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1. Introduction

Let G be a simple Chevalley group de�ned over Fq . In this manuscript, we prove a theorem
on a new presentation for the algebra of endomorphisms Yn(q) associated to the induced repre-
sentation of the trivial representaion of U up to G, where U is a maximal unipotent subgroup
of G. In [6], this theorem was proved for the case when the Cartan matrix of G is symmetric,
that is when G is of type Al, Dl, E6, E7 or E8. In this manuscript, we prove the theorem for
the other simple Chevalley groups also. More precisely, we prove the nonstandard presentation
theorem for the simple Chevalley groups of type Bl, Cl, F4 and G2.
In [7], T. Yokonuma has given a description (presentation) of this algebra Yn(q) in terms of

the standard generators, that is, in terms of generators given by the double cosets (see 11.30[3]).
So, we call the algebra Yn(q), the Yokonuma-Hecke algebra. The presentation of Yokonuma is
analogous to the classical presentation of the Iwahori-Hecke algebra (see [5]).
In Theorem 2.18[6], the �rst author of this article has proved that this algebra Yn(q) has

a presentation with non standard generators for the simple Chevalley groups G whose Cartan
matrix is symmetric. This presentation uses non-standard generators de�ned by a pre-�xed
non-trivial additive character of Fq , and a certain non-trivial linear combination involving the
standard basis of Yn(q) (see De�nition 1). Originally, these generators were de�ned in a geo-
metrical way for the group GLn(Fq ), that is, like Fourier Transforms on the space of functions
of 
ags vectors on F

n
q . As an application of our main theorem, we recall that abstracting the

presentation in the case when G is of type Al, it is posible to de�ne a certain �nite dimensional
algebra, involving braids and ties, which give new matrix representation for the Artin group of
type A, see [1] . It is a natural question to study the representation for the Artin groups of
types Bl, Cl, F4 and G2 that arising from our theorem.
The aim of this note is to prove that the above mentioned non standard generators give a

presentation for the algebra Yn(q) for the simple Chevalley groups of type Bl, Cl, F4 and G2.
For more precise statement, see Theorem 2.
The layout of this manuscript is as follows:
Section 2 consists of preliminaries and statement of the main Theorem (for a more precise

statement, see Theorem 2.) Section 3 consists of the proof for the case when G is of type Bl, Cl

or F4. Section 4 consists of the proof for the case when G is of type G2.

2. Preliminares and statement of the main result

2.1. Let k denote a �nite �eld with q elements. Let G be a simple simply connected Chevalley
group de�ned over k. Let T be a \maximally split" torus of G. Let B be a Borel subgroup of
G containing T . Let U be the unipotent radical of B. We will denote the rank of G by l.
We denote the set of all roots with respect to T by �.
Let � be the set of all simple roots with respect to T and B. Let N be the normaliser of T

in G and let W = N=T be the Weyl group of G with S = fs� : � 2 �g being the set of simple
re
ections. The pair (W;S) is a Coxeter system and we have the presentation:

W = hs� : (s�s�)
m�� = 1; �; � 2 �i;

where m�� denote the order of s�s�.
Let � be the canonical homomorphism from N onto W . Using �, we have an action of the

Weyl group W on T : (w; t) 7! w(t) := !t!�1, where ! 2 N is such that �(!) = w.
We recall that for any root � 2 �, there is an !� 2 N such that �(!�) = s� and there is a

homomorphism �� : SL2 �! G such that

!� = ��

�
0 1
�1 0

�
; h�(r) = ��

�
r 0
0 r�1

�
; (r 2 k�):

2.2. Let Yn(q) be the algebra of endomorphism of the induced (permutation) representation
IndGU1, over the �eld of complex numbers. We call the algebra Yn(q) as the Yokonuma-Hecke
algebra.
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From the Bruhat decomposition, G =
`

n2N UnU , we have that the standard basis of the
Yokonuma-Hecke algebra is parametrised by N . Let fRn jn 2 Ng be the standard basis.
If n = !�, we denote Rn by R�.
If n = t 2 T , we call the elements Rt in Yn(q) operators of homothety corresponding to t. In

the case t = h�(r), we denote Rt by H�(r). With these notations, we de�ne E� by

E� :=
X
r2k�

H�(r) (� 2 �):

It is clear that the E�'s commute among themselves, and a direct computation shows that

E2
� = (q � 1)E�:(1)

Now, we recall a Theorem due to T. Yokonuma.

Theorem 1. (See [7]) The Yokonuma-Hecke algebra Yn(q) is generated, as an algebra, by
R� (� 2 �), and the homotheties Rt (t 2 T ). Moreover, these generators with the relations
below de�ne a presentation for Yn(q).

( 1:1) R2
� = qH�(�1) +R�E� (quadratic relation)

( 1:2) R�R�R�R� � � �| {z }
m��

= R�R�R�R� � � �| {z }
m��

(braid relation)

( 1:3) RtR� = R�Rt0 ; where t0 = !�t!
�1
� (t 2 T )

( 1:4) RuRv = Ruv (u; v 2 T ):

2.3. In the following, we �x a non-trivial additive character  of (k;+). For any � in �, we
de�ne 	� as the following linear combination of elements in Yn(q),

	� :=
X
r2k�

 (r)H�(r):

From a direct computation, we have that 	� commutes with E�, and

	�E� = �E�:(2)

De�nition 1. Let � 2 	. We de�ne the element L�, as

L� := q�1 (E� +R�	�) :

Our main goal is to prove the following Theorem.

Theorem 2. The Yokonuma-Hecke algebra Yn(q) is generated (as an algebra), by L� (� 2 �),
and the homotheties Rt (t 2 T ). Moreover, these generators with the relations below de�ne a
presentation for Yn(q).

( 2:1) L2
� = 1� q�1 (E� � L�E�) (quadratic relation)

( 2:2) L�L�L�L� � � �| {z }
m��

= L�L�L�L� � � �| {z }
m��

(braid relation)

( 2:3) RtL� = L�Rt0 ; where t0 = !�t!
�1
� (t 2 T )

( 2:4) RuRv = Ruv (u; v 2 T ):

To prove this Theorem, we introduce some notations and one useful Proposition. We denote
by Ew

� the e�ect of w on E� arising from the action of the Weyl group W on T . That is,

Ew
� =

X
r2k�

H
(r) (� 2 �; w 2W );

where 
 is the root de�ned by w(�) = 
.
In the similar way, we denote by 	w

� the e�ect of w on 	�.
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Proposition 3. Let s be the re
ection corresponding to �, and let � 2 �. We have

( 3:1) E�R� = R�E
s
�; 	�R� = R�	

s
�

( 3:2) Es
� = E�

( 3:3) E�	
s
� = �E� = E�	�

( 3:4) 	�	
s
� = 	s

�	� = qH�(�1)�E�:

Proof. The proof of the assertions in 3.1 is an inmediate consequence of Yokonuma's Theorem,
part 1.3 and the proofs of 3.2, 3.3 and 3.4 are straightforward computations.

2.4. We are now going to sketch the proof of Theorem 2 for the simple Chevalley groups of
type Bl, Cl, F4 and G2. The only statement of Theorem 2 that involves the Dynkin diagram of
the group is the statement about the braid relation, that is 2.2. Since Theorem 2 was proved
for the cases of type Al, Dl, E6, E7 and E8 in [6], to prove the Theorem, we need to prove
only 2.2 for the cases when G is of type Bl, Cl, F4 and G2. In Section 2, we prove 2.2 for the
case when G is of type Bl, Cl and F4. In Section 3, we prove 3.2 for the case when G is of type
G2. The method of proof involves the one parameter subgroups H�(t); t 2 k

�; � 2 �, and some
automorphisms of the two dimensional torus k� � k�.

3. Cases Bl, Cl and F4

3.1. Let � = f�1; : : : ; �l�1; �lg denote the set of all simple roots of type Bl. So, the Dynkin
diagram is as follows:

�1 �2 � �
Bl: d d q q q d d>

where � = �l�1 and � = �l. Let s (respectively s
0) be the re
ection corresponding to the root

� (respectively �).
Notice that the simple roots �1, : : : , �l�1 of Bl turn to the set of simple roots of Al�1 and

so from Theorem 2.12[6], we deduce:

L�iL�j = L�jL�i if ji� jj > 1

L�iL�jL�i = L�jL�iL�j if ji� jj = 1:

Therefore, to prove Theorem 2, we need to prove only the relation L�L�L�L� = L�L�L�L�.
In the proof of this braid relation, we will use the following lemma. The same proof holds for
the cases: Cl and F4. ( The only di�erence is � = �l, � = �l�1 in the case of Cl and � = �2,
� = �3 in the case of F4).

