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Abstract
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1 Introduction

The open string tachyon condensation on non-BPS brane systems has attracted
much interest recently. One framework of analysis is level truncation of the open
string field theory (SFT) which lead to very good numerical agreements with ex-
pected values of vacuum energy and lower-dimensional D-branes tensions [1, 2]. An-
other framework is the boundary SFT (BSFT) [3, 4, 5, 6, 7, 8]. It was argued that
while in the SFT approach an infinite number of massive fields are involved in the
condensation process, in the BSFT one can restrict to the tachyon field and study
some aspects of the condensation, such as the tensions of the lower-dimensional
D-branes, exactly [4, 5, 9].

In this note we will use the notion of superconnections [10], which when consid-
ering the branes-antibranes system and non-BPS Dp-branes appears naturally via
the Chan-Paton factors [11]. We will make the assumption that the effective action
of tachyon and gauge fields for the Dp− D̄p-branes system and non-BPS Dp-branes
can be written in a Quillen-like framework in terms of the supercurvature. The
tachyon potential that arises in this framework is exponential in the tachyon field.
We will propose a form of the effective action and use it to study the process of
tachyon condensation. Kink solutions that we will find, with infinite constant value
of the gauge field strength, reproduce the exact tensions of the lower-dimensional
D-branes at the minimum of the tachyon potential. The effective action is different
from the BSFT proposal [5, 7, 8]. It can be related by field redefinitions, in some
cases, to the effective action proposed in [12, 13, 14, 15].

The note is organized as follows. In section 2 we will introduce the notion of
superconnections and supercurvatures and propose an effective action of the tachyon
and gauge fields for Dp−D̄p-branes system and non-BPS Dp-branes. In section 3 we
will study the kink solutions and derive the exact tensions of the lower-dimensional
Dp-branes. Section 4 is devoted to a discussion and comparison the effective action
to other models in the literature.

Note, that we will use a metric with signature (−, +, ...+). Also, we will re-scale
the gauge fields, tachyon and coordinates by A → A/

√
2πα′, T → T/

√
2πα′, x →√

2πα′x. In section 3 we will re-scale back in order to get the correct dimensions
and tensions.

2 Superconnections and the effective action

In this section we will introduce the notion of superconnections [10]. We will make
the assumption that the effective action of tachyon and gauge fields for Dp − D̄p-
branes system and non-BPS Dp-branes can be written in a Quillen-like framework
in terms of the supercurvature, and propose the form of the effective action.
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2.1 Supeconnections for Dp− D̄p systems

The superconnections which will be relevant for us appear, for instance, in the work
of Quillen [10] on the Chern character of a K-class, and in the non-commutative
formalism of Connes applied to to algebras of the form C∞(R4)⊗ ( IC⊕ IC ) [16]. We
will mainly follow the formalism of Quillen, and briefly review in the following some
of its elements.

One considers a pair of complex vector bundles E1, E2 over a manifold M and a
homomorphism T : E2 → E1. In the branes-antibranes system the vector bundles
E1 and E2 correspond to the branes and antibranes respectively, and the map T
corresponds to the tachyon arising from the open string stretched between them.
One can regard E = E1 ⊕ E2 as a superbundle, that is a bundle that carries a
Z2-graded structure. The fiber V = V1 ⊕ V2 is a vector space with Z2 grading.
Denote the involution that gives the grading by ε: ε(v) = (−1)deg(v)v. The algebra
of endomorphisms of V , End(V ), is a superalgebra with even and odd elements.
The even endomorphisms commute with ε, while the odd ones anticommute with
it. The supertrace is defined by

Trs(X) ≡ Tr(εX), X ∈ End(V ) . (1)

It vanishes for odd endomorphisms, and gives the difference of the traces on V1 and
V2 for the even ones.

When considering differential forms on M there is a natural Z-grading corre-
sponding to the degree of the forms. Thus, differential forms on M with values in
E have a Z × Z2 grading. What will be relevant is the total Z2 grading.

