
Software developments for the Readout Unit Prototypes for CMS DAQ System

Bellato, M. (INFN Sezione di Padova)

Antchev, G.; Cano, E.; Cittolin, S.;Faure, B.; Gigi, D.; Gutleber, J.; Jacobs, C.; Meijers, F.;
Meschi, E.; Orsini, L.; Pollet, L.; Racz, A.; Samyn, D.; Schleifer, W.; Sphicas, P (CERN)

Sinanis, N. J. (ETH, Zürich)

Erhan, S. (University of California, Los Angeles)

Ninane, A. (Université Catholique de Louvain)

CERN, 1211 Geneva 23, Switzerland
 marco.bellato@pd.infn.it, eric.cano@cern.ch, alain.ninane@fynu.ucl.ac.be

Abstract
In the CMS data acquisition system, the readout unit

is a fast buffering device for short-term storage of event
fragments. It interfaces front-end devices and builder
data network.

The current Readout Unit prototypes are based on
two homegrown hardware boards, the Readout Unit
Memory (RUM) and the Readout Unit I/O (RUIO).
These boards are equipped with an input/output
processor (IOP). Several OS environments for this
processor are developed. The software running on those
boards will have to setup and control the input and
output processes. Fast IOP to host communications are
experimented. A software test environment is
specifically designed for test and validation of the
complex memory management of the RUM.

I. THE HARDWARE ENVIRONMENT

A. Readout in the CMS data acquisition model
In the CMS data acquisition model, the Readout Unit

(RU) temporarily stores data from a detector subpart,
before forwarding it through the Builder Network to the
Builder Unit. Each Builder Unit assembles event
fragments for the Filter Units, which are in charge of
processing events for Level 2 triggers and of forwarding
events that passed Level 2 triggers to the computing
services (see Figure 1).

Detector Frontend

Computing Services

Readout
Systems

Filter
Systems

Event
Manager Builder Networks

Level 1
Trigger

Run
Control

RU

Interconnect

RUM

RUO RUS

RUI

Figure 1 : CMS Data acquisition model

 Each RU receives a fragment from each event that
passed Level 1 trigger. Those fragments are stored
temporarily in the RU. They will be forwarded to
Builder Units on request, and the full event (which spans
across multiple RUs) will be processed by the Filter
Units, as defined in [1].

 In order to be able to sustain a full link speed on both
input and output at the same time, special hardware
prototypes have been designed.

B. The Readout Unit IO and Readout Unit
Memory boards

 The Readout Unit Memory (RUM) and the Readout
Unit Input Output (RUIO) are long sized PCI boards [2].
Those boards provide the Readout Unit with fast input
and output capabilities. The RUM and two RUIOs can
be connected together, forming a RU (interfaced through
PCI links on the PCI input and output buses).

 RUIO and RUM both contain a I/O processor from
PLX (IOP 480). This processor is on a separate PCI bus,
with an Ethernet interface.

 The RU provides full bus speed on both input and
output due to a design with PCI to PCI bridges and
special memory management hardware. See Figure 2,
[3], [4] and [5].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25302152?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Output

��������
��������
������

PCI

�������
PCI

���
���P

C
I

IOP

�������������������������
������SRAM

2M x32-bit

������������������
������������������
����������������������������

����������
����������

�����
P
C
I

P
C
I

PCI Dual Port
Memory

up to 512MB

�����������
�����������
�����������������

PCI

��
��
P
C
I

���
���

P
C
I

�������
PCI

RUMRUIO RUIO

PCI Host bus

Ethernet

Control

IOP

Input

��������
��������

������
������PCI

������
PCI

���
���P

C
I

FPGA
Altera
 APEX

IOP
Ethernet

PMC

PMC
&

PCI

PMC
&

PCI

Figure 2 : Full RU structure

 Currently the RUIO has been fully developed, and
tested. The first prototype of the RUM is still in
development.

 RUM’s memory management unit (MMU) will
provide fast buffering between front end and builder
network. It stores data from several events on its input
(connected to detector front end), and delivers them on
demand to the builder units through the builder network.