Lemma 4. We have

( 4:1) Es0

�E� = Es
�E� = E�E�

( 4:2) (Es0

� )
s = Es0

� ; (Es
�)

s0 = Es
�

( 4:3) Es
�E

s0

� = E�E�

( 4:4) ((Es0

� )
s)s

0

= E�; ((Es
�)

s0)s = E�

( 4:5) (	s0

� )
s = 	s0

� ; (	s
�)

s0 = 	s
�

( 4:6) (H�(�1))
s0 = H�(�1); (H�(�1))

s = H�(�1)H�(�1):
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Proof. We now prove 4.1. We have s0(�) = �+2� and so we have Es0

� = E�+2�. Hence, we have

Es0

�E� =
X
t2k�

H�+2�(t)
X
r2k�

H�(r)

=
X

(t;r)2k��k�

H�(t)H�(t
2 � r)

=
X

(t;r)2k��k�

H�(t)H�(r) = E�E� ;

since the map (t; r) 7! (t; t2 �r) is an automorphism of k��k�. This proves that Es0

�E� = E�E� .
The equalityEs

�E� = E�E� follows from the fact that s(�) = �+� and the map (t; r) 7! (tr; r)

is an automorphism of k� � k�.
We now prove 4.2. We have s(s0(�)) = s(� + 2�) = �� + 2(� + �) = � + 2� = s0(�). This

proves that (Es0

� )
s = Es0

� .

Proof of (Es
�)

s0 = Es
� follows from the fact:

s0(s(�)) = s0(�+ �) = (� + 2�) � � = �+ � = s(�):

Proof of 4.3 follows from the facts that s(�) = � + �, s0(�) = � + 2� and the map (t; r) 7!
(tr; tr2) is an automorphism of k� � k�.
Proof of 4.4 follows from the facts that

s0(s(s0(�))) = s0(s(�+ 2�)) = s0(�+ 2�) = (�+ 2�)� 2� = �

and
s(s0(s(�))) = s(s0(�+ �)) = s(�+ �) = ��+ �+ � = �:

Proof of 4.5 is similar to the proof of 4.2. We note here that 	 does not play an important
role in this situation.
We now prove 4.6. We have s0(�) = �+ 2� and hence, we have

(H�(�1))
s0 = H�(�1)(H�(�1))

2 = H�(�1)H�((�1)
2) = H�(�1):

Since s(�) = �+ �, we have (H�)(�1)
s = H�(�1)H�(�1).

We now prove the following Lemma which will complete the proof of Theorem 2 for the cases
when G is of type Bl, Cl and F4.

Lemma 5. L�L�L�L� = L�L�L�L�.

Proof. First, we compute the products:
p�� := q2L�L�, and p�� := q2L�L�.
From the de�nition of L� and L�, we have

p�� = (E� +R�	�)(E� +R�	�)

= E�E� +E�R�	� +R�	�E� +R�	�R�	�

= E�E�| {z }
a

+R�E
s0

�	�| {z }
b

+R�	�E�| {z }
c

+R�R�	
s0

�	�| {z }
d

:

Notice that b (respectively d) is obtained from E�R�	� (respectively R�	�R�	�) using propo-
sition 3.
Now, we compute p2��:

p2�� = a2 + b2 + c2 + d2 + ab+ ac+ ad+ ba+ bc+ bd+ ca+ cb+ cd+ da+ db+ dc:

In the same way, we obtain an analogous expression for p2��, but in the symbols a0, b0, c0 and

d0.
The proof of this Lemma is as follows. In the expression of p2�� and p2��, we �rst bring the

monomials 1, R�, R� , R�R�, R�R�, R�R�R�, R�R�R�, and R�R�R�R� = R�R�R�R� to the
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left. After this procedure, we will check that the coe�cients of these monomials in p2�� with the

corresponding coe�cients in p2�� are the same. Then, the lemma follows.
Let X0, X�, X� , X�� , X��, X���, X��� and X���� be the coe�cient of 1, R�, R�, R�R� ,

R�R�, R�R�R�, R�R�R� and R�R�R�R�, respectively in p2�� . Let Y0, Y�, Y�, Y��, Y��,
Y���, Y��� and Y���� be the coe�cient of 1, R�, R�, R�R�, R�R�, R�R�R�, R�R�R� and
R�R�R�R� respectively in p2��.

We need to prove that X
 = Y
 for all 
 (words in � and �) as above. To do this, we will
compute X
 and Y
 using essentially the Lemma 4. Now, as the computations are all very
similar, we are going to compute only X0, X���, Y���, X�, Y�, X�� , Y�� , X���� and Y���� .
Computation of X0 and Y0. It is easy to see that the terms contributing to the constant

coe�cient in the expression of p2�� (resp. in p2�� ) are only a2, b2 and c2 (resp. (a0)2, (b0)2 and

(c0)2).
We have a2 = (E�E�)

2 = (E�E�)
2 = (a0)2.

We now compute b2.
We have

b2 = R�E
s0

�	�R�E
s0

�	� = R2
�((E

s0

�	�)
s0Es0

�	�

From the observation 1.1 of Theorem 1, we have R2
� = qH�(�1) +R�E�.

Thus, the constant coe�cient yielded by b2 is qH�(�1)(E
s0

�	�)
s0Es0

�	�.
By a similar computation, it is easy to see that (c0)2 yields the same constant coe�cient as

that yielded by b2.
A similar proof shows that the constant coe�icient yielded by c2 and that yielded by (b0)2

are the same and both are equal to qH�(�1)(E
s
�	�)

sEs
�	�.

Thus, we have X0 = Y0.
Computation of X��� and Y���. It is clear that the terms having R�R�R� in p�� (re-

spectively p��) is only dc (respectively b
0d0). We have dc = b0d0. Namely,

b0d0 = (R�E
s
�	�)(R�R�	

s
�	�)

= R�R�R�((E
s
�)

s0)s(	s0

� )
s	s

�	�

= R�R�R�E�(	
s0

� )
s	s

�	� (from 4.4)

= R�R�R�(	
s0

� )
s	s

�	�E�

= (R�R�	
s0

�	�)(R�	�E�)

= dc:

Computation of X� and Y�. The terms having R� in p2�� are: c2, ac, ca, and db. We now

compute c2. We have

c2 = (R�	�E�)(R�	�E�)

= R2
�	

s
�E

s
�	�E� (from proposition 3)

= (qH�(�1) +R�E�)	
s
�E

s
�	�E� (from 1.1):

Hence, c2 yields the coe�cient E�	
s
�E

s
�	�E� . Now, using proposition 3 and lemma 4, we get

E�	
s
�E

s
�	�E� = �E�E

s
�	�E� (from 3.3)

= �E�E�	�E� (from > 4.1)

= �E�(E�	�)E�

= E�E�E� (from 3.3)

= (q � 1)E�E� (from 1):
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On the other hand, using Proposition 3, we get

ac = (E�E�)(R�	�E�) = R�E
s
�E

s
�	�E�;

and

ca = R�	�E�E�E� :

Using Lemma 4, we deduce:

Es
�E

s
�	�E� = 	�E�E�E� = �(q � 1)E�E�:

Let us compute db,

db = (R�R�	
s0

�	�)(R�E
s0

�	�)

= R�R
2
�(	

s0

� )
s0	s0

�E
s0

�	� (from proposition 3):

Therefore, from 1.1, we have

db = R�(qH�(�1) +R�E�)(	
s0

� )
s0	s0

�E
s0

�	�:

Thus, db yields the coe�cient qH�(�1)(	
s0

� )
s0	s0

�E
s0

�	� = qH�(�1)	�	
s0

�E
s0

�	�. Now,

qH�(�1)	�	
s0

�E
s0

�	� = qH�(�1)	�E
s0

�	
s0

�	�

= qH�(�1)	�E
s0

� (qH�(�1)�E�) (from 3.4)

= q2	�E
s0

� � qH�(�1)	�E
s0

�E�

= q2	�E
s0

� � qH�(�1)	�E�E� (from 4.1)

= q2	�E
s0

� + qH�(�1)E�E� (from 3.3):

Thus, db yields

q2	�E
s0

� + qE�E�:

Therefore, we have

X� = q2	�E
s0

� +E�E�:

It is easy to see that the terms having R� in p�� are precisely a0b0, b0a0, c0d0, and (b0)2.
Let us compute (b0)2,

(b0)2 = (R�E
s
�	�)(R�E

s
�	�)

= R2
�(E

s
�)

s	s
�E

s
�	�

= R2
�E�E

s
�	

s
�	�

= (qH�(�1) +R�E�)E�E
s
�(qH�(�1)�E�):