Let D be an odd degree connection on E preserving the Z2 grading

D =


 d + A1 0

0 d + A2


 . (2)

Denote by T the odd degree endomorphism of E

T =


 0 iT

iT̄ 0


 . (3)

The supeconnection A = D + T on E is an operator of odd degree acting on
differential form on M with values in E

A =


 d + A1 iT

iT̄ d + A2


 . (4)

When considering the branes-antibranes system the superconnection (4) appears
naturally via the Chan-Paton factors, where the gauge fields of the branes A1

µ and an-
tibranes A2

µ are the diagonal elements and the off-diagonal elements are the tachyon
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T and its conjugate T̄ . Note, that while the diagonal elements are 1-forms the off-
diagonal elements are 0-forms. However, the total grading of all the matrix elements
in one.

The supercurvature F = A2 is given by

F =


F 1 − T T̄ iDT

iDT F 2 − T T̄


 , (5)

where the covariant derivatives are defined by

DT ≡ dxµDµT = dxµ(∂µT + A1
µT − TA2

µ) ,

DT ≡ dxµDµT = dxµ(∂µT̄ + A2
µT̄ − T̄A1

µ) . (6)

F i, i = 1, 2 are the gauge fields strength associated with the gauge potentials Ai, i =
1, 2. Note, that we used the fact that in this framework T and T̄ anti commute with
dxµ. The Chern character ch(E1)− ch(E2) is represented by Trs eF [10].

2.2 Dp− D̄p effective action

One can rewrite the supercurvature (6) using the Clifford algebra. We replace
dxµ1 ...dxµn → 1

n!
γµ1 ...γµn , where γµ satisfy the Clifford algebra {γµ, γν} = 2gµν.

The supercurvature reads now

F =




1
2
γµνF 1

µν − (T T̄ −mm̄) iγµDµT

iγµDµT 1
2
γµνF 2

µν − (T T̄ −mm̄)


 , (7)

where γµν = 1
2
[γµ, γν ], namely dxµ∧dxν → γµν . Note that in (7) we used the freedom

to add a constant part, represented by mm̄. In the non-commutative formalism with
algebras C∞(R4)⊗ ( IC ⊕ IC ), m, m̄ correspond to the IC ⊕ IC part (see also [17]).

There are two natural trace operations we can take over the Clifford algebra. We
denote by tr the one simply taken over the Clifford algebra elements, e.g. tr(γµγν) =
2[(p+2)/2]gµν in a (p+1)-dimensional space. We denote by atr the antisymmetric trace
over the Clifford algebra, e.g. atr(γµγν) = trγµν , which leads naturally to the wedge-
product structure. We denote by Tr the one taken over the matrix structure of F ,
and Trs is as in (1).

Since the superconnection appears naturally in the description of the branes-
antibranes system it is natural to ask whether we can write the effective action in
terms of the supercurvature. The first hint is the Dp − Dp̄ effective action up to
second order, as computed in perturbative string theory [18]

S2 = Tp

∫
dp+1x

(
1

4
F 1µνF 1

µν +
1

4
F 2µνF 2

µν −DµTDµT − (T T̄ −mm̄)2
)

, (8)
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where by Tp we denote the tension of a BPS Dp-brane. This action can be written
as

S2 = − Tp

2[(p+2)/2]

∫
dp+1xTr(trF2) . (9)

One may suspect then that the higher order terms in the effective action, in the
slowly varying fields approximation, where we neglect terms like ∂kF and ∂lT, l > 1,
could be of the form Fn, n > 2. We will work in the slowly varying fields approxi-
mation in the following. We will see in the next section that this approximation is
sufficient for the analysis of some exact properties of the tachyon condensation.

The second hint comes from the form of the Wess-Zumino (WZ) term of the
branes-antibranes system. It can be written as

SWZ = τ
∫

dp+1xTrs(atr(Γ C eF )) , (10)

where τ is a normalisation constant, τ = e−mm̄ µp

2[(p+2)/2] and µp = gsTp. Γ is given by (see
appendix A)

Γ = i[
p−1
2

]
(

γ̃ 0
0 γ̃

)
, γ̃ = i[

p−1
2

]γ0...γp , (11)

and

C =
∑ 1

n!
γµ1,···µnCµ1,···µn (12)

where Cµ1,···µn is an n-form corresponding to the RR n-form field.
In the language of differential forms (10) reads

SWZ = µpe
−mm̄

∫
C ∧ Trs( eF ) . (13)

This WZ action was proposed in [19], and is expected in view of the discussion in
section 2.1 and the fact that D-branes charge is measured by the K-theory class.

