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Abstract

The di�erential equation for the dimensionless screening function �(x) of a point nu-

cleus in an extremely heavy positive atomic ion is shown to have the form

�00 =

n
�
�
1 +  �

x

�on=2
xm=2

:

This reduces to Emden's equation for  = 0 and m = n � 2. The above di�erential

equation embraces four physical regimes: non-relativistic atomic ions with (i) magnetic

�eld strength B = 0, (ii) B very large, cases (iii) and (iv) being the relativistic analogues

of (i) and (ii). The pairs of n and m are restricted in regimes (i) - (iv) delineated above

to [3; 1] and [1;�1]. In the proposed di�erential equation above,  is a dimensionless

quantity. In zero magnetic �eld corresponding to [n;m] = [3; 1],  measures the ratio of

a characteristic Coulomb energy Ze2=b, with Z the atomic number of the ion and with b

a scaling length / Z�1=3, to the electron rest mass energy.  involves also the magnetic

�eld strength B in the intense magnetic �eld limit corresponding to [n;m] = [1;�1].
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1 Introduction and overview

Since the early work of Milne [1], it has been known that the study of the electronic struc-

ture of heavy atoms had mathematical content closely similar to previous investigations

of Emden [2]. As summarized, for instance in the book by Saslaw [3], the problem of the

structure of a gaseous star led Emden to a di�erential equation having the form

1

x2
d

dx

 
x2

d�

dx

!
+ �n = 0 : (1.1)

n is known as the polytrope index and enters the `e�ective equation of state' through the

power law form p = K�1+1=n.

Returning to Milne's study, he was concerned with the total ground-state energy of a

heavy neutral atom of atomic number Z. Then a central quantity is the self-consistent

potential energy V (r) felt by an electron in the charge cloud surrounding the nucleus. In

the limit of large Z, it is helpful to write [4]

V (r) = �Ze
2

r
�(x) : r = bx; b =

1

4

 
9�2

2

!1=3
a0
Z1=3

: (1.2)

where the `screening function' �(x) satis�es the di�erential equation [5-7]

d2�

dx2
=

�3=2

x1=2
; (1.3)

and a0 is the Bohr radius. As Milne [1] noted, this di�erential eqn (1.3), apart from a

sign, is a special case of Emden's eqn (1.1) with n = 3

2
and x� � �.

For neutral heavy atoms, the boundary conditions under which eqn (1.3) must be

solved are evidently

�(x = 0) = 1 (1.4)

and

�(x)
���
x!1

! 0 (1.5)

Sommerfeld [8] pointed out that � = 144=x3 was an exact solution of eqn (1.3), but

satisfying the boundary condition (1.5) only, while Coulson and March [9] generated the

asymptotic expansion for large x, namely

�(x) =
144

x3

�
1� F1

xc
+

F2

x2c
+ : : :

�
(1.6)
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and tabulated the numbers fn in Fn = fn(F1)
n out to n = 10. The index c in eqn (1.6)

has the interesting feature that it is irrational, having the value

c =

p
73� 7

2
= 0:772 : (1.7)

Such a situation, of course, is very familiar to workers in statistical mechanics. Though

eqn (1.3) can describe neutral atoms, characterized by boundary condition (1.5), it is in

fact the basic equation of the so-called Thomas-Fermi statistical theory of heavy positive

atomic ions with atomic number Z and N electrons, with evidently then N � Z. This

theory has a range of validity that requires both N and Z to be large, though one can

still allow highly ionized con�gurations with N=Z � 1. Returning briey to the solution

(1.6), Coulson and March [9] showed that with the choice F1 = 13 �21 it could be extended
inwards (say by numerical integration) to satisfy the initial condition (1.4).

After this introduction, section 2 below will be concerned with a brief description of the

way in which the introduction of Special Relativity modi�es the above statistical method.

Speci�cally, we shall build on the study of Hill, Grout and March [10], who obtained the

counterpart of eqn (1.3) for relativistic heavy positive atomic ions in an intense magnetic

�eld of strength B.