Hence (b0)2 yield the coe�cient E�E�E
s
�(qH�(�1) � E�) = qE�E�E

s
� � E2

�E�E
s
�. Then (b0)2

yield precisely

(q � 1)E�E�:

Now, we have a0b0 = (E�E�)(R�E
s
�	�) = R�E

s
�E

s
�E

s
�	�. Therefore, using Lemma 4, we

deduce that a0b0 yield the coe�cient

Es
�E

s
�E

s
�	� = �(q � 1)E�E�:

It is easy to see that b0a0 also yield the same coe�cient of a0b0.
Let us now compute c0d0,

c0d0 = (R�	�E�)(R�R�	
s
�	�)

= R2
�R�(	

s0

� )
s(Es0

� )
s	s

�	�

= (qH�(�1) +R�E�)R�(	
s0

� )
s(Es0

� )
s	s

�	�

= qH�(�1)R�(	
s0

� )
s(Es0

� )
s	s

�	� +R�E�R�(	
s0

� )
s(Es0

� )
s	s

�	�:
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That is,

c0d0 = qR�(H�(�1))
s(	s0

� )
s(Es0

� )
s	s

�	� +R�R�E
s
�(	

s0

� )
s(Es0

� )
s	s

�	�:

Thus, c0d0 yields the coe�cient

q(H�(�1))
s(	s0

� )
s(Es0

� )
s	s

�	� = q(H�(�1))
s(	s0

�	�)
s(Es0

� )
s	�:

Now, from the observation 3.4 of Proposition 3, and the observation 4.2 of Lemma 4, we have

q(H�(�1))
s(	s0

�	�)
s(Es0

� )
s	� = q(H�(�1))

s(qH�(�1)�E�)
sEs0

�	�

= q(H�(�1))
s(q(H�(�1))

s �Es
�)E

s0

�	�

= q2Es0

�	� � qEs
�E

s0

�	�

= q2Es0

�	� + qE�E�:

Thus, we have proved Y� = q2Es0

�	� +E�E� = X�.
Computation of X�� and Y��. First, notice that there is only one term having R�R� in

p2��, which is b0c0. Now,

b0c0 = (R�E
s
�	�)(R�	�E�)

= R�R�(E
s
�)

s0	s0

�	�E�

= R�R�E
s
�	

s0

�	�E� (from 4.2)

= R�R�	
s0

�	�E�E� (from 4.1)

= �R�R�	
s0

�E�E� (from 3.3):

Therefore, we have Y�� = �	s0

�E�E� .
On the other side, the only terms having the monomial R�R� in p2�� are: ad, cb, cd, da and

db. We have:

ad = (E�E�)(R�R�	
s0

�	�)

= R�R�(E
s
�)

s0(Es
�)

s0	s0

�	�

= R�R�E
s0

�E
s
�	

s0

�	�

= R�R�(E�	�)
s0Es

�	�

= R�R�(�E
s0

� )E
s
�	�

= �R�R�E�E�	� (from 4.3)

= R�R�E�E�:

da = (R�R�	
s0

�	�)(E�E�)

= R�R�	
s0

�	�E�E�

= �R�R�	
s0

�E�E�:

cb = (R�	�E�R�)(E
s0

�	�)

= R�R�	
s0

�E
s0

� E
s0

�	�

= R�R�(	�E�)
s0E�	�

= R�R�E
s0

�E�

= R�R�E�E� (from 4.1):
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From the observation 1.1 of Theorem 1, it is easy to see that db yields the coe�cient

E�(	
s0

� )
s0	s0

�E
s0

�	� = (	s0

� )
s0(E�	�)

s0Es0

�	�

= �	�E�E
s0

�	�

= �	�E�E�	�

= �E�E�:

Again from the observation 1.1 of Theorem 1, we deduce that cd yield the coe�cient

Es0

� (	
s
�)

s0(Es
�)

s0	s0

�	� = (E�	
s
�)

s0Es
�	

s0

�	�

= �Es0

�	
s0

�E
s
�	�

= �(Es0

�	
s0

� )(E
s
�	�)

= �E�E�:

Thus, we have X�� = Y�� = �	s0

�E�E� = E�E�.
Computation of X���� and Y����. It is easy to see that d2 is the only term that yields

X���� and this coe�cient is 	s0

�	�((	
s0

�	�)
s)s

0

.

Also, it is easy to see that Y���� is equal to 	s0

�	�	�	
s
�. By Lemma 4, it is clear that

((	s0

� )
s)s

0

= 	� and (	s
�)

s0 = 	s
�. Hence, we have X���� = Y����.

4. Case G2

Let � = f�; �g be a system of positive simple root of �. Let us put

G2:
� �
d d<

the Dynkin diagram. Let W denote the Weyl group of G2. Let s (respectively s0) denote the
re
ection corresponding to the root � (respectively �). We have, h�; �i = �1 and h�; �i = �3.
Hence, we have

s(�) = 3�+ �; s0(�) = �+ �:(3)

In the proof of the braid relation of type G2 (Lemma 7), we will use the following Lemma.

Lemma 6. We have,

( 6:1) ((Es0

� )
s)s

0

= (Es0

� )
s; ((Es

�)
s0)s = (Es

�)
s0

( 6:2) ((	s0

� )
s)s

0

= (	s0

� )
s; ((	s

�)
s0)s = (	s

�)
s0

( 6:3) E�E
s0

� = E�E�; E�E�E
s
� = (q � 1)E�E�

( 6:4) H�(�1)E3�+2� = E3�+2� ; H�+�(�1)E�E3�+2� = E�E3�+2�

( 6:5) E�+�E3�+2� = E�E� ; E3�+�E3�+2� = E�E3�+2�

( 6:6) ((	s0

�	�)((	�	
s
�)

s0)(Es
�)

s0)s = (	s0

�	�)(	�	
s
�)

s0(Es
�)

s0

( 6:7) (E�E�)
w = E�E�; 	w

�E�E� = 	w
�E�E� = �E�E�; w 2W

( 6:8) H�(�1)E
s0

� = H�(�1)E
s0

�

( 6:9) 	s0

�E� +	�	
s0

�E� = 0:
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Proof. We have s(s0(�)) = s(�+�) = ��+(3�+�) = 2�+�. Therefore, we have s0(s(s0(�))) =
s0(2�+ �) = 2(�+ �)� � = 2�+ � = s(s0(�)). Using a similar argument, it is easy to see that
s(s0(s(�))) = s0(s(�)). These observations prove 6.1 and 6.2.

Now, we will prove 6.3. We have s0(�) = � + �, and so we have Es0

� =
P

r2k�H�(r)H�(r):
Then

E�E
s0

� =
X
t2k�

H�(t)
X
r2k�

H�(r)H�(r)

=
X

r;t2k�

H�(rt)H�(r)

=
X

t; r 2 k�H�(t)H�(r)

= E�E�

In the above assertion, we use the fact that (t; r) 7! (rt; r) is an automorphism of k� � k�.
Proof of the other assertion of 6.3 is similar to this proof.
We now prove 6.4.
We have

H�(�1)E3�+2� =
X
t2k�

H�(�t
3)H�(t

2)

=
X
t2k�

H�((�t)
3)H�((�t)

2)

= E3�+2�

We note that here, we use the fact that t 7! �t is a bijection of k� onto itself.
Once again using this fact, we have H�E� = E�. Therefore, we have

H�+�(�1)E�E3�+2� = (H�(�1)E�)(H�(�1)E3�+2�)

= E�E3�+2�

This proves 6.4.
We now prove 6.5. We have

E�+�E3�+2� =
X

(t;s)2k��k�

H�(ts
3)H�(ts

2)

= E�E�

Here, we use the fact that (t; s) 7! (ts3; ts2) is an automorphism of the group k� � k�.
Similarly, the other assertion E3�+�E3�+2� = E�E3�+2� of 6.5 follows from the fact that

(t; s) 7! (ts; s�1) is an automorphism of k� � k�.
We now prove the assertion 6.6.
We �rst compute (	�	

s
�)

s0(	�	
s0

� )E3�+2� .

We have 	�	
s
� = qH�(�1) � E� and s0(�) = � + �. Therefore, we have (	�	

s
�)

s0 =
qH�+�(�1)�E�+� .

We also have 	�	
s0

� = qH�(�1)�E�.
Thus, we get

((	�	
s
�))

s0(	�	
s0

� )(((E�)
s)s

0

)s = (qH�+�(�1)�E�+�)(qH�(�1)�E�)E3�+2� :

Then using 6.4, we have

((	�	
s
�))

s0(	�	
s0

� )(((E�)
s)s

0

)s = q2E3�+2� � qE�E3�+2� � qE�E� + (q � 1)E�E�

= q2E3�+2� � qE�E3�+2� �E�E� :

We now prove that q2E3�+2� � qE�E3�+2� �E�E� is s- invariant.
To prove this, we prove each of the summand is s- invariant.



