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Abstract

In this note we derive the stochastic equations which describe the

single particle dynamics in an uniform cooling channel. Formulae and

graphics for design optimizations are discussed.

1 Introduction

In future accelerator developments neutrino factories are an investigated is-

sue [1]. Experimental requirements for neutrino physics and muons life-

time impose a set of constrains which are challenging for the design of the

front-end linac after the target [2]. In order to meet design constrains, the

large 6D beam emittance obtained after the target needs an e�ective fast

cooling. Ionization cooling has been proposed as a method to cool trans-

verse 4D emittance [2] while longitudinal cooling might be reached through

a transverse-longitudinal emittance [3] exchange where the longitudinal emit-

tance is transferred to the transverse plane and there cooled out. The main

issue for an ionization cooling scheme become its e�ectiveness and optimiza-

tion. In the international collaboration [4] e�orts both theoretical [5, 6] and

computational [7] have been dedicated to investigate beam dynamics in ion-

ization cooling channels.

We report in this note a theoretical investigation based on a single particle

dynamics. We present in some approximations the e�ects of absorber on the

�nal value of the cooled emittance.
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2 Modeling Ionization Cooling

Typically a cooling cell is built with focusing structures, absorbers,and cav-

ities [8]. In this work we restrict the study at linear cooling cell (no bends).

First we consider the dynamics in one plane. We consider the horizontal

plane. In order to describe the single particle dynamics we introduce an or-

thogonal reference frame x; z. The transverse dynamical coordinates of one

particle are x; x0 = dx=ds = px=pz. The cooling principle is the following [2]:

the absorber reduces the particle's energy, but the cavity increases only the

longitudinal momentum pz. The global e�ect is a decreasing of x0. Next we
describe the modeling of the cooling cell components.

2.1 Focusing Structures

In general if the focusing it is not to strong the particle's dynamics can be

described by

x
00 + kx = 0

where k is the focusing strength.

2.2 Absorbers

The motion of the particle through the absorber is a�ected by the muon-

atom interaction which produces an absorption of energy " and an angular

deviation  from the incoming direction characterized by two distributions

f", f with standard deviations �" and � . The muon-atom interaction is

repeated many times, say n, along the muon path through the absorber. The

total energy absorption ÆE and angular deviation � have standard deviations

�ÆE =
p
n�" and �� =

p
n� and averages Ea, and ~�. If the number of

interactions n for each particle is the same, i.e. if ÆE, and � have small

deviations from Ea, and ~� we expect that the distributions of ÆE, and � are

are gaussian; for big deviations the number of interactions n is much bigger

than for small jÆE�Eaj; j�� ~�j and the distributions present deviations from
a gaussian tail [9]. Since for j�j << 1 we can write Æx0 = �, the absorber can
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be modeled with the map

0
@ x

x
0

E

1
A
out

=

0
@ x + x

0
La + Æx

x
0 + Æx

0

E � Ea + ÆE

1
A

Here we consider Æx; Æx0; ÆE be gaussian random noises with standard devi-

ations �Æx; �Æx0 ; �ÆE. La is the length of the absorber, and Ea is the average

energy taken by the absorber when the average exit angle ~� is x0. Note that
the 3 random variables are decorrelated and that Æx0 is not (Æx)0.

2.3 Cavities

A cavity a�ects only the longitudinal momentum so that pz ! pz + �pz.

The transport through the cavity is then approximated by

0
@ x

x
0

E

1
A
out

=

0
@ x

x
0
=(1 + �pz=pz)

E + Ec

1
A

Ec is the energy supplied by the cavity, according to the phase, and �pz is

the longitudinal momentum lost and regained.

3 Single Particle Equation of Motion

If transverse focusing, absorber, and cavities have a 'weak' e�ect on the par-

ticle dynamics, then we can use a smooth approximation for the cooling.

Here we suppose to spread uniformly along the cooling cell cavities and ab-

sorbers. We lose then the concept of cell, introducing the uniform cooling

channel. An in�nitesimal part of the channel of length ds can be approxi-

mated as a composition absorber + cavity + focusing kick plus a drift. The

absorber-cavity-focusing kick is

0
@ x

x
0

E

1
A
out

=

0
@ x + Æx

x
0 � x

0�pz=pz � k dsx + Æx
0

E + Ec � Ea + ÆE

1
A
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The drift map is 0
@ x

x
0

E

1
A
out

=

0
@ x + x

0
ds

x
0

E

1
A

Composing the transport map with the kick we obtain the map of the mi-

crocell 0
@ x

x
0

E

1
A
out

=

0
@ x+ x

0
ds+ Æx+ o(1)

x
0 � x

0�pz=pz � k ds x+ Æx
0

E + Ec � Ea + ÆE

1
A (1)

When we track a particle by using Eq. 1, at each application of the map

one should create Æx; Æx0, and ÆE. We postpone the discussion on ÆE and

consider Æx0 be a gaussian noise which variance depends on the distance ds

according to

�
2(Æx0) = �ds (2)

where � is a constant typical of the absorber and the beam energy. Eq. 2

keeps the consistency with the composition of noise errors along the absorber.

For muons we have [9]

� =
f

X0

�
13:6MeV

�cp

�2

[m�1]

where f is the absorber �lling factor of the real periodic cooling cell, X0 is

the radiation length of the absorber, � = v=c, and p the particle momentum.

From the particle's propagation through the absorber it is straightforward

from Eq. 2 to see that �(Æx) = �(Æx0)ds=
p
3. By using the Eq. 2 we �nd

�
2(Æx) =

�

3
ds

3 (3)

Note that for small ds the noise Æx become much smaller than the noise in

Æ
0
x
. This suggests that on the continuum Æx will have a negligible e�ect on

the dynamics.