2 Di�erential equation for screening function �(x) for

relativistic atomic ions in an intense magnetic �eld

In the Thomas-Fermi theory summarized in the previous section, a basic equation is

that for the chemical potential �, which is constant throughout the entire inhomogeneous

charge cloud of the atomic ions, having electron density �(r
�
).

Let us now generalize this by invoking the Special Relativity relation between kinetic

energy and momentum. Then, using the �ne structure constant � = e2=�hc to characterize

the corresponding chemical potential, one has [10]

�� =

(
c2h4

4e2B2
�2(r) +m2

0c
4

)1=2

�m0c
2 + V (r) (2.1)

where the quantity m0c
2, the electron rest mass energy, has been subtracted from the

relativistic kinetic energy represented by the �rst term on the RHS of eqn (2.1).
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Rearranging eqn (2.1) and squaring yields, after a short calculation, the result

(�� � V (r))2

2m0c2
+ (�� � V (r)) =

h4

8e2m0

�2(r)

B2
(2.2)

Hill et al. [10], who �rst derived eqn (2.2), then again introduced a screening function

�(x) through

[�� � V (r)] = �Ze
2

r
�(x) (2.3)

where (compare eqn (1.2)) the length scale r = b0x is rede�ned by

b0 =
1

2

 
�

2�

!
�2=5

Z1=5a0 ; (2.4)

while

� = (�BB=Ry) ; (2.5)

�B being the Bohr magneton. It was then shown [10] that �(x) obeys the di�erential

equation

�00 = x1=2
(
�

 
1 + 

�

x

!)1=2

; (2.6)

 being given by

 =

 
�

2�

!2=5

�2 Z4=5 (2.7)

in terms of the �ne structure constant � = e2=�hc. Evidently in the non-relativistic limit

corresponding to �! 0 or equivalently c!1, the quantity  de�ned in eqn (2.7) goes

to zero and one obtains the limiting equation from eqn (2.6) as

�00 = (x�)1=2 (2.8)

This eqn (2.8), as with eqn (1.3) is another special case of Emden's eqn (1.1) (apart from

a sign again), this time with n = 1=2.

A �nal (more physical) comment is in order here relating to eqn (2.6) and its non-

relativistic limit in eqn (2.8). It will have been noted that, even though these are equations

valid in intense magnetic �elds of strength B, the resulting screening function �(x) is still

spherically symmetrical. The physical understanding of such a situation has been clari�ed,

for example, in the work of Lieb, Solovej and Yngvason [11], which is characterized by

comparing the �eld strength B in suitable units with powers of atomic number Z. In

fact these workers delineate �ve di�erent regimes. Roughly speaking, they show that
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B=Z3 is playing the role of an e�ective Planck's constant, and it is only when B � Z3

and B � Z3 that in the heavy atom limit discussed above the screening departs from

spherical symmetry. In the last region with B=Z3 very large, atoms degenerate into

`needles' along the B� �eld. The generalization of Emden's eqn (1.1) proposed here is only

valid for B � Z3, but with B still large, having as a consequence a spherically symmetric

self-consistent �eld around the atomic nucleus in the high Z limit.

3 Proposed generalization of Emden's equation

Three of the four equations embraced by the generalized Emden equation

�00 =

n
�
�
1 + �

x

�on=2
xm=2

; (3.1)

which is the main focus of the present investigation, have now been stated, namely eqn

(1.3) known to Milne [1], eqn (2.8) known to Kadomtsev [12] and eqn (2.6) derived by Hill

et al. [10]. These equations correspond respectively to the pairs [n;m] = [3; 1] and [1;�1],
with also  = 0 for eqns (1.3) and (2.8) and [n;m] = [1;�1] with  6= 0 for eqn (2.6).

These pairs, in fact, are already reproduced by the less general case when m = n � 2 in

eqn (3.1).

The fourth equation embraced by the proposed eqn (3.1), namely the relativistic gen-

eralization of the so-called dimensionless Thomas-Fermi eqn (1.3) is discussed briey in

the Appendix. Again the choice m = n� 2 in eqn (3.1) is su�cient to include this fourth

eqn (A2).