11

First, we have s(3� + 2�) = �3�+ 2(3� + �) = 3�+ 2� and so we have Es
3�+2� = E3�+2� .

Secondly, we have

(E�E3�+2�)
s = E3�+�E3�+2�

= E�E3�+2� : (from 6.5)

Thirdly, we have

(E�E�)
s = E��E3�+�

=
X

(t;s)2k��k�

H�(t
�1s3)H�(s)

= E�E� :

Here, we use the fact that (t; s) 7! (t�1s3; s) is an automorphism of the group k� � k�.
Thus, we have proved 6.6.
We now prove 6.7.
First, we prove (E�E�)

w = E�E� for any w 2W .
Since the Weyl group of G2 is generated by s and s0, it is su�cient to prove that

(E�E�)
s = E�E� = (E�E�)

s0 :

For a a proof of the �rst equality, we have

(E�E�)
s = E��E3�+�

=
X

(t;s)2k��k�

H�(t
�1s3)H�(s)

=
X

(t;s)2k��k�

H�(t)H�(s)

= E�E� :

We note that in this proof, we use the fact that the map (t; s) 7! (t�1s3; s) is an automorphism
of k� � k�.
The proof of the second equality follows from the fact that the map (t; s) 7! (t; ts�1) is an

automorphism of k� � k�.
We now prove that 	w

�E�E� = �E�E� for any w 2W ..
Since (E�E�)

w = E�E� , we have

	w
�E�E� = (	�E�E�)

w

= (�E�E�)
w (from (6.5) )

= �E�E�:

We now prove 6.8.
We have

H�(�1)E
s0

� = H�(�1)E�+�

= H�(�1)(
X
t2k�

H�(t)H�(t))

=
X
t2k�

H�(�t)H�(t)

=
X
t2k�

H�(t)H�(�t)

= H�(�1)(
X
t2k�

H�(t)H�(t))

= H�(�1)E
s0

� :
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We now prove 6.9.
We have s0(�) = �+ �, and so we have

	s0

�E� =
X

(t;s)2k��k�

	(t)H�(t)H�(ts)

=
X

(t;s)2k��k�

	(t)H�(t)H�(s) = 	�E� :

Here, we use the fact that the map (t; s) 7! (t; ts) is an automorphism of k� � k�.
On the other hand, we have

	�(	
s0

�E�) = 	�(�E�) = �	�E� :

Hence, we have

	s0

�E� +	�	
s0

�E� = (	� �	�)E� = 0:

Thus, we have proved 6.9.

Lemma 7. We have L�L�L�L�L�L� = L�L�L�L�L�L�.

Proof. Set p�� = q3L�L�L�, and p�� = q3L�L�L�. Then, one can re-write the braid relation
of the lemma as

( 7:1) p��p�� = p��p�� :

According to Proposition 3, Lemma 6 and 1, we obtain

p�� = (q � 1)E�E�| {z }
a

+ qH�(�1)	�	
s
�E

s
�| {z }

b

�R�E�E�| {z }
c

+R�E�E
s0

�	�| {z }
d

+R�R�	
s0

�	�E�| {z }
e

+R�R�(E
s0

�	�)
s	�| {z }

f

+R�R�R�(	
s0

�	�)
s	�| {z }

g

;

and

p�� = (q � 1)E�E�| {z }
a0

+ qH�(�1)	�	
s0

�E
s0

�| {z }
b0

�R�E�E�| {z }
c0

+R�E�E
s
�	�| {z }

d0

+R�R�	
s
�	�E�| {z }

e0

+R�R�(E
s
�	�)

s0	�| {z }
f 0

+R�R�R�(	
s
�	�)

s0	�| {z }
g0

:

We are now going to compare the coe�cients of the monomials on R� and R� obtained in
both sides of equation 7.1. For any word 
 in � and �, let X
 (resp. Y
) be the coe�cient of
R
 in the expression of L.H.S (resp. R.H.S) of 7.1.
To prove the Lemma, it is su�cient to prove that X
 = Y
 for all words 
 in � and �.
Computation of X������ and Y������. On the left in the product of 7.1 the monomial

R�R�R�R�R�R� appears only in the multiplication gg0, and then the coe�cient X������ of

this monomnial is ((((	s0

�	�)
s	�)

s0)s)s0((	s
�	�)

s0	�).
We have

X������ = ((((	s0

� )
s)s

0

)s)s0(((	s
�)

s0)s)s0((	s0

� )
s)s0(	s

�)
s0	s0

�	�

= 	�	
s
�(	

s0

� )
s(	s

�)
s0	s0

�	� (from 6.2)

= ((((	s
�	�)

s0	�))
s)s

0

)s((	s0

�	�)
s	�): (from 6.2)

This is the coe�cient Y������ of R�R�R�R�R�R� on the right of 7.1. Notice that we have
gg0 = g0g
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Computation of X����� and Y�����. It is to check that the monomial R�R�R�R�R�

occurs only in the product ge0 on the left of 7.1, and only in the product f 0g on the right of 7.1.
Now, the coe�cient X����� is

X����� = ((	s0

�	�)
s	�)

s0)s(	s
�	�E�)

= ((((Es
�	�)

s0	�)
s)s

0

)s(	s0

�	�)
s	�

= Y�����:

(notice that from 6.1, (((Es
�)

s0)s)s
0

)s = E�).
Computation of X���� and Y����. On the right of the equation 7.1 the monomial

R�R�R�R� appears only in the product f 0e. We now compute this coe�cient.

We have s0(s(s0(s(�)))) = s(�) and so (((Es
�)

s0)s)0 = Es
�. Using this observation, we have:

Y���� = (((Es
�	�)

s0	�)
s)s

0

(	s0

�	�E�)

= (((Es
�)

s0)s)s
0

((	s0

�	�)
s)s

0

(	s0

�	�E�)

= (Es
�E�)(	

s0

�	�)((	
s0

�	�)
s)s

0

(from above)

= (E�E�)
s)(	s0

�	�)((	
s0

�	�)
s)s

0

(sinceEs
� = E�)

= (�1)4E�E� (from 6.9)

= E�E�:

Hence, we have

( 7:2) Y���� = E�E�:

On the other side, the terms on the left of the equation 7.1. that contain the monomial
R�R�R�R�, are the products: cg

0, ef 0, gc0, eg0, and gf 0.
We now prove that cg0 yields the coe�cient E�E�.
We have

cg0 = �R�R�R�R�(((E�E�)
s0)s)s

0

(	s
�	�)

s0	�

= �R�R�R�R�((�1)
3E�E�): (from 6.7)

Therefore, the coe�cient of R�R�R�R� in the expression of cg0 is

( 7:3) �E�E�:

We now prove that ef 0 yields the coe�cient E�E� . We have

ef 0 = R�R�R�R�((	
s0

�	�E�)
s)s

0

(Es
�	�)

s0	�

= R�R�R�R�((E�E�)
s)s

0

((	s0

�	�)
s)s

0

	s0

�	�

= R�R�R�R�(�1)
4E�E�: (from 6.7)

Therefore, the coe�cient yielded by ef 0 is

( 7:4) E�E�:

By using 6.7, it is easy to see that gc0 yields the coe�cient

( 7:5) �(�1)3E�E� = E�E�:

Now, we compute the coe�cient yielded by eg0.
We have

eg0 = (R�R�	
s0

�	�E�)(R�R�R�(	
s
�	�)

s0	�)

= R�R
2
�R�R�(((	

s0

�	�E�)
s0)s)s

0

(	s
�	�)

s0	�:
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Now, notice that (((	s0

�	�E�)
s0)s)s

0

(	s
�	�)

s0	� = (	�	
s
�	�	

s
�)

s0E�	�. Then using 1.1, we
get

R�R
2
�R�R� = R�(qH�(�1) +R�E�)R�R�

= R2
�R�((qH�(�1))

s)s
0

+R�R�R�R�((E�)
s)s

0

:

But, we are interested in computing only the coe�cient of R�R�R�R� . From the above
computations, we �rst compute theE's (without (	's) in coe�cient ofR�R�R�R� in the product
eg0

((E�)
s)s

0

(((E�)
s0)s)s

0

= (((E�E�)
s0)s)s

0

;

since Es0

� = E�. We now compute the coe�cient together with 	's.