From the �rst two rows of Eq. 1 we �nd

�x = x
0
ds+ Æx+ o(1)

�x0 = �x0�pz=pz � k ds x+ Æx
0
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dividing by ds the previous equations become

�
�x=ds

�x0=ds

�
=

�
0 1

�k �(�pz=pz)=ds

�
+

�
Æx=ds

Æx
0
=ds

�
(4)

In order to extend to the continuum this di�erence equation we guess a

sequence of N errors Æx0
j
; j = 1; :::; N correspondent to the N application of

the map Eq. 1. Each of these errors is generated by the same source which is

gaussian with variance Eq. 2. The second term in the rhs second row of Eq. 4

can be extended to the continuum with the interpolation �x0(s) = Æx
0
j
=ds =

�
0
j
=
p
ds if jds < s < (j + 1)ds, where now �

0
j
is a random variable such that

< �
0
j
�
0
j
>= �. When ds ! 0, �x0(s) become the derivative of the Wiener

stochastic process [10, 11] which has the formal property

< �x0(s)�x0(s
0) >= �Æ(s� s

0)

The same argument can be repeated for Æx=ds the second term on the �rst

row in the rhs of Eq. 4. The extension to the continuum is �x(s) = Æxj=ds =

�j

p
ds if jds < s < (j + 1)ds, where now �j is a random variable such that

< �j�j >= �=3. When ds! 0, �x(s)! 0: the stochastic noise on the spatial

coordinates can be neglected. On the limit of ds to zero, �x(s) converges

formally to a function which has the property

< �x(s)�x(s
0) >=

�

3
ds

2
Æ(s� s

0)

With these de�nitions we �nally write the transverse stochastic equation of

motion for a particle in a 'uniform' cooling channel.

�
x

x
0

�0
=

�
0 1

�k �d

�
+

�
�x

�x0

�
(5)

The term d = (�pz=pz)=ds can be computed as follow: with the assump-

tion of jx0j << 1 each time the particle passes through the cavity+absorber

the longitudinal momentum lost and regained �pz is a constant quantity

throughout the cooling channel. On the other hand energy conservation be-

tween the entrance and exit of the cavity leads to

q
p2
z;in

(1 + x
02
in
)c2 + (mc2)2 + qV =

q
p2z;out(1 + x

02
out)c

2 + (mc2)2
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and here x0
out

= x
0
in
(1 � �pz=pz;out). Since qV is small with respect to the

energy of the particle, an expansion at the �rst order gives

d = (�pz=pz)=ds =
V

ds

q

E0�
2
z

The average electric �eld (longitudinal RF density) V=ds depends form the

energy taken by the absorber Ea + ÆE, in fact along each ds the RF voltage

has to restore the lost momentum �pz and this happens when

Ea + ÆE

1 + x
02
in

= qV

that with smooth approximations become Ea + ÆE = qV . Since �2
ÆE
/ ds

and Ea / ds we �nd that �ÆE=Ea / 1=
p
ds. In order to simplify the problem

we assume here that ds is such that �ÆE=Ea << 1 so that we can neglect the

energy 
uctuation ÆE and assume Ea = qV . For a cooling cell of length L

the coeÆcient d can be approximated as

d =
�E

E0

1

L�2
z

where �E is the energy lost and gained per cell.

A generalization of Eq. 5 at the 2D case is given by the set of equations

X0 +MX = N (6)

with

X =

0
BB@

x

x
0

y

y
0

1
CCA N =

0
BB@

�x

�x0

�y

�y0

1
CCA M =

0
BB@

0 �1 0 0

kq d k̂q �ks
0 0 0 �1
k̂q ks kq d

1
CCA (7)

This equations includes the constant focusing uniform channel modeled by

Eq. 5 included with the coeÆcient kq; it includes the uniform solenoidal

cooling channel, by the coeÆcient ks

x00 = x0 ^ sks + dx0 (8)

with s longitudinal versor and ks = qB0=pz; or more general combinations

of uniform focusing, uniform solenoid, and uniform skew quadrupole (the

coeÆcient k̂q) in the cooling channel. Next we show the method to solve

Eq. 6
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4 Single Particle Dynamics

The simplest case would be a cooling channel with quadrupoles which keeps

both transverse planes decoupled. However it has been proposed a more eÆ-

cient scheme [12] which uses alternating solenoids. For an axially symmetric

beam in a solenoidal channel, envelope equations have been derived by R.

K. Cooper [13], and recent works had included the e�ect of the absorbers

[5, 6]. In the next discussion we calculate the e�ect of the noise on the single

particle dynamics in a uniform channel where the cooling channel properties

are constant along the longitudinal direction.

We �rst solve Eq. 6 consideringN as a well de�ned function. Consider the

transformation Z = P
�1X where P is the invertible matrix which diagonalize

M . Eq. 6 become

Z0 = �Z+ P
�1N (9)

with � = P
�1
MP = diag(�1; �2; �3; �4) and �i eigenvalues of the matrix M .

Eq. 9 is a set of decoupled �rst order di�erential equation of the form

z
0
i
= �izi +

X
j

(P�1)ijNj i = 1; 2; 3; 4 (10)

The solution for the i component is

zi(s) =
X
j

Cije
�js + e

�is

Z
s

0

e
��is0

X
j

(P�1)ijNj(s
0)ds0 (11)

where Cij is a matrix determined by the initial conditions. Returning back

to the original variables we �nd

xk(s) =
X
ij

PkiCije
�js +

X
ij

Pkie
�is

Z
s

0

e
��is0(P�1)ijNj(s

0)ds0 (12)

The �rst term on the rhs represents the homogeneous solution of Eq. 6 that

we call x̂k(s) while the second term represents the contribution of N here

called �xk. The evolution of �xk(s) depends on the noise N(s) which is a

function that has a certain probability to be found in the set of all the possible

choices forN. We indicate this dependence changing the notation and calling

the contribution of the noise with �xk[N] meaning that, only if we �x the
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function noise N then �xk[N] can be computed. In this sense we cannot

characterize the dynamics of a single particle with a unique solution, but

rather we can give a probability P[N]d[N] that the noise has the functional

form N(s) and then compute the motion. It follows then naturally that the

frame for a predictive analytical investigation must be statistical. At the

longitudinal position s each coordinate of the particle has the value xk(s) =

x̂k(s) + �xk[N](s) with probability P[N]d[N]. We can average with respect

to the noise and �nd

hxkiN(s) = x̂k(s) + h�xk[N]iN(s)

where here with h�iN we mean average over the noise. Since the noise N has

average zero we �nd hxkiN(s) = x̂k(s). We can also characterize the spread

of xk(s) computing the variance

h(xk(s)� x̂k(s))
2iN = h�x2

k
[N]iN(s)

