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Integrated Design of Superconducting Magnets
with the CERN Field Computation Program ROXIE

S. Russenschuck, M. Aleksa, M. Bazan, J. Lucas, S. Ramberger, C. Völlinger
CERN, 1211 Geneva 23, Switzerland

The program package ROXIE has been developed at
CERN for the field computation of superconducting ac-
celerator magnets and is used as an approach towards
the integrated design of such magnets. It is also an ex-
ample of fruitful international collaborations in software
development. The integrated design of magnets includes
feature based geometry generation, conceptual design us-
ing genetic optimization algorithms, optimization of the
iron yoke (both in 2d and 3d) using deterministic meth-
ods, end-spacer design and inverse field calculation. The
paper describes the version 8.0 of ROXIE which com-
prises an automatic mesh generator, an hysteresis model
for the magnetization in superconducting filaments, the
BEM-FEM coupling method for the 3d field calculation,
a routine for the calculation of the peak temperature dur-
ing a quench and neural network approximations of the
objective function for the speed-up of optimization al-
gorithms, amongst others. New results of the magnet
design work for the LHC are given as examples.

I. INTRODUCTION

The design and optimization of the superconducting
(SC) magnets for the LHC are dominated by the require-
ment of an extremely uniform field, which is mainly de-
fined by the layout of the superconducting coils. Even
very small geometrical effects such as the insufficient
keystoning of the cable (cable inner and outer diameter
not following curvatures of circles), the insulation, grad-
ing of the current density in the cable due to different
cable compaction and coil deformations due to collaring,
cool down and electromagnetic forces have to be consid-
ered for the field calculation.
Therefore, the ROXIE (Routine for the Optimization

of magnet X-sections, Inverse field calculation and coil
End design) program package was developed at CERN
for the design and optimization of the LHC SC mag-
nets. It is now also more and more applied in insti-
tutes outside CERN. In collaboration with the Technical
University of Graz, Austria, the program was extended
to include the calculation of iron saturation effects us-
ing a reduced vector-potential method. ROXIE also in-
cludes the method of coupled boundary / finite-elements
(BEM-FEM), which was developed at the University of
Stuttgart, Germany, and which is specially suited for the
calculation of 3-dimensional effects in the magnets. The
advantage of both methods is that the coils do not need to
be represented in the finite-element mesh and can there-
fore be modeled with the required accuracy.

The development of the program was driven by four
main objectives:

• To write an easy-to-use program for the design of
SC coils in two and three dimensions considering
field quality, quench margin and persistent current
multipoles arising from the SC magnetization.

• To include the program into a mathematical op-
timization environment for field optimization and
inverse problem solving.

• To provide for field computation techniques spe-
cially suited for SC magnets.

• To develop an integrated design tool with sophisti-
cated graphic routines and interfaces to CAD-CAM
systems for the making of drawings and the manu-
facture of coil end-spacers.

The main improvements in the ROXIE 8.0 version with
respect to older version (described, e.g., in [33]) are:

• Interface to the BEM-FEM coupling method for
the calculation of iron magnetization both in 2d
and 3d.

• Automatic mesh generator for quadrilateral meshes
based on a domain decomposition method.

• A Hysteresis model for superconducting filaments
coupled to the FEM and BEM-FEM method, with
a M(B)-iteration for the consideration of arbitrarily
shaped iron yokes.

• Analytical model for the calculation of quench-
currents and peak temperatures for long magnets
with heaters (no propagation effects).

• Axisymmetric geometries (Solenoids) with or with-
out iron yoke.

• Permanent magnet excitation.

• Automated install routines for UNIX systems.

• Optimization algorithm EXTREM with a neural
network approximator for speedup of the optimiza-
tion process.

• Post processing for magnetic levitation devices.

• Virtual reality interface for coil-end geometries.

1



II. FIELD QUALITY IN ACCELERATOR
MAGNETS

The quality of the magnetic field is essential to keep
the particles on stable trajectories. The magnetic field
errors in the aperture of the magnets are expressed as
the coefficients of the Fourier-series expansion of the ra-
dial field component at a given reference radius (in the
2-dimensional case). In the 3-dimensional case, the trans-
verse field components are given at a longitudinal posi-
tion z0 or integrated over the entire length of the magnet.
Assuming that the radial component of the magnetic flux
density Br at a given reference radius r = r0 inside the
aperture of a magnet is measured or calculated as a func-
tion of the angular position ϕ we get for the Fourier-series
expansion of the field

Br =
∞∑

n=1

(Bn sinnϕ + An cosnϕ) =

BN

∞∑
n=1

(bn sinnϕ + an cosnϕ). (1)