(((E�E�)
s0)s)s0(	�	

s
�	

s
�)

s0((	s0

� )
s)s

0

	� = (�1)5E�E� (from 6.7)

= �E�E�:

Therefore, eg0 yields the coe�cient

( 7:6) �E�E�:

By a similar computation, we can see that the coe�cient of R�R�R�R� in the expression of
gf 0 is equal to

( 7:7) (�1)5E�E� = �E�E�:

Summing up these �ve coe�cients (from 7.3 to 7.7), we have

( 7:8) X���� = 3E�E� � 2E�E� = E�E�:

From the observations 7.2 and 7.8, we have X���� = Y���� .
Computation of X��� and Y���. In the left hand side of 7.1, the products that contain

the monomials R�R�R� are: ce0, ed0, ee0, ga0, gb0 and gd0.
Since E�E� is occurring in c, by using 6.7, it is easy to see that the coe�cient of R�R�R� in

the expression of the product ce0 is

( 7:9) �(�1)2E�E
2
� = �(q � 1)E�E�:

Since E�E� is also occurring in a0, one can check that the coe�cient of R�R�R� in the
expression of ga0 to be equal to

( 7:10) (�1)3(q � 1)E�E� = �(q � 1)E�E� :

We now compute ed0. We have

ed0 = R�R�R�(	
s0

�	�)
s(E�E�)

sE�	�

= R�R�R�(�1)
3E�E

2
� (from 6.7)

= �R�R�R�(q � 1)E�E�:

Therefore, ed0 yields the coe�cient:

( 7:11) �(q � 1)E�E�:

We now compute the coe�cient of R�R�R� in the expression of ee0.
We have

ee0 = (R�R�	
s0

�	�E�)(R�R�	
s
�	�E�)

= R�R
2
�R�((	

s0

�	�E�)
s0)s	s

�	�E�:

We also have

R�R
2
�R� = qR�H�(�1)R�E�E� +R�R�R�(E�)

sE�E�: (from 1.1)

We are interested in computing only the coe�cient of R�R�R� in the expression of ee0. We
�rst compute only the product of E's (without 	's).
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This coe�cient is equal to

((Es0

� )
s)(E�E

s
�) = ((E�E�)

s)s
0

E�;

since Es0

� = E�.

We now compute the coe�cient of R�R�R� (together with the product of 	's) in the expres-
sion of ee0.
The coe�cient of R�R�R� in the expression of ee0 is

((	s0

�	�)
s0)s	s

�	�((E�E�)
s0)sE� = (�1)4E�E

2
� (from 6.7)

= (q � 1)E�E�: > (from 1)

Hence ee0 yields the coe�cient

( 7:12) (q � 1)E�E�:

By a similar computation, one can check that the coe�cient of R�R�R� in the expression of
gd0 is

( 7:13) (q � 1)E�E�:

We now compute gb0.
It is easy to see that gb0 yields the coe�cient

( 7:14) q(	s0

�	�)
s	�	�	

s0

� (H�(�1)E
s0

� ):

Summing up all these coe�cients (using the observations from 7.9 to 7.14): it is easy to see
that the sum of the coe�cients coming from ce0, ed0 and ga0 is �3(q�1)E�E� and that the sum
of the coe�cients coming from ee0 and gd0 is 2(q � 1)E�E�.
Therefore, we have

X��� = �(3(q � 1)E�E�) + 2(q � 1)E�E� + q(H�(�1)E
s0

� )(	
s0

�	�)
s	�	�	

s0

� :

Thus, we have

( 7:15) X��� = �(q � 1)E�E� + q(H�(�1)E
s0

� (	
s0

�	�)
s	�	�	

s0

� :

Now, we will compute Y���. The products on the right that contain the monomials R�R�R�

are: a0g, b0g, d0f , d0g, f 0c, and f 0f .
Computations are similar to the computations of X���.
Since a0 contains E�E� as a factor, by using 6.7, it is easy to see that the coe�cient of

R�R�R� in the expression of a0g is

( 7:16) (�1)3(q � 1)E�E� = �(q � 1)E�E� :

By the same argument, it is easy to see that the coe�cient of R�R�R� in the expression of
f 0c is

( 7:17) �(�1)2(q � 1)E�E� = �(q � 1)E�E�:

(Here, we use the fact that E�E� is a factor of c).
We now compute d0f .
We have

d0f = R�R�R�((E�E
s
�	�)

s0)s(Es0

�	�)
s	�

= R�R�R�((E�E�)
s0)s((Es

�)
s0)s(	s0

� )
s	s

�	�:

Therefore, by using 6.7, it is easy to see that the coe�cient of R�R�R� in the expression of
d0f is

( 7:18) (�1)3(q � 1)E�E� = �(q � 1)E�E� :

By a similar computation in ee0, using 1.1, and 6.7, one can check that the coe�cient of
R�R�R� in the expression of f 0f is equal to

( 7:19) (�1)4(q � 1)E�E� = (q � 1)E�E�:
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By a similar computation in gd0, using 1.1 and 6.7, one can check that the coe�cient of
R�R�R� in the expression of d0g is equal to

( 7:20) (�1)4(q � 1)E�E� = (q � 1)E�E�:

We now compute the coe�cient of R�R�R� in the expression of b0g.
Using Theorem 1, it is easy to see that the coe�cient of R�R�R� in the expression of the

product b0g is:

(((qH�(�1)	�	
s0

�E
s0

� )
s)s

0

)s(	s0

�	�)
s	�

= qH�(�1)
3H�(�1)

2Es0

� (	
s
�)

s0(((	s0

� )
s)s

0

)s(	s0

�	�)
s	�

= qH�(�1)E
s0

� ((	�)
s)s

0

(((	s0

� )
s)s

0

)s(	s0

�	�)
s	�:

Then, from 6.8 we obtain that the coe�cient of R�R�R� in the expression of the product b0g is

( 7:21) qH�(�1)E
s0

� )((	
s
�)

s0(((	s0

� )
s)s

0

)s(	s0

�	�)
s	�

Summing up these coe�cients (using observations 7.16 to 7.21), we have

( 7:22) Y��� = �(q � 1)E�E� + qH�(�1)(((((	�)
s0)s)s

0

)s((	�)
s)s

0

Es0

� )(	
s0

�	�)
s	�:

To prove X��� = Y���, from the observations 7.15 and 7.22, it is su�cient to prove that

(	s
�)

s0((((	�)
s0)s)s

0

)sEs0

� = 	�	
s0

�E
s0

� :

We now prove this assertion.
By a similar proof of 6.1, it is easy to see that

s(s0(s(s0(�)))) = �(3�+ 2�) = s0(s(s0(�))):

Hence, we have

((((	�)
s0)s)s

0

)s((	�)
s)s

0

= (((	�)
s0)s)s

0

= ((	�	
s0

� )
s)s

0

= ((qH� �E�)
s)s

0

(from Theorem 1)

= q(H�(�1))
3(H�(�1))

2 � ((E�)
s)s

0

(since s0s(�) = 3�+ 2�)

Using this and fact that (H�(�1))
2 = (H�(�1))

2 = 1, we have

((((	�)
s0)s)s

0

)s((	�)
s)s

0

Es0

� = (qH�(�1)E
s0

� � (Es
�E�)

s0

= qH�(�1)E
s0

� � (Es
�E�)

s0 (from 6.8))

= qH�(�1)E
s0

� � ((E�E�)
s)s

0

(sinceEs
� = E�)

= qH�(�1)E
s0

� � (E�E�)
s0 (from 6.7)

= qH�E
s0

� �Es0

�E� (sinceEs0

� = E�)

= 	�	
s0

�E
s0

� (from Theorem 1):

Thus, we have proved X��� = Y���.
Computation of X� and Y�. We �rst compute X�. On the left of 7.1, the terms containing

the monomials R� are: (a+ b)d0, c(a0 + b0), cd0, de0, ec0, ee0, and gf 0.
Now, we deduce that de0 yields q(q � 1)E�E�. In fact,

de0 = (R�E�E
s0

�	�)(R�R�	
s
�	�E�)

= R2
�R�(E

s0

� )
s((E�)

(s0
2
))s(	s

�)
s0	s

�	�E�)

= R2
�R�(E

s0

� )
sE�(	

s
�)

s0	s
�	�E� (since (s0)2 = 1andEs

� = E�):
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Now, using 1.1, it is easy to see that de0 yields the coe�cient qH�(�1)(E
s0

� )
sE�(	

s
�)

s0	s
�	�E� .