However for an rms approach to the beam description, moments like xx0 are
needed requiring the evaluation of all the noise correlations (See Appendix

B). We call to simplify the notations �kp(s) = h�xk[N]�xp[N]iN(s). By

using the second term on the rhs of Eq. 12 we �nd

�kp(s) =

=
X
ijqt

Pki(P
�1)ijPpq(P

�1)qt

Z
s

0

Z
s

0

e
��i(s0�s)��q(s00�s)hNj(s

0)Nt(s
00)iNds0ds00

(13)

However

hNj(s
0)Nt(s

00)iN =

Z
F
Nj(s

0)Nt(s
00)P[N]d[N] = QjtÆ(s

0 � s
00) (14)

with F is the space of the noises and Æ(s0 � s
00) is Dirac's function. The

matrix Qjt has the form

Q =

0
BB@

�ds
2
=3 0 0 0

0 � 0 0

0 0 �ds
2
=3 0

0 0 0 �

1
CCA (15)
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where ds is the integration length used in Eq. 1. The diagonal form of

Q stems from the decorrelation of the noises in the four coordinates. The

second order terms in ds give second order terms in ds on the �nal expression

of �kp(s). Since we are considering very small integration step we can drop

the second order terms in Eq. 15 neglecting then the noises �x; �y. With this

approximation and de�ning the matrix

L =

0
BB@

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

1
CCA

Eq. 13 gets the form

�kp(s) = �

X
ijqt

Pki(P
�1)ijPpq(P

�1)qtLjt
1� e

(�i+�q)s

�(�i + �q)
(16)

De�ning the symmetric matrix B = P
�1
LP

�1T and

Fiq(s) =
1� e

(�i+�q)s

�(�i + �q)
(17)

we can express the noise correlations in the compact form

�kp(s) = �

X
iq

PkiPpqBiqFiq(s) (18)

From this expression we see that a crucial role is played by the sum �i + �q:

if this sum has real part negative the function Fiq approaches an asymptotic

value for big s, if Re(�i + �q) > 0 the e�ect of the noise increases exponen-

tially; if Re(�i + �q) = 0 then Fiq = s.

5 Uniform Quadrupolar Cooling Channel

In a quadrupolar uniform cooling channel horizontal and vertical planes are

decoupled and the matrix M of Eq. 6 gets the blocks diagonal form

M =

�
0 1

�k �d

�


�

0 1

�k �d

�
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We consider then only the horizontal plane. The general solution of the

equation

x
00 + dx

0 + kx = nx0 (19)

is

x = Ae
�1s +Be

�2s �
e
�1s

�2 � �1

Z
s

0

nx0 e
��1s0ds0 +

e
�2s

�2 � �1

Z
s

0

nx0 e
��2s0ds0

(20)

where �1; �2 are the eigenvalues �1 = �d=2 +
p
d2 � 4k and �2 = �d=2 �p

d2 � 4k. Eq. 20 is just Eq. 8 for k = 1 and it is valid if d2 6= 4k. First we

study the solution when the absorber noise is absent.

5.1 Unperturbed Solution nx0 = 0

In this case the solution become

x = e
�d=2s[Ae

p
d2�4ks +Be

�
p
d2�4ks]

the factor e�d=2s is the exponential damping of the particle motion, while the

terms inside the square brackets depends on
p
d2 � 4k. We can distinguish

two regimes, one where the focusing strength dominates the damping i.e.

when
p
d2 � 4k is pure complex and the terms in the square brackets express

an oscillation. The other regime is dominated by the damping over the

focusing strength, in this case
p
d2 � 4k is real.

5.1.1 Focusing Dominated Regime

In the focusing dominated regime d2 < 4k and calling
p
4k � d2 = K the

solution in terms of the initial condition becomes

x = e
�d=2s

�
x0

�
�
d sin(K=2s)

K
+ cos(K=2s)

�
+
2x00
K

sin(K=2s)

�
(21)

The dissipative term dx
0 in Eq. 19 causes a dumping of energy E = x

02
=2 +

kx
2
=2 according to E 0 = �dx02. However in the quadrupolar channel the par-

ticle energy changes continuously form between potential energy and kinetic
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energy. If the change of E is not to fast compared with the period of one

betatron oscillation an equipartition argument leads to the relation E = hx02i
(over one betatron oscillation). We �nd then the equation E 0 = �dE which

shows to a dump of the energy with the factor exp(�d s).
We observe that if d ! 0 then K=2 !

p
k and the previous solution

approaches the usual

x = x0 cos(
p
ks) +

x
0
0p
k
sin(

p
ks)

which express the betatronic motion in a uniform focusing channel. When

d > 0 the oscillation are damped according to e�d=2s. If we are in a regime

where k >> d the term d sin(K=2s)=K become smaller than cos(K=2s) and

the exact solution can be approximated by

x = e
�d=2s[x0 cos(

p
ks) +

x
0
0p
k
sin(

p
ks)] (22)

5.1.2 Envelope and Emittance Evolution

Since the focusing strength is uniform the twiss parameters of the cooling

channel are � = 1=
p
k; 
 = 1=� and the initial coordinates x0; x

0
0 can be

expressed as

x0 =
p
��0 sin Æ̂ x

0
0 =

p

�0 cos Æ̂

with Æ̂ an initial phase. By using these expressions in Eq. 22 we �nd

x = e
�d=2sp

��0 sin(
p
ks+ Æ̂) (23)

consequently the single particle emittance evolves according to

�x(s) = �x;0e
�ds

The same relation holds for the matched beam and the envelope x̂env evolves

according to x̂env = x̂env;0 exp(�d=2s). When we approach the transition con-

dition 4k = d
2 Eq. 23 does not hold since the oscillation term d sin(K=2s)=K

in Eq. 21 is not negligible. However the solution Eq. 21 holds and can be

used giving a solution like

x = e
�d=2s[oscillating terms] x

0 = e
�d=2s[oscillating terms]
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Again by using �x = �x
02 + 
x

2 one �nds that

�x(s) = e
�ds[oscillating terms]

which shows the exponential damping of the single particle emittance.