The field components are related to the main field com-
ponent BN (N = 1 dipole, N = 2 quadrupole, etc.). The
Bn are called the normal and the An the skew compo-
nents of the field given in Tesla, bn the normal relative,
and an the skew relative field components. They are di-
mensionless and are usually given in units of 10−4 at a
17 mm reference radius.
Let us consider a single coil centered in an iron yoke

with circular inner aperture and a uniform, high perme-
ability. The coil can be accurately described by a set
of line-currents at the position of the SC strands. For a
set of ns individual line-currents at the position (ri,Θi)
carrying a current Ii, the coefficients are given by

Bn = −
ns∑

i=1

µ0Ii

2π
rn−1
0

rn
i

(
1 + fµ(

ri

Ryoke
)2n

)
cosnΘi, (2)

An =
ns∑

i=1

µ0Ii

2π
rn−1
0

rn
i

(
1 + fµ(

ri

Ryoke
)2n

)
sinnΘi, (3)

at a given reference radius r0 where the factor fµ is given
as

fµ =
µr − 1
µr + 1

. (4)

Ryoke is the inner radius of the iron yoke with the rela-
tive permeability µr. As SC cables are composed of single
strands with a diameter of about 1 mm, a good compu-
tational accuracy can be obtained by representing each
cable by two layers of equally spaced line-currents at the
strand position. Thus the grading of the current density
in the cable due to the different compaction on its narrow
and wide side is automatically considered.

With equations (2) and (3), a semi-analytical method
for calculating the fields in SC magnets is given. The iron
yoke is represented by image currents (the second term in
the parentheses). At low field level, when the saturation
of the iron yoke is low, this is a sufficient method for
optimizing the coil cross-section.
The relative contribution of the iron yoke to the to-

tal field (coil field plus iron magnetization) is for a non-
saturated yoke (µr � 1) approximately (1+(Ryoke

r )2n)−1.
For the main dipoles (with a mean coil radius of r =
43.5 mm and a yoke radius of Ryoke = 89 mm) we get
a 19% yoke contribution to the B1 component, whereas
for the B5 component the influence of the yoke is only
0.07%.
It is therefore appropriate to optimize for higher har-

monics first using analytical field calculation, and cal-
culate the effect of iron saturation on the lower-order
multipoles only at a later stage. When the LHC dipole
magnets are ramped to their nominal field of 8.33 T in
the aperture, the yoke is highly saturated, and numerical
methods have to be used to replace the imaging method.
In this case it is advantageous to use numerical meth-
ods that allow a distinction between the coil-field and
the iron magnetization effects, to confine both modeling
problems on the coils and FEM-related numerical errors
to the 20% of field contribution from the iron magnetiza-
tion. Collaborative efforts with the University of Graz,
Austria, and the University of Stuttgart, Germany, have
been undertaken for this task. Both the method of re-
duced vector-potentials as well as the BEM-FEM cou-
pling method yields the reduced field in the aperture
caused by the magnetization of the iron yoke and avoids
the representation of the coil in the FE-meshes.

III. COIL MODELER

Coil cross sections and ends of accelerator magnets
made of Rutherford type SC cables are generated from
only a few meaningful engineering data such as the num-
ber of conductors per block, conductor type, radius of
the winding mandrel and the positioning and inclination
angles of the blocks. Different coil block arrangements
can be modeled.

• So-called cosΘ coils with alignment of the conduc-
tors on the inner diameter, i.e., the shape of the
coil being determined by the winding mandrel and
the curing mold.

• cosΘ coils with alignment on the outer diameter,
i.e., the shape is determined by the coil outer and
the collar inner diameter,respectively.

• Window frame coils with rectangular coil blocks.

• Axi-symmetric coils (solenoids).
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The input parameters for the coil-end modeling are
the z-position of the first conductor of each coil block,
its inclination angle in the yz plane, the straight section
and the size of inter turn wedges between the conductors.
Four options are available:

• Constant perimeter coil-ends with inter-turn
wedges and conductors placed on the winding man-
drel.

• Grouped conductors aligned at the outer radius,
featuring end-spacers with shelfs.

• Coil-ends for magnets with rectangular cross sec-
tions.

• Racetrack coil ends, with or without additional
straight section, suited for the modeling of
solenoids, wigglers and torus magnets.

The geometric positions of conductors can be printed in
different formats suitable for other numerical field calcu-
lation packages such as ANSYS and OPERA as well as
in a DXF format. The form of the end spacers can be
generated automatically and the polygons describing the
surfaces can be transferred into CAD-CAM systems for
the machining of these pieces using 5 axis milling ma-
chines or 5 axis water-jet cutters.
All the input data necessary for the coil modeling can

be defined as design variables and are automatically up-
dated during the optimization process.
Fig. 1 shows the ROXIE model of the LHC main dipole

extremity, with an inner (non-magnetic) ring in the yoke
in order to reduce the peak field in the coil ends with
their weaker mechanical structure.

               

                                 

FIG. 1. ROXIE model of the LHC main dipole extremities.