We also have (Es0

� )
sE�E� = (q � 1)E�E�. Therefore, using Lemma 6 we deduce that de

0 yields
the coe�cent

( 7:23) (�1)3q(q � 1)E�E� = �q(q � 1)E�E�:

In the same way, one can check that ee0 yields the same coe�cient

( 7:24) (�1)4q(q � 1)E�E� = q(q � 1)E�E�:

Since E�E� is a factor of c0, using 6.7 and the fact that R2
� = qH�(�1) +R�E� , it is easy to

see that the coe�cient of R� in the expression of ec0 is

( 7:25) (�1)3(q(q � 1))E�E� = �q(q � 1)E�E�:

We now compute the coe�cient of R� in the expression of cd0. We have

cd0 = (R�E�E�)(R�E�E
s
�	�)

= R2
�E�E

s
�E�E

s
�	�

= (qH�(�1) +R�E�)E�E
s
�E�E

s
�	�:

Therefore, the coe�cient of R� in the expression of cd0 is E�E�E
s
�E�E

s
�	�, which turns out to

be equal to

( 7:26): (�1)2(q � 1)3E�E� = (q � 1)3E�E� :

(by using 6.7).
We now compute the coe�cient of R� in the expression of c(a0 + b0).
Since E�E� is a factor of c, using 6.7, it is easy to see that the coe�cient of R� in the

expression of ca0 yields �(q � 1)3E�. Now, again using 6.7, it is easy to see that the coe�cient
of R� in the expression of cb0 is (�1)3q(q � 1)E�E� = �q(q � 1)E�E�.
Therefore c(a0 + b0) yields the coe�cient

( 7:27) �((q � 1)3 + q(q � 1))E�E� = �(q � 1)(q2 � q + 1)E�E� :

We now compute the coe�cient of R� in the expression of (a+ b)d0.
Since E�E� is a factor of a, using 6.7, it is easy to see that �(q � 1)3E�E� is the coe�cient

of R� in the expression of ad0.
On the other hand, we have

bd0 = (qH�(�1)	�	
s
�E

s
�)(R�E�E

s
�	�)

= qR�H�(�1)	�	
s
�E�E�E

s
�	� (since s2 = 1andH�(�1)

s = H�(�1))

= q(q � 1)R�H�(�1)	�	
s
�E�E

s
�	�:

Thus, (a+ b)d0 yields

( 7:28) �(q � 1)3E�E� + q(q � 1)H�(�1)	�	
s
�E�E

s
�	�:

We now compute the coe�cient of R� in the expression of gf 0. We have

gf 0 = (R�R�R�(	
s0

�	�)
s	�)(R�R�(E

s
�	�)

s0	�)

= R�R�R
2
�R�(	

s0

�	�)
s0(	s

�)
s0(Es

�	�)
s0	�:

Using R2
� = qH�(�1) +R�E�, we get

gf 0 = qR�R
2
�H�(�1)

s0(	s0

�	�)
s0(	s

�)
s0(Es

�	�)
s0	� +R�R�R�R�E

s0

� (	
s0

�	�)
s0	s0

� (E
s
�	�)

s0	�:

Now, using R2
� = qH�(�1) +R�E� , and using the fact that

H�(�1)(H�(�1))
s0 = H�(�1)H�(�1)

2 = H�(�1);

one can see that the coe�cient of R� in the expression of gf 0 is

( 7:29) q2H�(�1)	�	
s0

� (	
s
�)

s0(Es
�	�)

s0	�
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Therefore, using the observations from 7.23 to 7.29, we have
( 7.30)

X� = �(q � 1)(q2 + 1)E�E� + q(q � 1)H�(�1)	�	
s
�E�E

s
�	�

+q2H�(�1)H�(�1)
s0	�	

s0

� (	
s
�)

s0(Es
�	�)

s0	�:

We now compute Y�. On the right of 7.1, the terms having the monomials R� are: (a0+ b0)c,
d0(a+ b), d0c, c0f , f 0d, f 0f , and e0g.
Since E�E� is a factor of c, using 6.7 and the facts that E2

� = (q � 1)E�, E
2
� = (q � 1)E� , it

is easy to see that the coe�cient of R� in the expression of a0c is �(q � 1)3E�E�. Again, since
E�E� is a factor of c, using 6.7 and the facts that E2

� = (q � 1)E�, H�(�1)E� = E�, it is easy
to see that the coe�cient of R� in the expression of b0c is

(�1)3q(q � 1)E�E� = �(q(q � 1))E�E�:

Thus, the coe�cient of R� in the expression of (a0 + b0)c is

( 7:31) �((q � 1)3 + q(q � 1))E�E� = �(q � 1)(q2 � q + 1)E�E� :

We now compute the coe�cient of R� in the expression of d0(a+ b). Since E�E� is a factor of
a using 6.7 and the fact that E2

� = (q� 1)E� , it is easy to check that the coe�cient of R� in the

expression of d0a is �(q � 1)3E�E�. Also, it is clear that the coe�cient of R� in the expression
of d0b is

(E�E
s
�	�)(qH�(�1)	�	

s
�E

s
�) = q(q � 1)H�(�1)	�	�	

s
�E�E

s
�:

Thus, the coe�cient of R� in the expression of d0(a+ b) is

( 7.32) �(q � 1)3E�E� + q(q � 1)H�(�1)(	�)
2	s

�E�(E
s
�)

2:

We now compute the coe�cient of R� in the expression of d0c. We have

d0c = (R�E�E
s
�	�)(R�E�E�)

= R2
�E

s
�E�	

s
�E�E� :

Using R2
� = qH�(�1) + R�E� and 6.7, it is easy to see that the coe�cient of R� in the

expression of d0c is

( 7.33) E�E
s
�E�	

s
�E�E� = (q � 1)3E�E�:

Let us compute the coe�cient the yields f 0d. We have

f 0d = (R�R�(E
s
�	�)

s0	�)(R�E�E
s0

�	�)

= R�R
2
�E

s
�	�	

s0

�E�E
s0

�	�:

Therefore from 1.1, we get

f 0d = qR�H�(�1)E
s
�	�	

s0

�E�E
s0

�	� +R�R�E�E
s
�	�	

s0

�E�E
s0

�	�:

We have Es
� = E� and so we have

H�(�1)E�E
s
� = H�(�1)(E�E�)

s

= E�(H�(�1)E�) (from 6.7)

= E�E� (sinceH�(�1)E� = E�):

Therefore, E�E� is a factor of the coe�cient of R� in the expression of f 0d and hence using 6.7
and the fact that E2

� = (q � 1)E� , it is easy to see that the coe�cient of R� in the expression

of f 0d is

( 7.34) (�1)3(q(q � 1))E�E� = �q(q � 1)E�E�:

Since E�E� is a factor of c0, using 6.7, 1.1 and the fact that E2
� = (q � 1)E�, it is easy to see

that the coe�cient of R� in the expression of c0f is

( 7:35) (�1)3q(q � 1)E�E� = �(q(q � 1))E�E�:
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We now compute the coe�cient of R� in the expression of the product f 0f . We have

f 0f = (R�R�(E
s
�	�)

s0	�)(R�R�(E
s0

�	�)
s	�)

= R�R
2
�R�(E

s
�	�	

s0

�E
s0

�	�)
s	�

= qR2
�H�(�1)

sE�(	�	
s0

�E
s0

�	�)
s	� +R�R�R�E

s
�E�(	�	

s0

�E
s0

�	�)
s	�:

Thus, from 1.1 we deduce that f 0f yields the coe�cient

qE�(H�(�1)E
s
�	�	

s0

�E
s0

�	�)
s	� = �qE�E�(H�(�1)	�	

s0

�E
s0

�	�)
s:

Using 6.7, we deduce that f 0f yields

( 7.36) (�1)4q(q � 1)E�E� = q(q � 1)E�E�:

We now compute the coe�cient of R� in the expression of e0g. We have

e0g = (R�R�	
s
�	�E�)(R�R�R�(	

s0

�	�)
s	�)

= R�R
2
�R�R�(((	

s
�	�E�)

s)s
0

)s(	s0

�	�)
s	�:

Using twice the relation 1.1 we deduce that e0g yields the coe�cient

q2(H�(�1)(H�)
s0)s(((	s

�	�E�)
s)s

0

)s(	s0

�	�)
s	�;

which can be written by

( 7.37) q2H�(�1)(	
s0

�	�)
s((	�	

s
�)

s0)s((Es
�)

s0)s	�:

(Here, we use (H�(�1)(H�(�1))
s0)s = (H�(�1))

2(H�(�1))
s = H�(�1)

s = H�(�1)).
Therefore, using the observations from 7.31 to 7.37, we conclude that

Y� = �q(q � 1)2 + q(q � 1)H�(�1)	�	�	
s
�E�E

s
�

+ q2H�(�1)(H�(�1))
s0(	s0

�	�)
s(	�	

s
�)

s0((Es
�)

s0)s	�

= X� (from 7.30):