5.1.3 Damping Dominated Regime

This regime happens when 4k < d
2. De�ning

p
d2 � 4k = K the solution of

the motion become

x =
2

K
[(x0(K + d=2) + x

0
0)e

�d=2s+Ks + (x0(K � d=2)� x
0
0)e

�d=2s�Ks]

Since �d=2�K < 0 the motion is dumped and no betatron motion can be

found. The transverse kinetic energy is not converted in potential but rather

taken by the absorber.

5.2 Noise E�ect

Applying the theory described in Section 4 to the uniform quadrupole channel

for d2 6= 4k we �nd

�11 = �33 =
�

d2 � 4k

�
1

2k
[d� e

�ds(d cosh(�s) + � sinh(�s))]�
2

d
(1� e

�ds)

�

(24)

�22 = �44 =
�

d2 � 4k

�
1

2
[d+ e

�ds(�d cosh(�s) + � sinh(�s))]�
2k

d
(1� e

�ds)

�

and

�12 = �34 =
�

d2 � 4k

�
e
�ds(cosh(�s)� 1)

	

with � =
p
d2 � 4k = K in the dumping dominated regime (d2 > 4k ) and

� = �i
p
4k � d2 = �iK in the focusing dominated regime (d2 < 4k ). All

the missing moments are zero.

We can visualize how the noise disturbs the particle dynamics integrating

the equations of motion Eq. 1. We have considered as example a uniform

quadrupolar cooling channel with parameters k = 1 m�2, d = 0:1 m�1,

� = 5:9 � 10�4 rad2/m. Given a particle with initial coordinates x = 0:3
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Figure 1: Example with 50 repetition of a particle's trajectory: each time

the absorber noise build up an error in a di�erent way.

m, x0 = 0:3 rad, in order to show the stochastic nature of the motion, we

repeated the integration 50 times. Fig. 1 shows this result. Note that the

spread of the curves at each longitudinal position s increases with s showing

the e�ect of the noise on the dynamics. The picture shows that when the

spread of the particle equals the betatron amplitude the cooling stop to be

e�ective. From the numerical integration (Fig. 1), at each s we can compute

the standard deviation of the particle's position and compare it with the

prediction of the theory i.e.
p
�11. This is shown in Fig. 2: the agreement

is very good. Next we include the noise e�ect on the particle dynamics in a

focusing dominated regime.

5.2.1 Envelope with Noise in a Focusing Dominated Regime

The maximum spread �x of one particle's position can be in principle big,

but with very low probability. For practical considerations the maximum

�x is �xmax = 3
p
�11. The envelope can be computed as the unperturbed

envelope x̂env plus �xmax i.e.

xenv(s) = x̂env(s) + 3
p
�11

13
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Figure 2: Comparison between the theoretical standard deviation and that

one obtained from simulations by repeating the integration of the equation

of motion with noise 10000 times.

substituting the expressions of x̂env, �11, and neglecting small oscillating

terms we �nd

xenv(s) =
p
��0e

�d=2s + 3

r
�

2kd
(1� e�ds) (25)

This equation can be rewritten in normalized units dividing by x̂env(0).

De�ning R = xenv(s)=xenv(0) we �nd

R = e
�d=2s +

1

�

p
1� e�ds

where � = (
p
��0=3)

p
2kd=� is a dimensionless characteristic parameter

which combines beam parameters and cooling channel parameters. Note that

R(0) = 1 and R(1) = 1=� and that R reaches a maximum R =
p
1 + 1=�2

in d s = � ln(�2
=(1 + �

2)).

A numerical check of Eq. 25 was performed. Fig. 3 shows the dumped

oscillating motion of one particle, in red the theoretical dump of the envelope

when the absorber noise is absent. The blue curve is the maximum contri-

bution of the noise (3 times the standard deviation of the absorber noise),
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Figure 3: Example of one particle's trajectory when perturbed by the ab-

sorber noise. In red and blue the theoretical envelope and the noise error

respectively. On the top in black the sum of the two curves.

while the black upper continuous curve represents the sum of the two curves

(Eq. 25). The �gure shows how the noise perturbs the dumped betatronic

motion and that the theoretical prediction bounds this motion. In Fig. 4 is

shown that the theoretical envelope really bound most of the possible trajec-

tory that the absorber noise may build. Following the same argument used to

compute xenv it is possible to obtain an analytical expression for x0
env

. These

two expression have the interesting property xenv=
p
� = x

0
env
=
p

 which is

consistent with a new emittance that includes the e�ect of the noise and that

can be expressed as �x = �x;0R
2. We conclude this section observing that the

maximum cooling is reached for an in�nitely long cooling channel. Practical

considerations must be included in the discussion for a proper compromise

between cooling performance and costs.

6 Uniform Solenoidal Cooling Channel

The main characteristic of particle's dynamics in a uniform solenoid is that

a particle in this �eld would move on an helicoidal trajectory around an
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Figure 4: Comparison of the theoretical envelope with a set of 50 curves.