The supercurvature F can be decomposed as

F =




1
2
γµνF 1

µν iγµDµT

iγµDµT
1
2
γµνF 2

µν


− (T T̄ −mm̄)


 11 0

0 11




= F̄ − (T T̄ −mm̄)11 . (14)

Using this form of the curvature the WZ action (13) can be written as

SWZ = µp

∫
dp+1xe−T T̄C ∧ Trs


 ∑

n≤p+1

F̄n

n!


 . (15)

The WZ action (15) suggests that the tachyon potential is

V (T, T̄ ) ∼ e−T T̄ . (16)
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This is in accord with the effective field theory [20], string field theory [4] and σ-
model computations [21].

We now turn to the non-topological part of the branes-antibranes action, which
we will denote by DBI. We expect to get the same tachyon potential (16) in the DBI
part. We now make the assumption that we can write it via the supercurvature.
Since the superconnection and supercurvature appear as part of the structure of the
system via the Chan-Paton factors one may expect this to be the case. However,
it is also possible that only the topological part of the branes-antibranes action can
be written using the supercurvature. This is related to the question whether the
superbundle structure is indeed a structure of the brane-antibrane system or only
of its topological part. We will continue with the assumption, bearing in mind that
we do not have a proof for it.

The requirement of being able to write the DBI part using the supercurvature,
together with the requirement of getting the same tachyon potential (16) in the DBI
part, uniquely fixes the DBI action to

SDBI = −τ0

∫
dp+1xTr(treF ) . (17)

τ0 is a normalisation constant given by Tp

2[(p+1)/2] = τ0e
mm̄.

The order F2 of (17) is precisely (8). Using the form of the curvature (14) we
have

SDBI = − Tp

2[(p+2)/2]

∫
d(p+1)x e−T T̄ Tr

(
tr eF̄

)
. (18)

Thus, the proposed effective action of the branes-antibranes system, written in
terms of the supercurvature (14,) is S = SDBI + SWZ , with SDBI given by (18) and
SWZ by (15).

2.3 Superconnections for non-BPS Dp-branes

Consider now the non-BPS Dp-branes, i.e. odd p in Type IIA and even p in Type
IIB string theories. A non-BPS Dp brane is obtained by orbifolding the Dp − D̄p
system by the (−1)FL operation [22]. The action (−1)FL on the Chan-Paton factors
is realized by the matrix σ1, which leaves I, σ1 invariant and projects out σ3, iσ2. In
this way one finds the invariant gauge superconnection

A =


 d + A iT

iT d + A


 , (19)

which means setting A = A1 = A2 and T̄ = T in (4).
A mathematical framework to discuss these superconnections is that of [10], with

the appropriate Chern character forms associated with the D-branes charges. As we
will discuss, they multiply the RR-fields in SWZ of the non-BPS Dp-brane. Let us
briefly review the formalism.
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Let C1 = C ⊕ Cσ denote the a superalgebra with σ having odd degree and
σ2 = 1. Tensoring the vector bundle E associated with the non-BPS Dp-brane with
the superalgebra C1, one constructs a super vector bundle E ′

E ′ = E ⊗ C1 . (20)

The algebra of endomorphisms of E ′, End(E ′), is a superalgebra, whose elements
can be written as a + bσ with a, b in End(E). The supertrace on End(E ′) is given
by

Trσ(a + bσ) = Tr(b) . (21)

The superconnection on E ′ is given by A = (d+A)+ iσT , where σ = σ1 is the Pauli
matrix. It coincides with (19). The supercurvature F = A2 reads

F =


F − TT iDT

iDT F − TT


 . (22)

The differential forms Trσ(Fn) are closed and of odd degree.

2.4 Non-BPS Dp-branes effective action

One can rewrite the supercurvature (22) using Clifford algebra as

F =




1
2
γµνFµν iγµ∂µT

iγµ∂µT 1
2
γµνFµν


− (T 2 −m2)


 11 0

0 11




= F̄ − (T 2 −m2)11 , (23)

where we added a constant part.
Consider the WZ part of the non-BPS Dp-brane action. It has been analysed

partially in [23]. The above discussion of the D-branes charges associated with the
non-BPS Dp-brane imply that the WZ-term is

SWZ =
−iµp√

2

∫
dp+1xe−T 2C ∧ Trσ


 ∑

n≤p+1

F̄n

n!