IV. YOKE MODELER AND MESH-GENERATOR

The yoke modeler allows the definition of symbols
which can then be used for the definition of key-points in
the finite-element domain. Yoke modeler, mesh genera-
tor and the finite element software are coupled through
transfer files to keep the size of the executable within 250
MB. If optimization algorithms are used, a transfer file
contains the updated values of key-point data.
Simplex elements (triangles in 2D, tetrahedra in 3D)

have the disadvantage that curved shapes can only be
modeled by polygonal approximations. The advantage
of a higher order approximation of the potentials may be
lost due to a rather rough geometric approximation. An
alternative are the isoparametric quadrilateral elements
which have curved sides. Numerically unfavorable prisms
can be avoided when the geometry is simply extruded
into the third dimension. However, automatic mesh gen-
erators for these elements have only very recently been
developed [37].
A new mesh generator based on geometrical domain

decomposition, which was developed at the Mathematics
Department of the University of Stuttgart, Germany [28]
has been implemented in the ROXIE program package.
The following extensions have been added.

• Extension of the method to 8 noded (higher order)
quadrilateral elements.

• Parametric input for the definition of design vari-
ables for the mathematical optimization.

• Implementation of design modules for the definition
of material boundaries.

• Feature based magnet modeling by means of the
Gnu m4 macro language.

• A morphing algorithm for optimization and sensi-
tivity studies which avoids re-meshing and chang-
ing mesh topologies during optimization.

The quadrilateral mesh generator implemented in
ROXIE relies on the method of geometrical domain de-
composition [28]. In a first step the area is decomposed
into areas that are topologically equivalent to disks, i.e.
holes are eliminated. This decomposition is continued
until the remaining areas are regarded as “simple” (e.g.
triangles or rectangles with up to 6 nodes on each side).
These areas are then “filled” with quadrilaterals using
a modified paving strategy [7]. In this approach an area
gets “filled” from outside to the inside by adding full rows
of rectangles. Finally, smoothing algorithms are applied
to enlarge small angles and to reduce large angles, while
leaving the mesh topology unchanged.
Since this mesh generator only produces finite-

elements with 4 nodes, the middle points are added
during the post processing and 8-noded (higher order)
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quadrilateral elements are produced which are necessary
for three dimensional BEM-FEM calculations.
Using the m4 macro language, magnetically relevant

parts of the magnet (e.g. yoke, collar, inserts, cryostat,
beam-screen etc.) can be modeled in different “.iron”
files and can then be linked with the “include” command
(notice that using the BEM-FEM method, disjunct iron
parts can be separately meshed). It is also possible to
re-use parametric models for different magnet variants
(in particular for the MQ, MQM and MQY quadrupole
magnets).
In order to make the new mesh generator applica-

ble for optimization and sensitivity studies, a morphing
technique known from computer graphics [6] was imple-
mented [1].
Fig. 2 shows the quadrilateral finite element mesh in

the yoke and collar of the insertion region quadrupole
magnet MQM. Notice the disjunct finite-element do-
mains, and the fact that the coil is not modeled in the
mesh.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 mm 

               

                                                              

FIG. 2. Quadrilateral finite element mesh in the yoke and
collar of the insertion region quadrupole magnet MQM

V. NUMERICAL FIELD CALCULATION

Magnets for particle accelerators have always been
a key application of numerical methods in electromag-
netism. Hornsby [19], in 1963, developed a code based on
the finite difference method for the solving of elliptic par-
tial differential equations and applied it to the design of
magnets. Winslow [41] created the computer code TRIM
(Triangular Mesh) with a discretization scheme based on
an irregular grid of plane triangles by using a generalized
finite difference scheme. He also introduced a variational
principle and showed that the two approaches lead to the
same result. In this respect, the work can be viewed as

one of the earliest examples of the finite element method
applied to the design of magnets. The POISSON code
which was developed by Halbach and Holsinger [17] was
the successor of this code and was still applied for the
optimization of the SC magnets for the LHC during the
early design stages.
Nevertheless, for the SC magnet design, it was nec-

essary to find more appropriate formulations which do
not require the modeling of the coils in the finite-element
mesh. The program FEM2D, developed at the Univer-
sity of Graz, Austria, by Bardi, Biro, and Preis, includes
a reduced vector-potential formulation, which is linked
to the ROXIE code.
The vector-potential A is split into two parts:

A = As + Ar (5)

where Ar is the reduced vector-potential due to the iron
magnetization and As is the impressed vector potential
due to the source currents in free space. Accordingly

B = µ0Hs + curlAr. (6)