The picture shows that the theoretical prediction bound practically all the

trajectory evolution.

axis determined by the initial condition of the particle. In our theoretical

description we assumed a particular frame for the uniform cooling channel:

for the quadrupolar cooling channel the transverse origin is placed in the

transverse center where the focusing force is zero. However in the case of

a uniform solenoid this reference frame it is not privileged with respect to

another transversally shifted because the uniform solenoid focuses the par-

ticle locally. The uniformly distributed absorber exhibits the same feature,

i.e. its e�ect on the dynamics is invariant over transverse translations. For

the uniform solenoidal cooling channel the system of equations of motion (in

this global frame) have the form

�
x
00 = ky

0 � dx
0 + nx

y
00 = �kx0 � dy

0 + ny
(26)

where k = qB0=pz and d = (�E=E0)=(�
2
z
L). Here B0 is positive if the vector

magnetic �eld is parallel to the versor ẑ. When the noise is absent this

16



equations can be integrated and give the solution�
x̂(s) = xc � e

�ds
R0 cos(ks� �)

ŷ(s) = yc + e
�ds

R0 sin(ks� �)
(27)

where xc = x0 + (x00d+ y
0
0k)=(d

2 + k
2), yc = y0 + (�x00k + y

0
0d)=(d

2 + k
2) are

the coordinates of the guide ray where the particle stops when the transverse

motion is completely dumped. R0 =
p
(x

02
0 + y

02
0 )=(k

2 + d2) is the initial

distance of the particle form xc; yc, and the initial phase � is obtained by the

equations cos � = (xc � x0)=R0, and sin � = (yc � y0)=R0.

Eq. 27 shows, as previously discussed, that all the particles with the same

normalized transverse kinetic energy Ek0 = (x
02
0 + y

02
0 )=2 evolve in the same

way with respect to their own guide ray, less an initial phase �. Let's con-

sider then a particle matched in the global reference frame, i.e. such that

xc = yc = 0. The particle's motion described by Eq. 27 show a dumping in

a characteristic length of 1=d which is twice the characteristic dump length

for the uniform quadrupolar cooling channel. This stems from the lack of

potential energy in this system: during its path the particle has only kinetic

energy which gets absorbed continuously while for the quadrupolar chan-

nel only half of the energy (in average) is in kinetic form. From the point

of view of the cooling process it is important to describe the evolution of

R =
p
(x� xc)2 + (y � yc)2, and Ek = (x

02 + y
02)=2. By using Eq. 27 it is

straightforward to show that for a matched particle (i.e. for every particle)

R̂ = R0e
�ds (28)

and

Êk = Ek0e
�2ds

The relation between Êk and R̂ is

Êk =
d
2 + k

2

2
R̂

2

Here we use the symbol �̂ for the quantities computed without noise.

6.1 Noise E�ect in a Solenoidal Uniform Channel

During the cooling process the absorber produces a noise which disturbs the

dynamics. This e�ect is expected to be strong when the transverse kinetic

17



energy is comparable with the kinetic energy 
uctuations induced by the ab-

sorber. In this condition the existence of in�nitum stable orbits in a uniform

solenoidal �eld allows the particle to move in any transverse position. In fact

the absorber kick changes randomly the center of rotation (guide ray) of the

particle along the channel. We expect that once the transverse kinetic equi-

librium has been reached, a slow di�usive process will increase the particle's

transverse position letting unchanged the average transverse kinetic energy.

In this section we compute the evolution of the noise following the general

theory presented in Section 4. The matrix M associated to system of the

di�erential equations Eq. 26 is

M =

0
BB@

0 1 0 0

0 �d 0 k

0 0 0 1

0 �k 0 �d

1
CCA

It is straightforward to �nd that for this matrix the eigenvalues are

�1 = �2 = 0; �3 = �d� ik; �4 = �d + ik (29)

the matrix P is

P =

0
BB@

0 1 �i=(d+ ik) i=(d� ik)

0 0 i �i
1 0 �1=(d+ ik) �1=(d� ik)

0 0 1 �1

1
CCA (30)

and its determinant is 2i 6= 0. Therefore P is invertible for all k, and d (when

k = 0 the matrix P become real). Applying

�kp(s) = �

X
iq

PkiPpqBiqFiq(s)

obtained in Section 4 we �nd

�11 = �33 = �

n
1�e�2ds

2d(d2+k2)
� 2e�ds(deds�d cos(ks)+k sin(ks))

(k2+d2)2
+ s

d2+k2

o
�12 = �34 =

�

2(d2+k2)

�
1 + e

�2ds � 2e�ds cos(ks)
	

�13 = �24 = 0

�14 = ��23 =
�

2d(d2+k2)

�
k(�1 + e

�2ds) + 2de�ds sin(ks)
	

�22 = �44 =
�

2d
(1� e

�2ds)

(31)
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All the moments can be found from Eqs. 31 by using the relations �ij = �ji.

Note the term s=(d2 + k
2) in �11 and �33 which expresses the limitless

di�usive motion due to the random noise. The linear dependence of s is

consistent with the gaussian composition of the standard deviations. In fact

when the absorber noise start to change the particle's transverse position, the

motion of the particle become like a random walk. The composition of many

absorber spatial kicks Æx; Æy in a certain path along the channel creates the

shifts �x;�y which have a gaussian distribution. Moving along the channel

the particle receives a number of transverse kicks which is proportional to the

length s and the variance of the gaussian distribution of �x, and �y must

be proportional to s. For practical application were d << 1 in the moments

�11;�33 we can drop the second term and get the simpli�ed form

�11 = �33 =
�

k2 + d2

�
1

2d
(1� e

�2ds) + s

�
(32)

Similar tests on the terms �ij as made for the quadrupolar channel were

performed for the uniform solenoidal cooling channel. We started repeating

10 times the same simulation for a particle with initial condition x = y = 0

m, x0 = 1 rad, y0 = �1 rad. The parameter of the channel are: length

= 150 m, k = 0:5 m�1, d = 0:1 m�1, � = 10�2 rad2/m. Fig. 5 shows the

di�usion after the transverse kinetic energy has reached the minimum. Fig. 6

shows the comparison of the moments �11;�12;�13;�14, and �22 predicted

from the theory versus the same quantities obtained from simulations. The

agreement is good.

6.2 Single Particle Dynamics with Noise

In Section 4 we distinguished the motion of one particle in two contribu-

tions: the unperturbed motion plus a stochastic term. When we include the

stochastic terms �xk[N], the motion become xk(s) = x̂k(s) + �xk[N](s).

