) = 3a + 25)
Using this and fact that (Ha(—1))? = (Hg(—1))? = 1, we have

’

((((©p)*)*))*((Up)*)  BS = (qHa(—1)ES — (EjEq)"
= qHg(-1)E} — (E3E,)* (from 6.8))
= qHp(—1)E} — (BsEa)*)" (since B} = Ey)
= qHg(-1)ES — (EoE)®  (from 6.7)
= qHRES — E5Es (since Ej = Ep)
= UsU5ES (from Theorem 1).

Thus, we have proved X,g, = Yoga-

Computation of X, and Y,. We first compute X,. On the left of 7.1, the terms containing
the monomials R, are: (a + b)d', c(a' + V'), ed', de’, e, ee’, and gf’.

Now, we deduce that de’ yields ¢q(¢ — 1)EoEjg. In fact,

de' = (RgE.ESTs)(RsRaV5T,Ep)
s'\s 2\\$ (18 \ S Ty s
= RIR.(E)*((Ea)(s™))" (U5)" W50, Ep)
= R3R.(EY)*Eq(U%)" U50,Es (since (s)? = land B = Ej).
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Now, using 1.1, it is easy to see that de’ yields the coefficient qHﬂ(—l)(Ezl)sEa(\I/%)s'\I/%\I/aEg.
We also have (Efl')sEaE/g = (¢ — 1)E,Eg. Therefore, using Lemma 6 we deduce that de’ yields
the coefficent

(7.23) (=1)*q(q — 1) EaEs = —q(q — 1) Ea .
In the same way, one can check that ee’ yields the same coefficient
(7.24) (—=1)'qlg — 1)EaBps = q(q — 1) EaEp.

Since E,Ejp is a factor of ¢, using 6.7 and the fact that R% = qHg(—1) + RgEp, it is easy to
see that the coefficient of R, in the expression of ec is
(7.25) (—=1)*(a(q = 1) EaEs = —q(q — 1) Ea Ep.

We now compute the coefficient of R, in the expression of cd’. We have

Cd, = (RaEaEﬂ)(RaEﬂEé\Ila)
= R.E.E}ERE3V,
= (qHa(—1) + RoaEo)Ea EFEERY,,.
Therefore, the coefficient of R, in the expression of cd’ is EaEaEEEgEE\I/a, which turns out to
be equal to
(7.26). (—1)2(61 - I)SEaE,@ = (¢ — 1)3EaE,3'
(by using 6.7).

We now compute the coefficient of R, in the expression of ¢(a’ + V).

Since E,FEj3 is a factor of ¢, using 6.7, it is easy to see that the coefficient of R, in the
expression of ca’ yields —(q — 1)2E,. Now, again using 6.7, it is easy to see that the coefficient
of R, in the expression of b’ is (—1)3¢(q — 1)EyEs = —q(q — 1) E, Ej.

Therefore c¢(a’ + b') yields the coefficient
(7.27) ~((¢ =1 +q(q = 1)) EaEs = —(q — 1)(¢* — ¢+ 1) Eo Ep.

We now compute the coefficient of R, in the expression of (a + b)d'.

Since E, Ej is a factor of a, using 6.7, it is easy to see that —(q — 1)®E,Ej is the coefficient
of R, in the expression of ad’.

On the other hand, we have

bd = (qHo(—1)TaV%E5)(RaEsESY,)
= qRaHa(—l)‘Ifa‘IfiEgEgEg\Ifa (since s2 = land Hy(—1)® = Ho(—1))
= qlq - I)RaHa(—l)\I/a\IIZE,@EE\Ila.
Thus, (a + b)d' yields

(7.28) (¢ = 1)’BaBps + q(q = ) Ho(~1)Wo U5 EsE5V .
We now compute the coefficient of R, in the expression of ¢gf’. We have
gf' = (RaRgRa(T5Us)"To)(RaRs(E§T,)" Up)

= RaRgRoRs(V5 W) (5)" (EjVa)” V.
Using R2 = qH,(—1) + Ry E,, we get
9" = aRaRFHo(—1)" (U5 05)" (V3)* (B5¥a)” Vs + RoRgRaRs S (L5 V)" U3 (E5Ta)* U,
Now, using R% = qHpg(—1) + RgEjg, and using the fact that
Hp(=1)(Ha(-1))" = Ho(~1)Hp(~1)* = Ha(~1),
one can see that the coefficient of R, in the expression of gf’ is