The source vector potential can be calculated with Biot-
Savart-type integrals. The weak integral form reads:∫
Ω

curlwa · 1
µ
curlAr dΩ +

∫
Ω

divwa · 1
µ
divAr dΩ =

∫
Ω

curlwa · (Hs − µ0
µ

Hs) dΩ (7)

with a = 1, 2, 3. In the air region µ = µ0, and therefore
the right hand side of eq. (7) is zero. The current den-
sity does not appear explicitly in the equation and the
required source field in the iron region can be calculated
by means of Biot-Savart’s law.
Experience has shown that the influence of the far-field

boundary on the multipoles is smaller using the reduced
vector-potential formulation, since the reduced field ac-
counts for only about 20 % of the total field and thus
the error from the far-field boundary on the total field is
reduced. Although the mesh in the air region does not
have to model the coil, the air region must nevertheless
be meshed. This is not a problem in the 2-dimensional
calculations but proves troublesome in the 3D case.
Another problem in the 3D implementation is the fact

that the solution to the vector boundary value problem
is not unique. One method for overcoming this prob-
lem is the introduction of the so-called Coulomb gauge.
However, the use of the gauged formulation with re-
duced vector-potential creates convergence problems, as
the permeability jumps at the material boundaries be-
tween iron and air, and the interface condition for divAr

on the boundary implies a large jump in the divergence of
Ar, a quantity which should be zero [8]. As the method
of finite-elements ensures only the approximate satisfac-
tion of the weak form, an error in the fulfillment of the
Coulomb gauge is present and therefore divAr �= 0. Due
to the interface condition, the error in the iron region is
then even higher. In the 2D case the divergence of the
vector-potential is zero and this problem does not appear.
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A. BEM-FEM coupling method

The disadvantage of the finite-element method is that
only a finite domain can be discretized, and therefore
the field calculation in the magnet coil-ends with their
large fringe-fields requires a large number of elements
in the air region. The relatively new boundary-element
method is defined on an infinite domain and can there-
fore solve open boundary problems without approxima-
tion with far-field boundaries. The disadvantage is that
non-homogeneous materials are difficult to consider.
The method of coupled boundary-elements / finite-

elements (BEM-FEM), developed by Fetzer, Haas, and
Kurz at the University of Stuttgart, Germany, combines
a FE description using incomplete quadratic (20-node)
elements. The method relies on a gauged total vector-
potential formulation for the interior of the magnetic
parts, and a boundary element formulation for the cou-
pling of these parts to the exterior, which includes exci-
tational coil fields. This implies that the air regions need
not to be meshed at all. Experience has shown that the
gauged formulation is applicable for the field calculation
of SC magnets.
The BEM-FEM method couples the finite-element

method inside magnetic domains Ωi = ΩFEM with the
boundary-element method in the domain outside the
magnetic material Ωa = ΩBEM, by means of the normal
derivative of the vector-potential on the interface Γai be-
tween iron and air. The application of the BEM-FEM
method to magnet design has the following intrinsic ad-
vantages:

• The coil field can be taken into account in terms
of its source vector potential As, which can be ob-
tained easily from the filamentary currents Is by
means of Biot-Savart type integrals without the
meshing of the coil.

• The BEM-FEM coupling method allows for the di-
rect computation of the reduced vector potential
Ar instead of the total vector potential A. Con-
sequently, errors do not influence the dominating
contribution As due to the SC coil.

• Because the field in the aperture is calculated
through the integration over all the BEM elements,
local field errors in the iron yoke cancel out and the
calculated multipole content is sufficiently accurate
even for very sparse meshes.

• The surrounding air region need not be meshed at
all. This simplifies the preprocessing and avoids
artificial boundary conditions at some far-field-
boundaries. Moreover, the geometry of the perme-
able parts can be modified without regard to the
mesh in the surrounding air region, which strongly
supports the feature based, parametric geometry
modeling that is required for mathematical opti-
mization.

• The method can be applied to both 2D and 3D field
problems.

Inside the magnetic domain a gauged vector-potential
formulation is applied.

1
µ0

curl curlA = J + curlM (8)

1
µ0

(−∇2A + graddivA) = J + curlM (9)

Using the Coulomb gauge divA = 0, forcing the weighted
residual to zero, and applying Green’s first theorem yields
the weak integral form

1
µ0

∫
Ωi

grad(A · ea) · gradwa dΩi

− 1
µ0

∮
Γai

(
∂A
∂ni
− (µ0M× ni)

)
·wa dΓai =

∫
Ωi

M · curlwa dΩi (10)

with a = 1, 2, 3. It is shown in [12] that the continuity
condition of Ht, i.e.,

1
µ0

(curlAFEM − µ0M)× ni +

1
µ0

(curlABEM)× na = 0 (11)

on the boundary between iron and air is equivalent to

∂AFEM

∂ni
− (µ0M× ni) +

∂ABEM

∂na
= 0, (12)

where ni is the normal vector on Γai pointing out of the
FEM domain and na is the normal vector on Γai pointing
out of the BEM domain. The boundary integral term
on the boundary between iron and air Γai in (10) serves
as the coupling term between the BEM and the FEM
domain.
By definition, the BEM domain contains no iron, and

therefore M = 0 and µ = µ0. Eq. (8) then reduces to

∇2A = −µ0J (13)