Computation of X�� and Y��. The products on the left of equation 7.1 involving the
monomial R�R� are: (a+ b)f 0, cc0, cf 0, e(a0 + b0), ec0, eg0, dg0, gd0, and gf 0.
We now compute the coe�cient of R�R� in the expression of af 0.
Since E�E� is a factor of a, using 6.7, and the fact that E2

� = (q� 1)E� , it is easy to see that

the coe�cient of R�R� in the expression of af 0 is

( 7:38) (�1)2(q � 1)2E�E� = (q � 1)2E�E� :

We now compute bf 0. We have

bf 0 = qH�(�1)	�	
s
�E

s
�R�R�(E

s
�	�)

s0	�

= R�R�((qH�(�1)
s)s

0

(	�	
s
�)

s0(E�E
s
�)

s0	s0

�	� (from 1.3):

Therefore, using the fact that (H�(�1)
s)s

0

Es0

� = �H�(�1)E� and the fact that 	�E
s0

� = �E�,

it is easy to see that the coe�cient of R�R� in the expression of bf 0 is

( 7:39) �q(H�(�1))(	�	
s
�)

s0E�(E
s
�)

s0	s0

� :

We now compute cc0.
Since E�E� is a factor of c, using 6.7 and the facts that E2

� = (q� 1)E� and E2
� = (q� 1)E� ,

it is easy to see that the coe�cient of R�R� in the expression of cc0 is

( 7:40) (�1)2(q � 1)2E�E� = (q � 1)2E�E� :

We now compute cf 0.
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We have

cf 0 = �R�E�E�R�R�(E
s
�	�)

s0	�

= �R2
�R�E�E�(E

s
�	�)

s0 (from 1.3)

= (qH�(�1) +R�E�)R�E�E�(E
s
�	�)

s0	�: (from 1.1)

But, we are interested only in the coe�cient of R�R�, which is equal to

�Es0

�E�E�(E
s
�	�)

s0	� = (�1)3E�E�(E�E
s
�)

s0 (from 6:7)

= ((�1)3(E2
�E�E

s
�)

s0 (from 6:7)

= �((q � 1)(E�E�E
s
�)

s0 (sinceE2
� = (q � 1)E�)

= �(q � 1)((E�E
2
�)

s)s
0

(from 6:7)

= �(q � 1)2((E�E�)
s)s

0

(sinceE2
� = (q � 1)E�)

= �(q � 1)2E�E� (from 6:7):

Therefore, the coe�cient of R�R� in the expression of cf 0 is

( 7:41) �(q � 1)2E�E� :

We now compute ec0.
We have

ec0 = �R�R
2
�(	

s0

�	�E�)
s0E�E�

= R�(qH�(�1) +R�E�)(	
s0

�Psi�E�)
s0E�E� (from 1 .1)

But, we are interested only in the coe�cient of R�R�, which is equal to

�(	�	�)E
s0

�E�E
2
� = (�1)3E�E

2
�E

s0

� (from 6.7)

= �(q � 1)E�E�E
s0

� (sinceE2
� = (q � 1)E�)

= �(q � 1)(E2
�E�)

s0 (from 6.7)

= �(q � 1)2(E�E�)
s0 (sinceE2

� = (q � 1)E�)

= �(q � 1)2E�E� > (from 6.7):

Therefore, the coe�cient of R�R� in the expression of ec0 is

( 7:42) �(q � 1)2E�E� :

We now compute eg0.
We have

eg0 = R�R�(	
s0

�	�E�R�R�R�(	
s
�	�)

s0	�

= R�R
2
�R�R�(((	

s0

�	�E�)
s0)s)s

0

	s
�	

s0

�	�

= R2
�R�((qH�(�1) +R�E�)

s)s
0

(((	s0

�	�E�)
s0)s)s

0

	s
�	

s0

�	� (from 1.1 and 1.3):

Using R2
� = qH�(�1) +R�E�, it is easy to see that the coe�cient of R�R� in the expression

of eg0 is

Es0

� ((qH�(�1))
s)s

0

(((	s0

�	�E�)
s0)s)s

0

	s
�	

s0

�	�:

Here, we �rst consider the term Es0

� ((E
s0

� )
s)s

0

. This can be written as

(E�((E�)
s0)s)s

0

= ((E�E
s0

� )
s)s

0

(sinceEs
� = E�)

= ((E�E�)
s)s

0

= E�E�
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Now, from the above two observations, using 6.7, it is easy to see that the coe�cient of R�R�

in the expression of eg0 is

( 7:43) (�1)5qE�E� = �qE�E�:

We now compute ea0.
We have

ea0 = R�R�((q � 1)	s0

�	�E
2
�E�

= R�R�(q � 1)(�1)2E�E� (from 6.7)

= (q � 1)2E�E� (sinceE2
� = (q � 1)E�)

Therefore, the coe�cient of R�R� in the expression of ea0 is

( 7:44) (q � 1)2E�E�:

We now compute the coe�cient of R�R� in the expression of eb
0. Using the fact that E�E

s0

� =
E�E�, we have

eb0 = R�R�qH�(�1)	
2
�(	�	�)

s0E�E�

= R�R�qH�(�1)(�1)
4E�E� (from 6.7)

= R�R�qE�E� (sinceH�(�1)E� = E�)

Therefore, the coe�cient of R�R� in the expression of eb0 is

( 7:45) qE�E�:

We now compute dg0.
We have

dg0 = R�E�E
s0

�	�R�R�R�(	
s
�	�)

s0	�

= R2
�R�R�(((E�E

s0

�	�)
s0)s)s

0

(	s
�	�)

s0	�

= R�R�((qH�(�1) +R�E�)
s)s

0

(((E�E�	�)
s0)s)s

0

(	s
�	�)

s0	� (from 1.1, 1.3)

= R�R�((qH�(�1) +R�E�)
s)s

0

(�1)4E�E� (from 6.7)

Therefore, the coe�cient of R�R� in the expression of dg0 is

( 7:46) qE�E�:

Here, we use the fact that H�(�1)E� = E�.
We now compute R�R� in the expression of gd0.
We have

gd0 = R�R�R�(	
s0

�	�)
s	�R�E�E

s
�	�

= R�R�R
2
�(	

s0

�	�)
s2	s

�	�E�E
s
�:

Using the quadratic relation R2
� = qH�(�1) + R�E� and the fact that s2 = 1, it is easy to

see that the coe�cient of R�R� in the expression of gd0 is

( 7:47) qH�(�1)(	�	
s
�	

s0

�	�)E�E
s
�:

We now compute the coe�cient of R�R� in the expression of gf 0.
We have

gf 0R�R�R
2
�R�	�	

s0

� (	�	
s
�)

s0	�E
s
� :

Using R2
� = qH�(�1)+R�E� and R2

� = qH�(�1)+R�E� and the fact that H�(�1)
s0	�E� =

�H�(�1)E� , it is easy to see that the coe�cient of R�R� in the expression of gf 0 is

( 7:48) �qH�(�1)	�(	�	
s
�)

s0	s0

�E�E
s
�:
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Using the observations 7.39, 7.48, and the observation 6.9 (of Lemma 6), it is easy to see that
the sum of coe�cients yielded by bf 0 and gf 0 is equal to

�qH�(�1)(	�	
s
�)

s0Es
�(	

s0

�E� +	�	
s0

�E�) = 0:

Therefore, summing up all the other coe�cients (using the observations from 7.38 to 7.48),
we have

( 7:49) X�� = (q2 � q + 1)E�E� + qH�(�1)	�	
s
�	

s0

�	�E�E
s
�:

We now compute the coe�cient of R�R� in the expression of p��p��.
In the product p��p��, the terms involving R�R� are a0e, b0e, d0d, d0e, f 0a, f 0b and f 0d.
We now compute a0e.
Since E�E� is a factor of a0, using 6.7, and the fact that E2

� = (q � 1)E�, it is easy to see
that the coe�cient of R�R� in the expression of a0e is

( 7:50) (�1)2(q � 1)2E�E�:

We now compute b0e.
We have

b0e = qH�(�1)	�	
s0

�E
s0

�R�R�	
s0

�	�E�

= R�R�q((H�(�1)	�	
s0

� )
s)s

0

((Es0

� )
s)s

0

	s0

�	�E� (from 1.3)

= R�R�q((H�(�1)	�	
s0

� )
s)s

0

(E�E�)	
s0

�	� (from 6.1 and 6.3)

= R�R�(�1)
4q((E�E�H�(�1))

s)s
0

(from 6.7)

= R�R�q((E�E�)
s)s

0

(sinceH�(�1)E� = E�)

= R�R�qE�E� (from 6.7))

Here, we use the fact that

E�((E
s0

� )
s)s

0

= E�((E�)
s0)s (from 6.1)