(7.29) GPHo(—1) T U5 (12)% (B5T,)% Tg
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Therefore, using the observations from 7.23 to 7.29, we have
( 7.30)

Xo = —(a=1)(¢ +1V)BaBp + (g = ) Ha(-1)Va Vo Es B3 Vo
+q* Hy(—1) Ho(=1)" 0o W5 (02)" (B Ta)” U,

We now compute Y,. On the right of 7.1, the terms having the monomials R, are: (a’' +b')c,
d'(a+b), de, ¢f, f'd, f'f, and ¢'g.

Since E, Ej is a factor of ¢, using 6.7 and the facts that E2 = (¢ — 1) E,, E% = (¢q—1)Eg, it
is easy to see that the coefficient of R, in the expression of a’c is —(q — 1)>E,Eg. Again, since
E,Eg is a factor of ¢, using 6.7 and the facts that E2 = (¢ — 1)E,, Hz(—1)Ez = Ep, it is easy
to see that the coefficient of R, in the expression of b'c is

(=1)%q(¢ = V) EaEs = —(a(q — 1)) Ea Ep.

Thus, the coefficient of R, in the expression of (a’ + b')c is
(7.31) ~((¢=1)°+q(a = 1)EaBs = —(a—1)(¢* — ¢+ 1) Eo Ep.

We now compute the coefficient of R, in the expression of d'(a+b). Since E,Ej is a factor of
a using 6.7 and the fact that F2 = (¢ — 1)Eg, it is easy to check that the coefficient of R, in the
expression of d'a is —(q — 1)3EaEg. Also, it is clear that the coefficient of R, in the expression

of d'b is
(BsE5W0)(¢Ha(—1) 0o U8 E5) = qlq — 1) Ha(—1) U0 U, U5, B4 E5,

Thus, the coefficient of R, in the expression of d'(a + b) is
(7.32) (g = 1*FaBy + (g — D) Ha(—1)(Wa) 20 By (F5)%

We now compute the coefficient of R, in the expression of d'c. We have

dc = (RaEgE}V,)(RaElEp)
= RLESE3V,E.Ej.

Using R2 = qH,(—1) + RyE, and 6.7, it is easy to see that the coefficient of R, in the

expression of d'c is

(7.33) EoE}EgVE,Eg = (¢ — 1)°E,Ep.
Let us compute the coefficient the yields f'd. We have
fld = (RaRg(Ej¥a)* V) (RgEoEL Ug)
= RoRAE5T, U E B Vg
Therefore from 1.1, we get
fld = qRoHg(—1)E§U oV B, ES U + RaRgEsE5T o U5 Eo B W,
We have E} = E, and so we have
Hg(-1)E E; = Hg(—1)(EaEp)®
= FE.(Hg(—1)Eg) (from 6.7)
= FE.E3 (since Hg(—1)Ez = Ep).
Therefore, E,Ej is a factor of the coefficient of R,, in the expression of f’d and hence using 6.7
and the fact that E% = (¢ — 1)Eg, it is easy to see that the coefficient of R, in the expression
of f'd is
(7.34) (—=1)*(9(qa = 1)) Ea Es = —q(q — 1) E4 Ep.
Since E,Ep is a factor of ¢, using 6.7, 1.1 and the fact that E2 = (¢ — 1)E,, it is easy to see
that the coefficient of R, in the expression of ¢'f is