 . (24)

That is, the Chern characters of the superbundle (20) encode the Dp-brane charges
of condensates on the non-BPS branes. The WZ action suggests that the tachyon
potential is V (T ) ∼ e−T 2

. Following the same reasoning as for the Dp− D̄p system
we propose a form of the DBI part of the non-BPS Dp-brane action, written in
terms of the supercurvature as

SDBI = − Tp√
22[(p+2)/2]

∫
d(p+1)x e−T 2

Tr
(
tr eF̄

)
, (25)

with F̄ given by (23). The factor 1/
√

2 in (25) is due to the fact that the tension of
a non-BPS Dp-brane is

√
2Tp, and the matrix structure of F .

To summarize, the proposed effective action of the non-BPS Dp-brane is S =
SDBI + SWZ , with SDBI given by (25) and SWZ by (24).
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3 Tachyon condensation

In this section we will study the process of tachyon condensation in the non-BPS
Dp-brane and branes-antibranes systems. We will derive the exact tensions for the
lower-dimensional D-branes via kink and vortex solutions, where the gauge field
strength is an infinite constant.

3.1 Condensation on a non-BPS-brane

Consider a non-BPS Dp-brane that carries a D(p-1)-brane charge. Upon tachyon
condensation we expect to get a BPS D(p-1)-brane. The tachyon T is a function of
one coordinate transverse to the expected D(p-1)-brane world volume. Denote this
coordinate by x1 = x. We take the tachyon configuration to be T = αx where α is
constant. For such a configuration higher than two derivatives of the tachyon vanish
and we do not have to worry about not including them in the effective action.

Using the WZ action (24) we get the coupling of RR p-form to the Non-BPS-
brane. It reads

SWZ =
√

2µp

∫
dp+1x Cp ∂T e−T 2

= µp−1

∫
dpxCp , (26)

with µp−1 = µp 2πls, and we have rescaled to restore the appropriate dimensions.
We see that we get the charge corresponding to the D(p-1)-brane, independently of
the form of the gauge field strength.

We assume a constant gauge field strength. With such a configuration derivatives
of the gauge field strength vanish and we do not have to worry about not including
them in the effective action. For simplicity we will take only F12 = F to be non-zero.

The supercurvature (23) reads

F̄ =


 γ1γ2F12 iγ1∂T

iγ1∂T γ1γ2F12


 . (27)

We can evaluate the DBI action (18) exactly and get

SDBI = −
√

2Tp

∫
dp+1xe−T 2

cosh
√

(∂T )2 − F 2 , (28)

where F = F12 and F 2 ≡ F12F12. The field equations read

∂


e−T 2

∂T
sinh(

√
(∂T )2 − F 2)√

(∂T )2 − F 2


+ 2Te−T 2

cosh(
√

(∂T )2 − F 2) = 0 ,

∂


e−T 2

F
sinh(

√
(∂T )2 − F 2)√

(∂T )2 − F 2


 = 0 . (29)
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When α is finite there is a solution of the field equations (29) with F = 0. This
solution does not reproduce the right tension of a D(p-1)-brane. Indeed, we do
expect to get the D(p-1)-brane when T is at the minimum of the potential. This
happens when α → ∞. In this limit, a kink solution with finite non-zero tension
requires F to be infinite. At the bottom of the tachyon potential the kinetic term
of F goes to zero. One may want to conclude that it does not cost energy to change
the value of F and therefore it is not of importance. However, this is correct only
for finite changes of the value of F . Infinite changes do cost energy and change the
resulting tension of the kink. There is a particular way of F approaching infinity as
α →∞ that leads to a kink that satisfies the BPS relation between the charge and
the tension. The configuration profile is

T = αx, α = sinh(
√

α2 − F 2) . (30)

For this profile the equations of motion read

αxe−α2x2

[
α3

arcsinhα
−
√

1 + α2

]
= 0 ,

xe−α2x2 α3
√

α2 − arcsinh2α

arcsinhα
= 0 . (31)

The field equations are solved when α = 0 and α →∞. The α = 0 solution means
T = F = 0 and corresponds to the top of the tachyon potential where we have the
non-BPS-brane. The α →∞ corresponds to the minimum of the tachyon potential.