Due to the random nature of the noise we expect the average position of the

beam be hxk(s)iN = x̂k(s). The spread form this value is measured by the

variance

h(xk(s)� x̂k(s))
2iN = h�x2

k
iN = �kk
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Figure 5: E�ect of the di�usion over 10 repetition of the tracking of one

particle in a uniform solenoidal cooling channel.

Most of the possible positions of the particle, at the longitudinal position s,

are bounded within 3 standard deviation (99.7%) that is

jxk(s)� x̂k(s)j < 3
p
�kk

Since the description of the cooling process for one particle is simpli�ed by

looking at the radius of the particle R and the normalized transverse kinetic

energy Ek, we give next the e�ect of the noise on the evolution of R;Ek.

With direct overestimates it is possible prove that (see appendix A)

R(s) � R̂(s) + 3
p
2
p
�11(s) (33)

and

p
Ek(s) �

q
Êk(s) + 3

p
�22(s) (34)

We checked Eq. 33: Fig. 7 shows that the composition of the theoretical

dump (red curve) with the theoretical noise (blue curve) bound one particle's

trajectory and Fig. 8 shows that this result holds repeating 10 times the same

simulation.
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Figure 6: Comparison of the theoretical second order moments with simula-

tion results obtained repeating 20000 the particle's tracking.
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Figure 7: Example of how the composition of the theoretical dump (red

curve) with the theoretical noise (blue curve) bounds a particle's trajectory

-2

-1

0

1

2

0 25 50 75 100 125 150

length [m]

x 
[m

]

Figure 8: Comparison of the theoretical envelope versus 10 curves obtained

in the uniform solenoidal cooling channel. The picture shows that the theo-

retical prediction bounds practically all the possible trajectories.
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Substituting the expression for R̂(s);�11(s); Êk(s);�22(s) we �nd

Rmax = R0e
�ds + 3

r
�

d(k2 + d2)

p
1� e�2ds + 2ds (35)

and

p
Emax =

p
Ek0e

�ds + 3

r
�

2d
(1� e�2ds) (36)

Eq. 35, and Eq. 36 can be rewritten in term of the parameter

� =
R0

3

r
d(k2 + d2)

�
=

1

3

r
2Ekd

�

and de�ning the normalized radiusR = Rmax=R0 and the rescaled transverse

kinetic energy E = Ek=Ek0 we �nd

R =
p
e�2ds +

1

�

p
1� e�2ds + 2ds (37)

E =

�p
e�2ds +

1

�

p
1� e�2ds

�2

(38)

In Fig. 9 we benchmarked Eq. 37, and Eq. 38. We computed from simulations

Rmax, and Ek over 10000 repetition starting from the same initial condition.

In both pictures a), and b) we plot the max R and the max Ek at each

integration step and the correspondent theoretical curves. The agreement is

good.

Equation Eq. 37 shows the evolution of the normalized particle's radius.

Once � is �xed the radius is function of 2ds and R exhibits two regimes

according to the value of �. If � < 2:55, R � 1 growths with s (Fig. 10b,c

dashed line). Physically this means that at s = 0 the random transverse shifts

induced by the absorber are already comparable with R0: the particle is in

a di�usive dominated regime. If R0 is bigger enough (� > 2:55), the random

noise produces a small e�ect on the dumping of R. However the dumping

will go on until R become again comparable with the absorber shifts (at the

longitudinal position sR) and afterward the di�usive regime start again (see
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Figure 9: In a) we compare the envelope of
p
x2 + y2 over 10000 repeti-

tion of the integration from the same initial condition. The continuous line

represents the theoretical solution. In b) we consider the envelope of Ek
for the same simulation, again the continuous line represents the theoretical

prediction.

Fig. 10a dashed line). The transition can be equivalently expressed in terms

of a kinetic transition energy as Ek;t = 29:26�=d. A reduction of the initial

kinetic energy Ek0 will reduce the transition position sR. When sR = 0 the

dumping regime disappears and only the di�usive regime will remain (form

Fig. 10a to Fig. 10b dashed line).

To the rescaled transverse kinetic energy E (Eq. 38), a similar interpre-

tation applies. If � > 1 the kinetic energy is bigger then the absorber noise

and the cooling channel takes energy and reduces the transverse kinetic en-

ergy until a stationary state is reached (Fig. 10a,b solid line). If � < 1 the

particle's kinetic energy is smaller than the average induced by the absorber

and consequently Ek will increase reaching the equilibrium kinetic energy

Ek;e = 1=�2 (Fig. 10c solid line). Note that E reaches the local maximum

of E = 1 + 1=�2. This means that even when the kinetic energy is dumped,
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Figure 10: Evolution of E and R as function of 2 d s for 3 di�erent energies:

a) � = 4, b) � = 1:5, c) � = 0:2

in some point, the contribution of the noise may cause an increase of the

total kinetic energy. This local Ek growths is big when the contribution of

the particle kinetic energy and of the heating are of the same order (� � 1).

Note also that the transition of regime for R, and E does not happen at the

same energy! This is because the noise does act directly on the transverse

momentums and with an integrated e�ect on the positions.

It is useful to �nd at what length R reaches its minimum (only when

R < 1). Once �xed � we can �nd where R is minimum, i.e. 2dsR and in

the same longitudinal position compute the cooling factor E . These results
are shown in Fig. 11. From this picture we see that if � is below a threshold

�t = 2:55 there is no optimum length because the absorber noise causes an

heating from the beginning and R is never less than 1.

6.3 Single Particle Emittance and Beam Emittance

The 4D rescaled emittance of one matched particle �n(s) = �(s)=�0 is given

the product R2E . For �n, a picture similar to Fig. 11 can be built. Fig. 12

shows the optimum cooling length to minimize the single particle emittance.