(7.35) (—1)%q(q = VE.Es = —(q(q — 1)) Eo Ep.
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We now compute the coefficient of R, in the expression of the product f'f. We have
f'f = (RaRg(E5¥a)" Ug)(RsRa(ES U5)°Ty)
= RoR3R.(E5T, T4 ES Us)° T,
= qR2H(—1)*Es(Ua U4 ES Ug) Uy + RoRgRoESEs (VT4 ES Ug)° .
Thus, from 1.1 we deduce that f’f yields the coefficient
GEo(Hg(—1)E§ U4 ES U5)* U = —qEo Eg(Hp(— 1)U Ty ES Ug)°.
Using 6.7, we deduce that f'f yields
(7.36) (—1)%alg = 1)EoBs = q(q — 1) Ea .
We now compute the coefficient of R, in the expression of ¢’g. We have
g = (RgRaU4TaEpg)(RaRsRa(T5U5) T,)
= RgR2RsRa(((T5TaEp)®)*)* (T8 Ts)* U,
Using twice the relation 1.1 we deduce that €'g yields the coefficient
¢*(Hs(=1)(Ho)* )* (W5 0aBs)*)")* (U5 ¥5)* Vo,
which can be written by
(7.37) ¢*Ha(=1)(T) 5)" (Ta¥2)*)* (B5)") V.
(Here, we use (Hj(—1)(Ha(=1))*)* = (Hp(=1))*(Ha(-1))* = Ha(=1)* = Ha(-1)).
Therefore, using the observations from 7.31 to 7.37, we conclude that
Yo = —qlg—1)°+qlqg—1)Ho(-1) VoW,V ESEj
+ P H(=1)(Ha(=1))* (T Up)* (0 ¥3)* (E5)") Va
= X, (from 7.30).

Computation of X,3 and Y,3. The products on the left of equation 7.1 involving the
monomial R, Rg are: (a+b)f’, cc, cf', e(a’ + V'), ec, eg', dg', gd’, and gf'.

We now compute the coefficient of R,Rgs in the expression of af’.

Since E,FEj is a factor of a, using 6.7, and the fact that F2 = (q— 1)Eg, it is easy to see that
the coefficient of R,Rgs in the expression of af’ is

(7.38) (=1)*(¢ = 1)*EaBp = (¢ — 1)*Eo Ep.
We now compute bf’. We have
bf' = qHo(-1)U,USESRRs(E§T,)" Ug
= RoRs((qHa(—1)%)" (0, 05)% (E5ES)* U5 T5 (from 1.3).
Therefore, using the fact that (Ha(—l)s)s'Eg = —H,(—1)Ej and the fact that U3 E5 = —Fp,
it is easy to see that the coefficient of R,Rgs in the expression of bf’ is

(7.39) ~q(Ha(~1)(Wa03)" By(15)° W

(07

We now compute cc'.
Since EoEj is a factor of ¢, using 6.7 and the facts that E2 = (¢ — 1)E, and E[% = (¢—1)Es,
it is easy to see that the coefficient of R, Rg in the expression of ¢c’ is

( 7.40) (=1)*(¢ = 1)*EaBp = (¢ — 1)*Eo Ep.

We now compute cf’.
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We have

cf' = —RoEo,EgRoRg(ES0,)" g
= —R2R3E.Es(E5¥,)* (from 1.3)
= (¢Ho(~1) + RoEo)RsEoEs(E§T,)* Ug.  (from 1.1)

But, we are interested only in the coefficient of R,Rg, which is equal to

—EBS B E3(B50,)* U5 = (—1)*EoEs(EoE5)*  (from 6.7)

= ((-1)*(E2EE})* (from 6.7)
—((g - 1)(EaEgE§)s’ (since B2 = (¢ — 1)Ey)
= —(¢—1)((EE3)*)* (from 6.7)
—(q—1)*((EaEp)")" (since B = (g — 1)Ejp)
= —(¢—1)’EyEs (from 6.7).

Therefore, the coefficient of R, Rg in the expression of ¢f’ is

(7.41)

—(q—1)?EoEp.

We now compute ec’.

We have

ecl = —RaR%(\I/Z:\I/ﬁEa)s,EaE,@
= Ra(qHg(—1) + RsE3) (V3 PsigE,)* EqEs  (from 1 .1)

But, we are interested only in the coefficient of R,Rg, which is equal to

(Vo U3)ES B B3 = (—1E.E}ES  (from 6.7)
—(¢— 1)E,EgES  (since B3 = (q — 1)Eg)
= —(¢—1)(E2Ep)® (from 6.7)
—(g—1)*(EaEp)"  (since E} = (¢ — 1)E,)
= —(q—1)?EaEz > (from 6.7).

Therefore, the coefficient of R,Rg in the expression of ec’ is

(7.42)

—(¢—1)%E,E;.