Plugging the α →∞ solution into the action (28), we get

Skink = −
√

2Tp

∫
dp+1xe−α2x2√

1 + α2|α→∞ = (−
√

2Tp)
√

π(
∫

dpy) . (32)

Therefore the tension of the kink is Tkink =
√

2π Tp. After restoring the appropriate
units we have

Tkink = (2π
√

α′) Tp ≡ Tp−1 , (33)

as the exact value.
As we noted, finite changes of the value of F do not affect the tension of the

kink, but infinite changes will. All the other configurations will not satisfy the BPS
relation between the charge and the tension.

It is worth exploring the kink profile in another set of variables. Consider the
DBI action for the non-BPS Dp-brane proposed in [13]. It reads

S = −Tp

∫
dp+1xV (T̃ )

√
− det(ηµν + F̃µν + ∂µT̃ ∂νT̃ ) . (34)

One can study the kink solutions via this action. The special configuration (30)
corresponds to a kink solution of the form T̃ = αx, F̃ = 0 in the variable of (34),
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when α →∞. Such a kink solution has been discussed in [20]. It is mapped to the
variables of (30) via

T̃ = T , (∂T̃ )2 + F̃ 2 = sinh2
√

(∂T )2 − F 2 , (35)

which maps, in our case, the action (34) to (28).

3.2 Condensation on the brane-antibrane system

Consider tachyon condensation on a Dp-D̄p system carrying a D(p-2)-brane charge.
The tachyon should form a vortex-like configuration, with the topological charge of
the vortex encoding the D(p− 2) brane charge.

We take the tachyon configuration T = αz, T̄ = ᾱz̄, where z = x1+ix2. Inserting
into the WZ action (15) we get the coupling of RR p-form to the BPS-brane. It
reads

S
(2)
WZ = µp

∫
dp+1x

1

2 p!
εµ0,...µp−1αβCµ0...µp−1

(
(F 1 − F 2)αβ + 2DαTDβT

)
e−T T̄

= µp (2π)(1 + ∆F )
∫

dp−1x
1

p!
εµ0...µp−1Cµ0...µp−1 , (36)

where ∆F = F 1 − F 2. Reinstalling 2πα′ one thus finds µcond = 2π µp−2(1 + ∆F ).
Assume that only F i

12, i = 1, 2 is different from zero. In order to find the exact
charge the vortex-like solution should have F 1

12 − F 2
12 = 0.

In this setup the supercurvature (14) reads

F̄ =


 γ1γ2F12 i(γ1 + iγ2)∂zT

i(γ1 + iγ2)∂z̄T̄ γ1γ2F12


 . (37)

Evaluating from this the action (18) we get

S = −2Tp

∫
dp+1xe−|T |

2

cosh
√

2∂zT∂z̄T̄ − F 2 . (38)

The field equations read

∂z

[
∂z̄T̄ e−|T |

2 sinh(2|∂T |2 − F 2)1/2

(2|∂T |2 − F 2)1/2

]
− T̄ e−|T |

2

cosh(
√

2|∂T |2 − F 2) = 0,

∂z

[
e−|T |

2

Fzz̄
sinh(2|∂T |2 − F 2)1/2

(2|∂T |2 − F 2)1/2

]
, (39)

where we denote F = F12 = − i
2
Fzz̄.

To calculate the vortex tension consider the following kink profile

T = αz, β = sinh(
√

2|α|2 − F 2) . (40)
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For this profile the equations of motion read

αze−|α|
2|z|2

[
|α|2β

arcsinhβ
−
√

1 + β2

]
= 0

|α|2ze−|α|2|z|2
|α|2β

√
|α|2 − arcsinh2β

arcsinhβ
= 0 . (41)

Again, this profile can solve the equations of motion for α = 0 and F = 0. This
solution corresponds to the top of the potential where we have the Dp-D̄p system.
Condensation of the Dp-D̄p system to a D(p − 2) brane, corresponds to non zero
fields with the tachyon mostly sitting at the minimum of the potential. This happens
for |α| → ∞. F has to be sent to infinity such that the D(p− 2) tension saturates
the BPS bound.