This picture is a fast tool to decide what energy matches (optimize) a certain

cooling channel, or how long a cooling channel must be in order to reach the

better cooling. If we consider a 'transverse monochromatic' beam, i.e. a

beam with particles all having the same transverse kinetic energy, we can

apply the single particle description to �nd the optimum cooling length for
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the channel. If we do not consider the absorber noise, for every slice of the

beam there is a limit x-y beam distribution of sizes �xc;�yc in a very long

cooling channel. This is because each particle's transverse kinetic energy

gets dumped and particles fall into their guide rays transverse coordinates

xc; yc. For an axisymmetric beam �xc = �yc = Rl and the beam size can be

written as R(s) = Rl + R0R. Since the maximum transverse kinetic energy

of the beam is given by the same quantity for one particle i.e. Ek, the 4D

rescaled emittance of the beam �n;b can be written as

�n;b(s) =

�
1 + �bR
1 + �b

�2

E

where �b = R0=Rl. If the beam initially �lls the solenoidal channel which

has a radius Rs, then �b = R0=(Rs � R0). We see that the beam emittance

evolution depends now from the two factors �, and �b. In Fig. 13 we show for

curves of constant �b the optimized length Lc as function of �. In this picture

we see the e�ect of the limit beam radius on the optimum cooling length:

if �b << 1 the beam size is big with respect to R0 and we can propagate

the beam through a longer cooling channel before the di�usive e�ect become

relevant for the beam size. That's why in Fig. 13 there is a shift upward of

the 2 dLc curves for small �b. On the other hand, for big cooling lengths the

dump in Ek is almost complete and we �nd that all �n;b overlaps.

7 Validation Test with PATH [8] and Discus-

sion

7.1 Test on the Cooling Strength

In order to better validate this theoretical model we considered one of the

cooling cell of the 44 MHz section of the CERN ionization cooling scenario

[8]. To test if the cooling is described correctly we removed all the solenoidal

�elds letting in the cell only absorber and RF cavities. We considered a

design particle with kinetic energy of 200 MeV, which correspond for muons

to an energy E0 = 305 MeV, and � = 0:938. The 4 cavities of 2 MV have

been merged in a single cavity of 8 MV and the phase in each cavity was

taken zero (automatically set by PATH to maximize the acceleration). The
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0.27 m length of the liquid hydrogen absorber was chosen such as to absorb

8 MeV so to let the design particle's energy unchanged at the exit of the cell.

The test cell has so the length L = 0:27 m. The theoretical model developed

in Sect. 6 predicts that for this test cooling cell a particle with an initial

x
0
0 at the entrance of the cell would be found at the exit with the reduced

divergence according to

�x0
th
= �dLx00

where here d = (�E0=E0)=(L�
2) = 0:11 m�1. We tested this prediction by

creating a pencil beam at a given initial angular position x0 and computing

the divergence at the exit of the cooling cell. The test was repeated for

di�erent initial angles. The next table reports these results.

x' mrad �PATH mrad �th mrad error %

20 0.577 0.596 3.2

100 2.89 2.98 3.1

300 8.7 8.94 2.7

500 14.5 14.9 2.7

1000 28.9 29.8 3.0

We performed also a test on the dumping of the transverse normalized kinetic

energy. We considered in this test the same cooling cell and pencil beam with

an initial x0 = 0:2 rad, x = y = y
0 = 0, and tracked it through 3 cells. We

measure at the exit of each cell the quantity
p
Ek =

p
x
02 + y

02 and compare

it with the theory which predicts a dump according top
Ekout =

p
Ekin � dL

p
Ekin

The next table summarizes these results
p
Ekin

p
Ek1

p
Ek2

p
Ek3

PATH 0.2 0.1941 0.188 0.1824

theory 0.2 0.19404 0.18808 0.18212

we �nd errors between theory and multiparticle simulations less than 1 %.

7.2 E�ect of the Noise on the Dynamics in a Test Cool-

ing Cell

We also tested the e�ect of the noise on the particle dynamics. For the

previous test cell we �nd from PATH � = 0:000215 rad2/m. A pencil beam
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centered in x = y = 0 m, x0 = y
0 = 0:05 rad was tracked with PATH through

100 cells. Each 10 cells from the particle's distribution we computed the

quantities hxi, hx0i, hxx0i, �2
x
, �2

x0
. The averages hxi, hx0i, are not e�ected by

the absorber noise and evolve as a particle with initial coordinate x = y = 0

m, x0 = y
0 = 0:05 rad in a cell without absorber noise but with transverse

energy dump. In this case the equation of motion becomes x00 + dx
0 = 0 and

the solution in the horizontal plane for the initial condition x = 0 m is

x =
x
0
0

d
(1� e

�ds) x
0 = x

0
0e
�ds (39)

with x00 initial horizontal angle of the tilted beam. The same solution holds

in the vertical plane. In Fig. 14a,b we plot respectively these theoretical

solutions for x, x0 and the averages hxi, hx0i from PATH. The growths of

hxi is due to the lack of a focusing in the cooling cell. In fact we start with

an initial transverse velocity x
0 = y

0 = 0:05 rad which is dumped by the

cooling to zero, so the position hxi of the beam center increases reaching the

asymptotic transverse position x00=d corresponding to the complete dump of

the transverse kinetic energy. Fig. 14b shows the exponential dumping of

hx0i. The agreement between Eqs. 39 and simulations is good. Since the

evolution of a single particle is given by xk = x̂k + �xk, where x̂k is the

unperturbed solution given by Eq. 39, we can also predict the theoretical

evolution of hxx0i, �2
x
, �2

x0
. By using Eqs. 31 with k = 0 and Eqs. 39 we �nd

hxx0i = �

2d2

�
1� e

�ds�2 + (x0
0
)2

d
e
�ds(1� e

�ds)
�
2
x
= �

2d3

�
�3� e

�2ds + 4e�ds + 2ds
�

�
2
x0
= �

2d
(1� e

�2ds)