We now compute eg’.

We have

!
eqg =

RoRy(V5 UsE RyRaRy(V50,)" U
RoRGRaRs(((V5, YsEa)®))  WUs g
R2Rs((¢Hp(—1) + RsEp)*)* (T4 UsE,)*)*)  T5TS Ty (from 1.1 and 1.3).

Using Ri = qHy(—1) + Ry E,, it is easy to see that the coefficient of R, Rg in the expression

of eq’ is

E3 ((aHp(=1))°)" (U5 UsEa)*)*) U505 Tg.

Here, we first consider the term ES ((E)%)*. This can be written as

! ’

(Ba((Ba)*)*)* = ((BaB)*)* (since B = Eo)

= ((BaEp)")*
— E.Es
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Now, from the above two observations, using 6.7, it is easy to see that the coefficient of R, Rg
in the expression of eq’ is
(7.43) (—1)5anEg = —qE.Ep.

We now compute ea’.
We have

ed’ = RuoRg((q—1)03VsE2E,
RoRp(q—1)(—1)’EoEs  (from 6.7)
= (¢—1)%E,E; (sinceE2 = (¢ —1)E,)

Therefore, the coefficient of R,Rg in the expression of ea’ is
(17.44) (¢ —1)*E,Ej.

We now compute the coefficient of R, Rp in the expression of eb’. Using the fact that EaEg’ =
E,Eg, we have

et = RaRgqHs(—1)V5(Ta¥p)" EaBp
RoRpqHy(—1)(—1)*E,Es  (from 6.7)
= R.R3qE.Eg (since Hg(—1)Egz = Ep)
Therefore, the coefficient of R,Rg in the expression of eb’ is
(7.45) ¢EoEj.

We now compute dg'.
We have

dg = RgE.E]UsR3R.Rs(T50,)" g
= RiRaRs((EaBY Vp)")")" (W5¥a)" Ug
= RaRs((aH3(~1) + R3Es)")" (BaBs5)"))" (W300)" W5 (from 1.1, 1.3)
—  RuRs((qHs(~1) + RsE3)")" (<1)' BBy (from 6.7)
Therefore, the coefficient of R,Rg in the expression of dg’ is
(7.46) qE.Ep.

Here, we use the fact that Hg(—1)Ez = Eg.
We now compute R, Rz in the expression of gd'.
We have

gd = RoRgR. (V5 U5)*UaRaEsEST,
= RaRgR2(U W) W30, EsES,.

Using the quadratic relation R2 = qH,(—1) + RoE, and the fact that s> = 1, it is easy to
see that the coefficient of R,Rg in the expression of gd' is

(7.47) GHo(—1) (0o U508 W) By B,

We now compute the coefficient of R,Rs in the expression of gf’.
We have

9f' RaRsR2 R0, T (Vo U5)* UsES.
Using R?2 = qHy(—1) + Ry E, and R% = qHg(—1)+ Rz Eg and the fact that H,(—1)¥ U3E =
—H,(—1)Ejg, it is easy to see that the coefficient of R,Rg in the expression of gf’ is

( 7.48) —qHo(—1) 0o (T 08)* Ty B ES,.
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Using the observations 7.39, 7.48, and the observation 6.9 (of Lemma 6), it is easy to see that

the sum of coefficients yielded by bf’ and ¢f’ is equal to

—qHo(—1)(0aT8)* B4 (V5 Eg + 0o U5 Eg) = 0.

Therefore, summing up all the other coefficients (using the observations from 7.38 to 7.48),

we have

(7.49) Xop = (¢° — ¢+ 1) Ea B + qHo(—1) 0o U4 T8 U By 5.

We now compute the coefficient of R,Rg in the expression of pgapas-
In the product pgapag, the terms involving Ry Rp are d'e, b'e, d'd, d'e, f'a, f'b and f'd.

We now compute d’e.
Since E,Eg is a factor of ', using 6.7, and the fact that E2 =
that the coefficient of R, Rg in the expression of de is

(7.50) (—=1)%(g — 1)*EaEj.