As Cartesian coordinates are used eq. (13) decomposes
into three scalar Poisson equations to be solved. For an
approximate solution of these equations, the weighted
residual is forced to zero and the weighting functions are
chosen as the fundamental solution of the Laplace equa-
tion, which is in 3D

w = u∗ =
1

4πR
. (14)

With ∂w
∂na

= q∗ = − 1
4πR2 and ∇2w = −δ(R) we get the

Fredholm integral equation of the second kind:
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Θ
4π

A +
∮
Γai

QΓai u
∗ dΓai +

∮
Γai

AΓai q
∗ dΓai =

∫
Ωa

µ0Ju∗ dΩa. (15)

As it is common practice in Literature on boundary ele-
ment techniques, e.g., [10] the notation u∗ for weighting
functions are used in eq. (15). The right hand side of eq.
(15) is a Biot-Savart-type integral for the source vector
potential As.
The components of the vector potential A at arbitrary

points r0 ∈ Ωa (e.g. on the reference radius for the field
harmonics) has to be computed from 15 as soon as the
components of the vector potential AΓai and their normal
derivatives QΓai on the boundary Γai are known. Θ is the
solid angle enclosed by the domain Ωa in the vicinity of
r0.
For the discretization of the boundary Γai into individ-

ual boundary elements Γai,j, C0-continuous, isoparamet-
ric 8-noded quadrilateral boundary elements are used.
They have to be consistent with the elements from the
FEM domain touching this boundary. The discrete ana-
logue of the Fredholm integral equation can be obtained
by successively putting the evaluation point r0 at the lo-
cation of each nodal point rj . This procedure is called
point-wise collocation and yields a linear system of equa-
tions, The discrete analogon of equation 15 gives ex-
actly the missing relationship between the Dirichlet data{
AΓai

}
and the Neumann data

{
QΓai

}
on the boundary

Γai.
Fig. 3 shows the relative multipole field components

at 17 mm ref. radius as a function of the longitudinal
position in the LHC main dipole extremity (comp. fig
1).
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FIG. 3. Relative multipole field components at 17 mm ref.
radius as a function of the longitudinal position in the LHC
main dipole extremity. Zero is the end of the straight section.

VI. PERSISTENT CURRENTS

Field variations in the LHC superconducting magnets,
e. g. during the ramping of the magnets, induce magneti-
zation currents in the superconducting filaments that do
not decay, but persist due to the lack of resistivity. The
relative field errors created by these persistent currents
are small in case of nominal field but become dominant
at low excitation levels.
The calculation method for the persistent currents is

based on a semi-analytical hysteresis model [40] for hard
superconductors combined with the BEM-FEM method.
The hysteresis model depends on a Jc(B) current fit [9]
and an extended Bean model [5], [42] for the supercon-
ducting filaments. The feed-back of the superconduct-
ing filament magnetization and the iron magnetization
effects are calculated by means of an iterative scheme
presented in [40]. This allows the calculation of multi-
pole components as a function of the excitation and the
powering cycle, and for arbitrarily shaped iron parts with
non-linear B(H) curves.
Fig. 4 shows the relative multipole field components at

17 mm ref. radius as a function of the excitation between
injection and nominal field level for the MQM insertion
region quadrupole (including iron saturation and persis-
tent current multipoles).
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FIG. 4. Relative multipole field components at 17 mm ref.
radius as a function of the excitation between injection and
nominal field level for the MQM insertion region quadrupole
(including iron saturation and persistent current multipoles)
Ref. fig. 2.
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VII. QUENCH ANALYSIS

Studying the magnet behavior in the event of transi-
tion to the resistive state (quench) is an important con-
sideration during the design phase of SC magnets. The
aim of these studies is to know whether or not the magnet
is self-protected against resistive transitions, and how it
can be protected in case the quenches threaten the in-
tegrity of the magnet.
For the case of long magnets with quench heaters the

propagation effect can be neglected and an analytical
model can be used for the calculation of the hot spot
temperature. The basic equation that links the tem-
perature of the conductor with the current is given by
the heat balance equation under adiabatic conditions (no
heat conduction and no cooling) [42]

RI(t)2 = C(T )V
dT

dt
, (16)

ρCu(B(I), T, RRR)
ACu

l I(t)2 = C(T )AT l
dT

dt
, (17)

dT

dt
=

I(t)2ρCu(B(I), T, RRR)
ACuAT C(T )

, (18)

where ACu is the copper cross-section of a conductor,
AT the total cross-section of the conductor, C(T ) the
average specific heat (in units of J

kgK ) of the conductor,
and ρCu(B(I), T, RRR) is the resistivity of the copper as
a function of magnetic field, temperature and the residual
resistivity ratio (i.e., the ratio between copper resistivity
at 293 K and at 4.2 K in absence of magnetic field). The
argument of ρCu is subsequently omitted. l is the length
of the magnet. Separation of variables and integration
yields

∫ ∞

0

I(t)2dt = ACuAT

∫ Tmax

T0

C(T )
ρCu

dT. (19)