The correct scaling for the field strength F can be found from calculating the
tension of the vortex. Plugging the α →∞ solution into the action, we get

S|vortex = −2Tp

∫
dp+1xe−|α|

2|z|2
√

1 + β2 = −2πTp

√
1 + β2

|α|2
∫

dp−1x . (42)

Scaling F such that |β| → |α|2 the tension of the vortex is Tp−2,cond = 2π Tp−2. After
reinstalling 2πα′ one finds

Tp−2 = (2π)2α′ Tp−2 , (43)

which is the correct value of the D(p-2)-brane tension.

4 Discussion

An obvious question is what is the relation between the effective actions proposed
here and others in the literature. The first thing one may try is to relate them by
fields redefinition. While this can be done, at least in some cases, it is not clear
how meaningfull it is. In the BSFT picture, an exact map means that we expect the
same whole 2d-flow from the UV fixed point corresponding to the top of the tachyon
potential to the IR fixed point corresponding to the bottom of the potential. There
is no reason why this should be the case. For instance, in both actions (25) and
(34) we neglect higher derivative terms of the tachyons and the gauge fields and a
precise map is likely to require these. It may be more natural to expect that they
agree only at the fixed points, namely on-shell from string theory viewpoint. One
example of fields redefinition is the map (35) which maps the action (28) to (34).
Indeed the kink solutions of both actions agree when α = 0 and α →∞. However,
the space of solutions of the field equations differ for finite values of the fields, as
one can easliy verify.

Setting the gauge fields to zero, A1 = A2 = 0, we get

S = − 2Tp

2[(p+2)/2]

∫
d(p+1)xe−T T̄ tr

(
cosh(

√
γµγν∂µT∂ν T̄ )

)
. (44)
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Consider, for instance, non-BPS Dp-brane case where the tachyon is real T = T̄ .
Up to two derivatives the action has the structure familiar from BSFT and σ-model
perturbation theory

S = −2Tp

∫
d(p+1)xe−T 2

(1 +
1

2
∂µT∂µT ) . (45)

However, it is easy to see that the numerical coefficients of the higher derivative
terms do not match those of the BSFT action [5]. Indeed, in [5] one studies the
tachyon condensation with only the tachyon field excited and one gets the precise
tension of the lower-dimensional D(p-1)-brane. In our variables, we needed a nonzero
configuration of the gauge field strength in order to derive the precise tension of
D(p-1)-brane from the kink solution. Upon addition of the gauge fields in the BSFT
formalism [7, 8] there is still a difference between the actions.

One can also set T = T̄ = A2 = 0 in the action (18), which leads to

S = − Tp

2(p+1)/2

∫
d(p+1)x tr e

1
2
γµνFµν , (46)

which one can map to the DBI action

S = −Tp

∫
dp+1x

√
− det(ηµν + F̃µν) , (47)

by relating F̃ to a formal expansion of sinh(Fµν). However, as above, one would
expect a change of variables to include the higher derivative terms which were ne-
glected in the slowly varying fields approximation.

Note added: While typing the paper we received [7] and [8] which contain an
overlap regarding the WZ part of the non-BPS Dp-brane action.
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Appendix

A Clifford algebra conventions

In this appendix, the special faithful representations of the Clifford algebra, we used
in this note, will be constructed.

Let C(p, q) denote the Clifford algebra with (γi)2 = −1, i = 1, ..., p and (γj)2 =
1, j = p + 1, ..., q. The representation for C(1, p) with p + 1 even is constructed as
follows: Choose the Pauli matrices as a representation of C(0, 2)

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ3 =

(
1 0
0 −1

)
. (48)

and an arbitrary faithful representation for C(1, p− 2),

C(0, 2) = {σ1, σ2}, (49)

C(p− 2, 1) = {γ1, ..., γp−2, γ0}, (50)

then one finds

C(1, p) = {iσ3 ⊗ γ0, ..., iσ3 ⊗ γp−2, σ1 ⊗ 1, σ2 ⊗ 1}. (51)

The minimal faithful representation for odd dimensions can be written as the
direct sum of the two inequivalent representations generated from the even dimen-
sional representation in one lower dimension.

C(1, p + 1) = {
(

γ0 0
0 γ0

)
, ...,

(
γp 0
0 γp

)
,

(
γ̃ 0
0 −γ̃

)
}, (52)

with γa denoting the Clifford of one dimension lower and γ̃ = i[
p−1
2

]γ0...γp the gen-
eralised γ5.
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