3.1 Some elementary solutions of eqn (3.1)

It is not our aim here to attempt any detailed discussion of solutions of eqn (3.1) satisfying

speci�c physical boundary conditions (such as, e.g. eqns (1.4) and (1.5) for the di�erential

eqn (1.3)). However, it is worthy of note that, for  = 0, eqn (3.1) is solved by

�(x) = Ax� (3.2)

where substitution in eqn (3.1) with  = 0 readily yields

� = [4�m]=[2� n] (3.3)
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while

A = [�(� � 1)]2=n�2 (3.4)

For the pair [n;m] = [3; 1] plus  = 0, � = �3 while A = (12)2 = 144, and one recovers

the Sommerfeld solution of eqn (1.3) already referred to.

For  6= 0, this solution generalizes to

�(; x) =
144

x3
f
�


x4

�
(3.5)

as discussed by Senatore and March [13] but we shall not go into details here (see, however,

the Appendix).

Su�ce it to say, before summarizing, that numerical solutions are available for pairs

[n;m] = [3; 1] and [1;�1] for  = 0 satisfying physical boundary conditions, while for

some speci�c values of  there are also tabulated results for the same pairs of [n;m].

4 Summary and future directions

The main proposal of the present study is summarized in eqn (3.1), which we term the

generalized Emden equation. It has been shown to embrace four equations for the screen-

ing function of the nuclear potential energy �Ze2=r, namely eqns (1.3) and (2.8) which

are non-relativistic and correspond to  = 0, and eqns (2.6) and (A2) which are consistent

with the Special Theory of Relativity.

It may, we feel, be of interest in the future to seek more general analytical solutions

than we have exposed in section 3.1. Returning to the original Emden eqn (1.1), with

n now having the di�erent meaning of the polytrope index, Saslaw [3] notes in his book

that closed form solutions of Emden's original eqn (1.1) are known for n = 0; 1 and 5.

Examination of eqn (3.1) further with n=2 now having these values may be fruitful

for  6= 0. Also, the possible appearance of irrational indices for other than the Coulson-

March solution (1.6) may be worthy of future study.

But what has been achieved here, following the lead of Milne [1], is to pull together via

the proposed eqn (3.1), two �elds so apparently diverse as the structure of a gaseous star

and the electron theory of heavy positive atomic ions, with and without applied magnetic

�elds.
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APPENDIX

Sketch of relativistic generalization of dimensionless Thomas-Fermi eqn (1.3)

describing heavy positive atomic ions with B� = 0

As in section 3 on the intense magnetic �eld limit, the starting point is the equation

for the relativistic chemical potential ��, but now in the zero �eld limit B = 0.

Then, omitting the analogue of eqn (2.1) for �� itself, we are led to the equation

replacing eqn (2.2) as

(�� � V )2

2m0c2
+ (�� � V (r)) =

1

2m0

�
 
3h3

8�

!2=3

�2=3 (A1)

which immediately reduces to the Thomas-Fermi density-potential relation � / (�0�V )3=2

as �! 0 or equivalently c!1.

Making once more the substitution (2.3) but with the length scale r = bx as in the

B = 0 non-relativistic limit in eqn (1.2), one is led to the equation

�00 =

n
�
�
1 +  �

x

�o3=2
x1=2

:  =
�
4

3�

�2=3
�2Z4 : (A2)

Eqn (A2), which was already known to Vallarta and Rosen [14], completes the four equa-

tions uni�ed by the generalized Emden eqn (3.1).

It may be noted here, returning to the Senatore-March solution 144=x3f(=x4), that

these workers [13] found that f(s) has a simple pole at a critical value, say sc, which is

� 10�2. The analogue of the Coulson-March solution (1.6) is readily established then to

be of the form

�(; x) =
144

x3
f(=x4)

�
1� F1

xc
+ : : :

�
: (A3)

The non-zero value of  will eventually introduce integral inverse powers of x into eqn

(A3), but this will only occur at order 1=x4.

Also noteworthy is the fact that, as is customary in relativistic atomic theory, it is

important to solve eqn (A2) numerically with the inclusion of a �nite sized nucleus. In

particular, this escapes from a di�culty of the original Vallarta-Rosen scheme [14] that

the electron density �(r) could not be normalized due to its strong divergence at a (point)

atomic nucleus.
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