The term on the left hand side of eq. (19), i.e., the
time integral over the square of the current, is usually
expressed in units of 106 A2 s and is called MIIT. The
MIITs represent the quench load. The term on the right
hand side of eq. (19) represents the quench capacity of a
given SC cable. From this equation the map of tempera-
ture T in the coils as a function of time can be evaluated.
It is assumed that a quench starts in the high field re-

gion of the outer layer dipole coil at the nominal current
of 11800 A and propagates longitudinally and transver-
sally to the neighboring turns. The initial longitudinal
quench velocity is 15-20 m/s in the outer layer, and the
transition propagates transversally with a turn-to-turn
delay of 20-25 milliseconds (values according to measure-
ments). The transverse propagation is limited by the in-
sulation and the helium content in the cable. The magnet
is protected by strip heaters covering the full length of
5+8 turns per pole in the outer layer shells. The idea is
to warm up sufficiently large sections of the coil in order

to spread out the stored magnetic energy. The quench
heaters are effective after a delay of about 50 millisec-
onds from the onset of the quench. Since the magnet is
by-passed through a cold diode, the coils will dissipate
the full energy stored in the magnet. The bulk of the
magnet acts as a current source for the quenching part
of the magnet.
If we neglect the voltage and temperature rise due to

the quench propagation, i.e., assume that the resistiv-
ity created by the initial quench is too low to produce a
significant decrease of the current, then a 2D analytical
model can be used to calculate the current evolution in
the magnet. In this case we assume that the current evo-
lution is controlled by the resistance of the turns under
the strip heaters. As the heaters cover the entire length
of the magnet, the problem can be treated as a 2D field
problem. The time dependence of the current is given by

dI

dt
=

U

L
− I R

L
, (20)

where R is the total resistance of all conductors quenched
by the strip heaters, U is the armature voltage and L
is the self inductance of the magnet. The value of the
resistance is given by

R =
N∑

i=1

8l
ρCu

ACu
u(t− tqi), (21)

where the tqi are the heater delays of the protection sys-
tem for each of the N conductors and u(t) is the unitary
step function. The factor 8 comes from the series con-
nections of the turns in the two-in-one magnets. The hot
spot temperature can be evaluated by solving a set of
N + 2 ordinary (first-order) differential equations (T0 is
the temperature of the conductor in which the quench
is initiated, Ti (i = 1, ..., N) are the temperatures of the
conductors covered by the quench heaters):

dT0
dt

=
I2ρCu

ACuAT C(T0)
, (22)

dTi

dt
=

I2ρCu

ACuAT C(Ti)
u(t− tqi), (i = 1, ..., N) (23)

dI

dt
=

U

L
− I

L

N∑
i=1

8l
ρCu

ACu
u(t− tqi). (24)

Notice that the conductivity of the copper ρCu in conduc-
tor i depends on the temperature and the local magnetic
field in the coil (Bi, Ti). The length l of the magnet can-
cels if the inductance is given per unit length. The system
of differential equations is solved using the Runge-Kutta
method.
Fig. 5 gives the time evolution of the current, resistiv-

ity and temperature for a quench that is assumed to orig-
inate in the innermost (pole) turn of the outer layer of the
coil. The 4th order Runge-Kutta method was used with a
fixed step size of 0.001 sec. The maximum temperature is
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314 K, the MIITs integral yields
∫ ∞
0 I(t)2dt = 0.312 ·108

A2 s.
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FIG. 5. Time evolution of the current, resistivity and tem-
perature (normalized) for a quench that is assumed to orig-
inate in the pole turn of the outer layer of the LHC main
dipole.

VIII. MATHEMATICAL OPTIMIZATION

Mathematical
optimization techniques have for decades been applied
to computational electromagnetics. Halbach [16] intro-
duced in 1967 a method for optimizing coil arrangements
and pole shapes of magnets by means of finite-element
field calculation. Armstrong, et. al. [3] combined in
1982 optimization algorithms with the volume-integral
method for the pole profile optimization of an H-magnet.
These attempts tended to be application-specific, how-
ever. Only since the late 1980s, have numerical field
calculation packages for both 2D and 3D applications
been placed in an optimization environment. Reasons for
this delay have included constraints in computing power,
problems with discontinuities and non-differentiabilities
in the objective function arising from FE-meshes, accu-
racy of the field solution, and software implementation
problems.
Application of mathematical optimization techniques

to magnet design using numerical field computation
causes special requirements on the optimization method
because of the following reasons.

• The computing time for each objective function
evaluation can be in the range of hours (DEC-
Alpha-station 600). The time for the evaluation
of the next search point can therefore be neglected.

• As the objective functions are calculated through
FEM procedures, they are covered in numerical er-

rors. This makes the application of gradient meth-
ods problematic if differential quotients for the gra-
dient approximation have to be used.

• As the objective functions are not defined explicitly,
continuity, differentiability and convexity have to
be assumed for the application of some classes of
optimization methods.