We now compute b'e.
We have

Ve = qHg(—1)UsT5ES R, Rﬂ\lﬁ’\yﬂE
= RaRpq((Hs(~1)T575)")" ((£2)*)" U2 ¥sE,
= R.Raq(
= RoRy(—1)'q((EaEsHg(—1))*)*  (from 6.7)
= RaRpq((EaEp)*)" (since Hy(—1)Eg = Ep)
= R.R3qE.Eg (from 6.7))

Here, we use the fact that

’ !

Eo((ES))Y = Eao((Ea)®)® (from 6.1)

«

(¢ — 1)E,, it is easy to see

(from 1.3)

K
(Hs(~1)¥50%)*)* (Eq Eg)\l/s Wg  (from 6.1 and 6.3)
1))*

= (ELEY)* (since BS = E,)
= FE,E3 (from 6.3 and 6.7).

Therefore, the coefficient of R,Rg in the expression of Ve is
( 7'51) anEﬂ.

We now compute d'd.
We have

dd = RoEsE5U.RsE.ES T
= RoRs(EgE,Y,)" B ES Vg
= RoRs(EsE}V,)* E,Es¥s (from 6.3)
= RaR3(—1)*(q—1)°’EsEs (from 6.7 and Ej} =
Therefore, the coefficient of R,Rg in the expression of d'd is
(7.52) (¢ —1)*E,Ej.

We now compute the coefficient of RyRs in the expression of d’e.

We have
de = RoEgE}U R R5V:VsE,
= R2Ry((EsEjU,)*)* U UsE, (from 1.3)

= (qHa(—1) + RaEa)Rﬂ((Eﬂquza)S)S’quj UsE,

(¢ — 1)*EqEp)

(from 1.1)
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But, we are interested in computing only the coefficient of R,Rg, which is equal to
(E% Eo)(BsE5W,)°)* U505 = (—1)%(q — 1)*EqEs  (from 6.3 and 6.7).
Therefore, the coefficient of RyR3 in the expression of d’e is
(7.53) —(¢—1)%E,E;s.

We now compute f'a.
We have

fla = RoRg(E{¥,)" Us(q—1)(EaEp)
= RoRg(—1)%(q¢ — 1)*((EoE3)*)*  (from 6.7)
= RoRs(q—1)’E Eg (since Ej = (q— 1)Ep)
Therefore, the coefficient of R,Rg in the expression of f’a is
(7.54) (¢ —1)*E,Ejs.

We now compute f’b.
A straightforward computation shows that the coefficient of R,Rg in the expression of f'b is

( 7.55) Q(E50,)* UgHo (—1) U0 TS ES.

We now compute the coefficient of R,R3 in the expression of f'd.
We have

fld = RaRs(E5%a)* UsRs(EaE) Vs
= R.R3((E§T.)" Ug)* (BEoES)Ts (from 1.3)
= Ra(qHa(—=1) + Ry Ep)((E5Va)" ¥p)" (Ea B} ) V.
But, we are interested in computing only the coefficient of R,Rg, which is equal to
Es((E5T,)  Ug)* (B EL )T = (—1)°((BEoE3)*)ES (from 6.7 and (s')? = 1)
~(¢— 1)(EaEp)*E;  (since B3 = (q — 1)Ep)
= —(¢—1)(BaEsE,)® (from 6.7)
= —(¢—1)*(EaEp)" (since B2 = (¢ — 1)E,)
= —(¢—1)’E,Es (from 6.7).

Therefore, the coefficient of R, Rg in the expression of f'd is

(7.56) —(¢—1)%E,E;.
Summing up these coefficients (using the observations from 7.50 to 7.56), we have
(7.57) Yos = (¢° — ¢+ D EaBy + qHa(~1) Lo LoV Vs B (E5)°

We have ES = E3,, 5 and (E;)S’ = E30425-
Using a similar proof 6.5, it is easy to see that

( 7.58) Eg(Eg)° EgE3atp = Esatplsatas = EE((EB)S)S,-

Using the observations, 7.49, 7.57 and 7.58, it is easy to see that X,5 = Y,3.

We now prove that

X, = Y.

The terms yielding the constant coefficients in the expression of p,spge are aa’, ab/, ba', bb',
cd', dd, ee’ and ff'.