(40)

these functions are plotted in Figs. 14c,d,e with continuous lines respec-

tively while with red spots are plotted the respective quantities obtained

from PATH. The agreement is good.
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Figure 14: Comparison of the theoretical moments a) hxi, b) hx0i, c) hxx0i,
d) �2

x
, e) �2

x0
, with those obtained from PATH (dots).
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7.3 Test on the E�ect of the Noise on the Dynamics

in a Uniform Cooling Cell

We consider here a benchmark between theory and simulations when the

requirements of the theory are not completely ful�lled. We have considered

the cooling cell of the 44 MHz CERN scenario where we have substituted

the real solenoid with uniform solenoidal �eld (no fringe �eld). In order

to keep the condition of thin absorber we reduced the absorber length to

0.0027 m however keeping arti�cially the energyloss we got with a length of

0.27 m. The benchmark of the position of the guiding ray obtained as the

convergence point of the dumped motion resulted correct. In order to simplify

the noise benchmark we considered a pencil beam with initial position x =

x
0 = y = y

0 = 0. Fig. 15 shows the results from PATH compared with the

prediction form the theoretical model. There is a still a good agreement for

the the moments hx2i; hx02i; hxy0i. The reason is that the noise introduced

by the absorber is 100 times smaller than a 0.27 m absorber length so the

global dynamics still resemble the continuous. When we consider the same

cooling cell but with a thick absorber (i.e. 0.27 m of absorber), we �nd

�rst that the convergence of one particle to its guiding ray changes as well

as the position of the guiding ray. For this reason, in order to avoid to

recalculate the unperturbed motion, we considered the pencil beam placed

in x = y = x
0 = y

0 = 0. Fig. 16 show these results. The global e�ect of the

�nite length of the absorber is to change the e�ective solenoidal strength of

the cell: if we increase the solenoid strength of 25%, the curves theoretical

curves hx2i; hx02i; hxy0i would overlap with their correspondents theoretical

curves.
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Figure 15: Uniform solenoidal �led with thin absorber. Comparison of the

theoretical moments a) hxx0i, b) hx02i, c) hx2i, d) hxy0i, e) hxyi, with those

obtained from PATH (dots).
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Figure 16: Cooling cell with uniform solenoidal �eld and thick absorber.

Comparison of the theoretical moments a) hxx0i, b) hx02i, c) hx2i, d) hxy0i,
e) hxyi, with those obtained from PATH (dots).
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7.4 Test on the E�ect of the Noise on the Dynamics

in a Cooling Cell with Real Solenoids

We consider here a benchmark between theory and simulations when in the

standard cooling cell (44 MHz CERN scenario) we use the realistic solenoid

(hard edge fringe �eld). The cell has a liquid hydrogen absorber long 0.27

m. Since the e�ect of the fringe �eld on the single particle dynamics (in

the edge approximation) is to give to give a transverse kick, we expect that

the transverse energy dump will not follow the formula Ek = Ek;0 exp(�ds)
In order to simplify the noise benchmark we considered a pencil beam with

initial position x = x
0 = y = y

0 = 0 Fig. 17 shows the result from PATH

compared with the prediction form the theoretical description. The results

from PATH show that hx2i noise does not growth linearly, but approach

an asymptotic value. This stems from the fringe �elds which transform the

cooling cell more close to the uniform quadrupolar cooling channel described

in Sect. 5. Fig 18 shows the prediction obtained considering the quadrupolar

model.

8 Conclusion

We presented an uniformmodel of the ionization cooling an computed analyt-

ically the e�ect of the noise on the single particle dynamics. We studied two

models: the uniform quadrupolar cooling and the uniform solenoidal cooling

channel. For these two models we computed the e�ect of the absorbers noise

on the single particle's dynamics and gave some predictions on the evolu-

tion of the emittance through the continuum cells. Finally we benchmarked

the theoretical prediction with PATH cross checking theory and computer

programs.

9 Appendix A

In this section we will prove Eq. 33, and Eq. 34. We start with R. The e�ect

of the noise on the evolution of x is

x(s) = x̂(s) + �x(s)

Since most of the possible contributions of the noise are bounded within
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Figure 17: Cooling cell with realistic solenoids. Comparison of the theoretical

moments a) hxx0i, b) hx02i, c) hx2i, d) hxy0i, e) hxyi, with those obtained

from PATH (dots).
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Figure 18: Cooling cell with realistic solenoids. Comparison of the theoretical

moments a) hx2i, b) hx02i, obtained from the quadrupolar uniform cooling

model with those obtained from PATH (dots).

within 3 times the standard deviation we can write

x(s) = x̂(s) + 3�x(s)
p
�11

where �(s) is a suitable number which is function of s. Note that �1 <

�x(s) < 1. The same argument applies for y. We conclude that at a certain

longitudinal coordinate s the radius R(s) is

R
2(s) = R̂

2(s) + 9�11(�
2
x
(s) + �

2
y
(s)) + 2[�x(s)x̂(s) + �y(s)ŷ(s)]3

p
�11

where we used the identity �11 = �33. The constraint x
2 + y

2 = R̂ allows to

write

�x(s)x̂(s) + �y(s)ŷ(s) � jx̂(s)j+ jŷ(s)j �
p
2R̂(s)

and since �2
x
(s) + �

2
y
(s) � 2 we �nally �nd

R(s) � R̂(s) + 3
p
2
p
�11

Repeating the same argument one can prove Eq. 34.

10 Appendix B

A statistical description of the beam in a uniform cooling channel can include

of the stochastic solution found in Section 4. At each longitudinal position,
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the beam can be described by the the four-by-four sigma matrix de�ned as

�ij(s) = xi(s)xj(s). We can decompose the motion of each particle as

xi(s) = xc i + xd i +�xi

where: xc i is coordinate of the guide ray; xd i is component of the motion that

gets dumped by the cooling channel; �xi is the stochastic noise component.

If we �x the noise N the sigma matrix become

�ij(s) = (xc i + xd i +�xi)(xc j + xd j +�xj)

In order to remove the dependence on the noise, we average �ij over N and

obtain

�ij(s) = h(xc i + xd i +�xi)(xc j + xd j +�xj)iN

that is

�ij(s) = (xc i + xd i)(xc j + xd j) + �ij

Assuming that there are no correlations xc ixd j, xd ixc j we �nally �nd

�ij(s) = xc ixc j + xd ixd j +�ij

This result allows a direct calculation, in an average sense, of the beam rms

emittance including the noise from the absorber.
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