• Some of the trial solutions might lead to physically
meaningless structures and the crash of finite ele-
ment calculations. This has to be considered during
the set-up of the parametric model.

• Magnet design has to deal with multiple (conflict-
ing) objectives.

Most of the real-world optimization problems (includ-
ing the design of SC magnets) involve multiple conflict-
ing objectives. In our case, for example, the search for a
maximum main field and a small volume of superconduc-
tor material. There is also a payoff between a maximum
field and small saturation induced field errors. Charac-
teristic of these vector-optimization problems is the ap-
pearance of an objective-conflict in which the individual
solutions for each single objective function differ and no
solution exists where all the objectives reach their in-
dividual minimum. The procedures for solving vector-
optimization problems consist of three different parts:
decision making, treatment of constraints, and optimiza-
tion algorithm. Optimization procedures specially suited
for magnet design have been extensively described in au-
thor’s papers, e.g. [31].
From the beginning, the ROXIE program has been

structured to allow for the application of mathematical
optimization techniques. Numerous methods are avail-
able for decision making and the treatment of nonlin-
ear constraints. These can be combined with optimiza-
tion algorithms where both search routines (not using
the derivative of the objective function) and higher order
methods are available. All the evaluated field quantities
can be addressed as objectives for the optimization. De-
cision making methods include objective weighting, dis-
tance function, constraint formulation (Marglin method)
and the automatic set-up of payoff tables. Nonlinear
constraints can be treated either by a feasible domain
method, the penalty transformation or the Augmented-
Lagrangian function. The following optimization algo-
rithms are available:

• EXTREM (search routine, suited for most of the
problems including objective weighting functions
and penalty functions.

• Levenberg-Marquard (first order method, specially
suited for inverse field computations i.e. the mini-
mization of a least squares objective function) [3]

• Davidon- Fletcher- Powell (Quasi- Newton method
specially suited for Lagrange- Multiplier estima-
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tion). The sensitivity analysis with Lagrangemulti-
plier estimation allows to find the hidden resources
of a particular design, as the Lagrange multipliers
are a measure for the price which has to be paid
when a particular objective is to be improved.

• Genetic algorithms which are applied for the con-
ceptual design of magnets [5].

• A speedup scheme using artificial neural networks
(ANN) for the approximation of the objective func-
tion.

IX. GENETIC OPTIMIZATION

Genetic optimization algorithms were developed in the
mid 1970s by Holland [18]. Evolution strategies which
go back to Darwin’s work and which are based on the
link between reproductive populations rather than ge-
netic links were independently developed by Schwefel [34]
and Rechenberg [32]. Facilitated by the development of
computing power, both evolution strategies and genetic
algorithms have been given considerable attention lately
and have been applied to problems in electromagnetic
field computation [38]. The different design parameters
are combined by linear sampling of the floating point pa-
rameters

∆xi ∈ [0, ximax − ximin] (25)

and Gray-coding of the resulting binaries into a bit-string
(chromosome). With binary coding, two neighbouring
integers, e.g., 7 (0111) and 8 (1000) differ considerably in
the bit string, or in other words, their Hamming-distance
(number of different bits) is larger than one. The applied
Gray-coding ensures that neighboring integers differ by
one bit only.
Genetic optimization algorithms are driven by the fol-

lowing main operators:

• Crossover, a recombination of strings of two chro-
mosomes by breakage at a random point and re-
union of the alleles. This is the underlying mecha-
nism of sexual reproduction.

• Mutation is the process of an alteration in a chro-
mosome structure. In optimization, this process
avoids preliminary convergence towards a local
minimum.

• Selection is the force behind changes in the geno-
type in populations through differential reproduc-
tion, i.e., less fit members of the population having
a smaller mating probability.

Selection methods can be divided into the following dif-
ferent groups:

• Fitness proportional (Fairy-Wheel) selection: A fit-
ness value that represents a probability for selection
is assigned to each of the chromosomes

F (xi) =
f(xi)

n∑
j=1

f(xj).
(26)

• Niching selection: Niching methods introduce a
concept of distance according to the observation
that a population spread over a geographic range
will become genetically differentiated in a number
of sub-environments, so-called niches. The new off-
spring replaces the chromosome which is closest in
parameter space (or has the smallest Hamming-
distance on the bit level) if its objective function
value (fitness) is lower.

Whereas with fairy-wheel selection the whole population
is subject to a fitness ranking, the selection in the nich-
ing genetic algorithm is performed on the level of each
individual. Selected chromosomes are then immediately
joined to the population.
The effect of the niching method is that a number of

local optima are found which can then be further inves-
tigated and compared.