The terms yielding the constant coefficients in the expression of pgapag are a’a, a'b, b'a, b'b,
dd, dc, e'e and f'f.
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It is easy to see that these terms yield the following coefficients.

ad’ = da=(q— 1)4EaEg
ab’ Va=q(qg—1)E,Es
b = d'b=gq(q—1)E,Es
0 = Vb= ¢ Has(—1)WaVs(¥aEp)* (VsEq)"

cd = dc=q(q—1)*E.Es
dd = dd=q(qg—1)*E.Es
e = f'f =" Hg(—1) Ha(~1) 0o U5 (Ts05)* (ES ) Ey
ff = de=qHo(—1)" Hy(~1)Us05 (U, 05)* (E)* Eo.

Hence, we have
Xo =Y.

Since the computations of X3, X34, Xgag, Xgagar Xgagas are similar to the computations
of Xo, Xog, Xagas Xagass Xagasa respectively and the same is true for the Y’s, we will only
quote the coefficients.

We first quote the terms involving Rg in the expression of p,gpg. and the terms involving
Rg in the expression of pgapags-

The terms involving Rj in the expression of pagpga are ac', bd, cf', da', dV, dc', eg’ fd' and
fr

On the other hand, the terms involving Rg in the expression of pgapag are a'd, b'd, c'a, ¢'b,
dd, de, c, e'eand ¢ f.

The coefficients yielded by these are as follows:

ad = da=—(q—1)?E,Es
b = db=—(ql¢—1))EaFp

cf = ed =—(q—1)E,Ep
dd = dd=—(q—1)*E,Es
d = bd=—(qlqg—1))EyEs

dd = dd=(q—1)?E.Es
ef = of = PHy(=1)(TaT3)* (Tp05)°) Ts(EL)"
fd = de=—(q—1)E.E;s
ff' = de=qlg—1)E.Ep.

We note that here, we write the only coefficients (not with the monomials).
Therefore, we have

X5 =Yp

We now do the same for RgR,.

The terms involving RgR, in the expression of p,gpsa are (a +b)e’, dd', de’, f(a' + b') and
fd.

On the other hand, the terms involving RgR, in the expression of pgopes are a'f, b'f, cc,
df,dg, ea,eb, ec, eg, gdand ¢'f.



The coefficient yielded by these are as follows:

/
ae

be'
dd'
de’
fd
fo
fd
d'g
g'd

Hence, we have

ea=(q—1)?EyEps
¢'b=q(EsEj — (¢ — 1)EqEp)
de=(q— 1)2EaEg

df =—(alqg—1)EEps
df=(q—1)°EuBps

blf = anEﬁ

de=—(q— 1)2EaEg

—(€'g) = q(Ha (1) )*((U5)" ) (T3 0p)*) Vo E(E5)"

_(g,f) = EaEﬂ-

(We note that we write only the coefficients)

We now do the same for Rg,g.

The terms involving RgR,Rs in the expression of ag’, bg', df’, dg’, f¢' and ff'.

Xga = Y3a.
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On the other hand, terms involving RgR, Rg in the expression of pg.pas are e, €'d, e, ¢'a,

g'b, ¢'d.

The coefficients yielded by these are as follows:

Hence, we have

ga=—(q—1)E,Ep

g'b = qHo (1) (T50,)* U0, U5 E}

gd=(q-1)EaEp
e'd=—(q—1)E,Ez
de=—(q—1)E,Ej3
e'e =(q—1)E.E;.

Xgap = Ygag-

We now do the same for RgR,RgR,.

The terms involving RgR,R3R, in the expression of p,spg, is fe' only.
On the otherhand, the terms involving RgR.RgR, are c'g, €' f, €'g, ¢'c and ¢'f.

The coefficients yielded by these are as follows:

Hence, we have

fe' = e'f = E,Ej3,
c'g = —e'g = FE,E;,
ge = —4'f=EdBs

Xﬁaﬁa = Y,Ba,@‘a-

We now do the same for RgR,RgR.Rg.

The only term involving RgR.RzR,Rs in the expression of pys is fg'.

On the otherhand, the only term involving RgR,RgR.Rp is ¢'e.
The coeflicients yielded by these are

fq

e = Wali((Vg)*) (¥

’

o)

!

W E,.

o
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