= (E�E
s0

� )
s (sinceEs

� = E�)

= E�E� (from 6.3 and 6.7):

Therefore, the coe�cient of R�R� in the expression of b0e is

( 7:51) qE�E�:

We now compute d0d.
We have

d0d = R�E�E
s
�	�R�E�E

s0

�	�

= R�R�(E�E
s
�	�)

s0E�E
s0

�	�

= R�R�(E�E
s
�	�)

s0E�E�	� (from 6.3)

= R�R�(�1)
2(q � 1)2E�E� (from 6.7 andE3

� = (q � 1)2E�E�)

Therefore, the coe�cient of R�R� in the expression of d0d is

( 7:52) (q � 1)2E�E�:

We now compute the coe�cient of R�R� in the expression of d0e.
We have

d0e = R�E�E
s
�	�R�R�	

s0

�	�E�

= R2
�R�((E�E

s
�	�)

s)s
0

	s0

�	�E� (from 1.3)

= (qH�(�1) +R�E�)R�((E�E
s
�	�)

s)s
0

	s0

�	�E� (from 1.1)
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But, we are interested in computing only the coe�cient of R�R�, which is equal to

(Es0

�E�)((E�E
s
�	�)

s)s
0

	s0

�	� = (�1)3(q � 1)2E�E� (from 6.3 and 6.7):

Therefore, the coe�cient of R�R� in the expression of d0e is

( 7:53) �(q � 1)2E�E� :

We now compute f 0a.
We have

f 0a = R�R�(E
s
�	�)

s0	�(q � 1)(E�E�)

= R�R�(�1)
2(q � 1)2((E�E

2
�)

s)s
0

(from 6.7)

= R�R�(q � 1)2E�E� (sinceE2
� = (q � 1)E�)

Therefore, the coe�cient of R�R� in the expression of f 0a is

( 7:54) (q � 1)2E�E�:

We now compute f 0b.
A straightforward computation shows that the coe�cient of R�R� in the expression of f 0b is

( 7:55) q(Es
�	�)

s0	�H�(�1)	�	
s
�E

s
�:

We now compute the coe�cient of R�R� in the expression of f 0d.
We have

f 0d = R�R�(E
s
�	�)

s0	�R�(E�E
s0

� )	�

= R�R
2
�((E

s
�	�)

s0	�)
s0(E�E

s0

� )	� (from 1.3)

= R�(qH�(�1) +R�E�)((E
s
�	�)

s0	�)
s0(E�E

s0

� )	�:

But, we are interested in computing only the coe�cient of R�R�, which is equal to

E�((E
s
�	�)

s0	�)
s0(E�E

s0

� )	� = (�1)3((E�E
2
�)

s)Es0

� (from 6.7 and (s0)2 = 1)

= �(q � 1)(E�E�)
sEs0

� (sinceE2
� = (q � 1)E�)

= �(q � 1)(E�E�E�)
s0 (from 6.7)

= �(q � 1)2(E�E�)
s0 (sinceE2

� = (q � 1)E�)

= �(q � 1)2E�E� (from 6.7):

Therefore, the coe�cient of R�R� in the expression of f 0d is

( 7:56) �(q � 1)2E�E� :

Summing up these coe�cients (using the observations from 7.50 to 7.56), we have

( 7:57) Y�� = (q2 � q + 1)E�E� + qH�(�1)	�	
s
�	

s0

�	�E
s
�(E

s
�)

s0 :

We have Es
� = E3�+� and (Es

�)
s0 = E3�+2� .

Using a similar proof 6.5, it is easy to see that

( 7:58) E�(E�)
sE�E3�+� = E3�+�E3�+2� = Es

�((E�)
s)s

0

:

Using the observations, 7.49, 7.57 and 7.58, it is easy to see that X�� = Y��.
We now prove that

X0 = Y0:

The terms yielding the constant coe�cients in the expression of p��p�� are aa0, ab0, ba0, bb0,
cd0, dc0, ee0 and ff 0.
The terms yielding the constant coe�cients in the expression of p��p�� are a0a, a0b, b0a, b0b,

c0d, d0c, e0e and f 0f .
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It is easy to see that these terms yield the following coe�cients.

aa0 = a0a = (q � 1)4E�E�

ab0 = b0a = q(q � 1)E�E�

ba0 = a0b = q(q � 1)E�E�

bb0 = b0b = q2H�+�(�1)	�	�(	�E�)
s(	�E�)

s0

cd0 = d0c = q(q � 1)2E�E�

dc0 = c0d = q(q � 1)2E�E�

ee0 = f 0f = q2H�(�1)
sH�(�1)	�	

s
�(	�	

s0

� )
s(Es0

� )
sE�

ff 0 = e0e = q2H�(�1)
s0H�(�1)	�	

s0

� (	�	
s
�)

s0(Es
�)

s0E�:

Hence, we have

X0 = Y0:

Since the computations of X�, X��, X��� , X����, X����� are similar to the computations
of X�, X��, X���, X���� , X����� respectively and the same is true for the Y 's, we will only
quote the coe�cients.
We �rst quote the terms involving R� in the expression of p��p�� and the terms involving

R� in the expression of p��p�� .
The terms involving R� in the expression of p��p�� are ac0, bc0, cf 0, da0, db0, dc0, eg0 fd0 and

ff 0.
On the other hand, the terms involving R� in the expression of p��p�� are a0d, b0d, c0a, c0b,

c0d, d0e, e0c, e0e and g0f .
The coe�cients yielded by these are as follows:

ac0 = c0a = �(q � 1)2E�E�

bc0 = c0b = �(q(q � 1))E�E�

cf 0 = ec0 = �(q � 1)E�E�

da0 = a0d = �(q � 1)2E�E�

db0 = b0d = �(q(q � 1))E�E�

dc0 = c0d = (q � 1)2E�E�

eg0 = g0f = q2H�(�1)(	�	
s
�)

s0(	�	
s0

� )
s)s

0

	�(E
s0

� )
s

fd0 = d0e = �(q � 1)E�E�

ff 0 = e0e = q(q � 1)E�E�:

We note that here, we write the only coe�cients (not with the monomials).
Therefore, we have

X� = Y�:

We now do the same for R�R�.
The terms involving R�R� in the expression of p��p�� are (a + b)e0, dd0, de0, f(a0 + b0) and

fd0.
On the other hand, the terms involving R�R� in the expression of p��p�� are a0f , b0f , c0c,

c0f , d0g, e0a, e0b, e0c, e0g, g0d and g0f .
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The coe�cient yielded by these are as follows:

ae0 = e0a = (q � 1)2E�E�

be0 = e0b = q(E�E
s
� � (q � 1)E�E�)

dd0 = c0c = (q � 1)2E�E�

de0 = c0f = �(q(q � 1))E�E�

fa0 = a0f = (q � 1)2E�E�

fb0 = b0f = qE�E�

fd0 = e0c = �(q � 1)2E�E�

d0g = �(e0g) = q(H�(�1)
s0)s((	s

�)
s0)s((	s0

�	�)
s)	�E

s
�(E

s
�)

s0

g0d = �(g0f) = E�E�:

(We note that we write only the coe�cients)
Hence, we have

X�� = Y��:

We now do the same for R���.
The terms involving R�R�R� in the expression of ag0, bg0, df 0, dg0, fc0 and ff 0.
On the other hand, terms involving R�R�R� in the expression of p��p�� are c0e, e0d, e0e, g0a,

g0b, g0d.
The coe�cients yielded by these are as follows:

ag0 = g0a = �(q � 1)E�E�

bg0 = g0b = qH�(�1)(	
s
�	�)

s0	�	�	
s
�E

s
�

dg0 = g0d = (q � 1)E�E�

df 0 = e0d = �(q � 1)E�E�

fc0 = c0e = �(q � 1)E�E�

ff 0 = e0e = (q � 1)E�E�:

Hence, we have

X��� = Y��� :

We now do the same for R�R�R�R�.
The terms involving R�R�R�R� in the expression of p��p�� is fe0 only.
On the otherhand, the terms involving R�R�R�R� are c0g, e0f , e0g, g0c and g0f .
The coe�cients yielded by these are as follows:

fe0 = e0f = E�E� ;

c0g = �e0g = E�E�;

g0c = �g0f = E�E� :

Hence, we have

X���� = Y����:

We now do the same for R�R�R�R�R�.
The only term involving R�R�R�R�R� in the expression of p�� is fg0.
On the otherhand, the only term involving R�R�R�R�R� is g0e.
The coe�cients yielded by these are

fg0 = g0e = 	�	
s
�((	�)

s)s
0

(	s0

� )
s	s0

�E�:
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