X. OPTIMIZATION SPEED-UP USING A
NEURAL NETWORK APPROXIMATOR

Neural networks have been applied in recent years to
the design optimization in computational electromagnet-
ics. Serving as universal approximators to solve ”best fit”
problems, Feed Forward Back-Propagation Neural Net-
works were successfully applied to the solution of inverse
optimization problems, whereas Radial Basis Function
(RBF) Neural Networks were used to speed-up optimiza-
tion algorithms [2], [15]. In the ROXIE program a RBF
Neural Network is used to speed up deterministic opti-
mization algorithms.
Radial basis function neural networks (RBF) are two-

layer feed-forward networks with radial basis functions as
activation functions in the hidden units and linear activa-
tion functions in the output units. For the approximation
of the objective function an RBF neural network with p
inputs and one output can be used. The RBF network
approximates the mapping f by a linear combination

O(x) = w0 +
n∑

i=1

wiφi(x), (27)

where each of the n hidden units is activated with a Gaus-
sian radial basis function

φi(x) = exp(−||ci − x||2/(2σ2i ). (28)

In out application, the centers ci are chosen as the data
points of the training set Z = {xj , tj}nj=1 and the widths
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σi are set to a fraction of the training set diameter. The
crucial part of the training is the determination of the
weight vector w = [w0, . . . , wn] as a solution of the regu-
larized least square problem

min
w
{||Φw− t||+ λ2||w||}, (29)

where Φ is an interpolation matrix, t is a target vec-
tor and λ is a regularization parameter [36] The use of
RBF neural network as an approximator is motivated by
its two main advantages: A good local approximation
quality and a small computational effort for the learning
algorithm compared to the objective function evaluation
(BEM-FEM calculation).
The speed-up scheme is based on the observation that

deterministic search algorithms do perform trials into the
regions already visited in previous iterations. A time-
consuming objective function evaluation can then be re-
placed by a RBF approximation. This leads to the fol-
lowing algorithm, [4]:

1. Perform some initial steps with the search algorithm.

2. Generate a new search point x and a training set Z
from previous trials.

3. Investigate, if a reliable RBF approximation can be
constructed in point x:

(a) If the point x is in the “reliable” region of the
search domain, then train the RBF neural net-
work. If the network was successfully trained,
then evaluate the approximation f̃(x) and sub-

stitute f(x(i))← f̃(x(i)).
(b) If the point x is not in the reliable region, or

the network cannot be trained successfully, then
evaluate f(x) by means of a numerical field com-
putation.

4. Goto 2 until convergence.

The speed-up which could be achieved in magnet op-
timization is in the range of 20 %.

XI. SUMMING UP: THE INTEGRATED DESIGN
PROCESS

The modeling capabilities of the ROXIE program to-
gether with its interfaces to CAD and CAM and the
mathematical optimization routines have inversed the
classical design process where numerical field calcula-
tion is performed for only a limited number of numerical
models (more or less) resembling the engineering design.
ROXIE is now more and more used as an approach to-
wards an integrated design of SC magnets [2] starting as
early as the conceptual phase using genetic algorithms
[5]. The interfaces then allow the making of drawings ac-
cording to the computer models in considerable less time
than before. The steps of the integrated design process
for superconducting magnets are as follows:

• Feature-based geometry modeling of the coil and
yoke, both in two and three dimensions using only
a number of meaningful input data to be supplied
by the design engineer. This is a prerequisite for
addressing these data as design variables of the op-
timization problem.

• Conceptual design using a genetic algorithm, which
allows the treatment of combined discrete and con-
tinuous problems (e.g. the change of the number of
conductors per block) and the solving of material
distribution problems. The applied niching method
supplies the designer with a number of local optima
which can then be studied in detail.

• Subject to a varying magnetic field, currents that
screen the interior of the SC filaments are gener-
ated in their outer region. The relative field errors
caused by these currents are highest at injection
field level and have to be calculated to allow a sub-
sequent part-compensation by geometrical field er-
rors. Deterministic search algorithms are used for
the final optimization of the coil cross-section.

• Minimization of iron-induced multipoles using a
finite-element method with a reduced vector-
potential formulation .

• Calculation of the peak voltage and peak tempera-
ture during a quench.

• Sensitivity analysis of the optimal design through
Lagrange-multiplier estimation and the set-up of
payoff tables. This provides an evaluation of the
hidden resources of the design.

• Tolerance analysis calculating Jacobian-Matrices
and estimation of the standard deviation of the
multipole field errors.

• 3D coil-end geometry and field optimization includ-
ing the modeling and optimization of the asymmet-
ric connection side, ramp and splice region and ex-
ternal connections.

• 3D field calculation of the saturated iron yoke using
the method of coupled boundary/finite-elements,
BEM-FEM.

• Production of drawings by means of a DXF inter-
face for both the cross-sections and the 3D coil-end
regions.

• End-spacer design and manufacture by means of in-
terfaces to CAD/CAM (DXF, VDA), rapid proto-
typing methods (laser sinter techniques), and com-
puter controlled 5-axis milling machines.

• Tracing of manufacturing errors from measured
field imperfections, i.e., the minimization of a
least-squares error function using the Levenberg-
Marquard optimization algorithm.
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