C. Host environment
The RUIO and RUM are 64 bits/66 MHz capable

boards, but currently they only have been tested on
32 bits/33 MHz environments. The hosts used for the
tests were Macintosh G3 and standard PCs.

II. OS DEVELOPMENTS

For exploiting the IOP RUIO, we needed an
operating system to run on it. One of them, VxWorks is
fully developed for the RUIO, and the other, Linux is
still in progress.

A. VxWorks
 To ease the monitoring and control of I/O and

management processes taking part on the RUM and
RUIO boards, a real-time OS has been ported for the
PLX IOP480 processor. This is a highly integrated
device comprising a PowerPC 401 core, a memory
controller, a PCI bridge, an UART, two DMA
controllers, an I2O controller and the arbiters for both
PCI and local bus. The RUM and RUIO also
accommodate some RAM for OS operation and fast
Ethernet controller for network connection.

 A well-known real-time OS, VxWorks from Wind
River Inc., has been chosen for a number of features,
among which its deterministic high speed microkernel,
scalability, comprehensive C++ and POSIX support, and
a fully layered approach which make it processor and
bus independent. The porting process is therefore limited
to the design of a Board Support Package (BSP) that
interfaces custom hardware to upper OS software layers.

 The tasks of the BSP are handling of the processor
boot sequence (processor init, memory controllers
configuration, registers mapping, eprom handling,
UART init, and stack init), written in assembly code;
and configuraiton of all I/O devices (PCI bridge,
memory maps and ethernet controller). A library of
routines that map OS system calls to underlying
hardware (interrupt dispatcher, timers and system clock
handling, Flash memory and PCI access) is also part of
the BSP. A set of software drivers (for the Ethernet chip,
UART and Flash Ram) are then needed for allowing
TCP/IP connectivity, Serial port operation and OS boot
parameters storage and readout.

 The BSP has been tested, debugged and validated on
the RUIO hosted on a MAC G3 and fully exploits local
and remote VxWorks functionality.

B. Linux
Linux is an operating system which is gaining more

and more importance in the field of scientific research,
as well as in industry. It is made of a kernel, standard
Unix applications and tools, which vary according to the
Linux distribution. Being ported to a wide variety of
microprocessors: among others, Intel Pentium, Digital
Alpha, SUN Sparc, IBM PowerPC, ... , Linux is
available on a wide range of general-purpose platforms.

The wide availability and open-source characteristics
of the Linux kernel makes it also a first choice candidate
for embedded systems where application-specific
components are bussed around a microprocessor.
However, although the Linux kernel is standardized, the
drawback of the open-source characteristic of Linux is
that there is not yet an authoritative procedure to
integrate new hardware and platforms.

The task of porting Linux to the RUIO therefore
consists first of finding an already existing port of the
kernel to a microprocessor close to the PowerPC 401
core. We have found that the PowerPC 403GCX on the
IBM Oak evaluation board, where the Linux kernel
2.2.14 has been already ported, is a good starting point.
The second task consists then of adapting the bootstrap
process: it uncompress the Linux kernel from some area
in the RUIO memory, where it has been previosuly
uploaded by the host, and starts it.

The very first moments of the Linux kernel are
executed in real memory until virtual memory mapping
is enabled. At this stage, it remains to start all low-level
software like the interrupts handlers, timers, scheduler,
and serial line driver,

This work is still in progress: we are currently
working on the port of the Tulip Ethernet controller of
the RUIO. When this will be up-and-ready, the RUIO
will mount a root file system populated with already
existing PowerPC utilities from a network.

III. SOFTWARE DEVELOPMENTS

The exact implementation of the Readout Unit is not
yet fully defined. In order to be able to experiment with
different layouts of RU (see Figure 3) with parts of
hardware and parts of software, we develop
communication schemes between host and IOP, sharing
the same bus. A good candidate for this protocol is the
I2O message-passing scheme, as the IOP480 implements
all the necessary registers for this.

Trig
Fire Myr.RAL

Link

DDU

����������
����������PC

BDN

RUIO
2

RCN

RUIO
1

BCN

RCN ��
�� If dual PCI PC:

RUM=PC Mem

Eth.

Trig
Fire

RUIO RUIORUM

Myr.RAL
Link

DDU

������
PC

RCN
BCN
BDN

Eth.

RCNRUM emulated in PC host

Full hardware setupRUM Myr.

�������PC
RCN

BCN
BDN

Eth.

I/O controlled by PC host

Figure 3: possible layouts for RU

A. I2O-like host-IOP communication
The I2O [6] (Intelligent I/O) architecture specification

describes a communication scheme between host
processors (typically a workstation) and input/ouput
specialized processors (IOP) on expansion boards. I2O
specifies that host and IOP communicate through
message frames. The format of the message frames is
defined in the specification, as well as the means used to
transfer those messages from host memory to IOP
memory and back. Here we just used the hardware
protocol, i.e. the message passing scheme, not the
message format.

In the specification, this communication scheme
allows the drivers for devices controlled by IOP to be
split into two parts. One part on the host side, and one on
the IOP side, hence the IOP can relieve the host from
most of the I/O chore.

In the I2O philosophy, the driver running on the host
is also relieved of knowing the internals of the add-on
board, as the specification defines messages for each
type of peripherals that can be controlled by the IOP.

The host/IOP message passing scheme is
implemented through two PCI registers on the IOP.
Those register allows the host to access four queues, in
which message frame addresses are stored. (see Figure
4)

In the following, we will use inbound and outbound
from the IOP point of view. On the IOP memory resides
four FIFOs, which contain pointers to free frames
(inbound and outbound), and posted frames (also
inbound and outbound). The preferred model for I2O

message passing is pushing messages in pre allocated
frames in destination’s memory.

P
C

I
B

us O
ut

bo
un

d
re

gi
st

er

Outbound post

Outbound frames
IOPHost

Outbound free

In
bo

un
d

re
gi

st
er

Inbound post

Inbound free

Inbound frames

Figure 4 : Message passing FIFOs

Thus, when posting a query, the host retrieves the
address of a free frame in the IOP memory by reading
the Inbound Queue Register (this pops the first free
frame from the inbound free queue). It gets the address
of a free frame in the IOP memory. The host writes the
message directly in this location, then writes the frame
address in the Inbound Queue Register (this pushes the
frame address in the inbound post queue). This event
(inbound post queue not empty) triggers an interrupt on
the IOP side. The IOP just has to read the frame address
in the inbound post queue, and process the frame.

Symmetrically, when the IOP has to send a frame to
the host, it pops a frame address out of the outbound post
queue, and DMA’s the frame into the host memory. It
then writes the frame address back in the outbound post
queue, and the host is warned by an interrupt that the
outbound post queue is no longer empty (the host still
has to read the frame address on the PCI bus).

The big advantage of this scheme is to provide a
write-only method (except when host reads frame
addresses, but it’s only one or two word per frame
transferred). Using write-only scheme on a PCI bus gives
best performance, especially in our case where there is a
PCI-to-PCI bridge between host and IOP.

1) Host side implementation

The host side implementation was developed with
Linux. We used a very simple interrupt service routine
that pops frame addresses out from PCI and delivers
them to a kernel thread, thus the message processing is
not done at interrupt time.

2) IOP side implementation

 The IOP side of the I2O implementation was written
for VxWorks. (see section II). It is quite symmetric with
the host side one.

3) Status

In our software prototypes, we don’t use the message
protocol defined in the I2O specification, but only the
message-passing mechanism. We just used a simple
“receive and reply” protocol that implied a nearly
immediate message processing.

The current implementation encounters some
problems, which are still under investigation, involving
DMA engine and I2O message queues.

As a conclusion, we can say that the I2O message
passing protocol seems very promising for bus
efficiency, but the implementation we have didn’t give
its full performances at the time of writing.

IV. TEST ENVIRONMENTS

Different test environments have been setup to
validate the various parts of the hardware.

A. Bridge validation
 The first step in the RUIO validation was bridge

validation. This was simply done by running a driver for
the RUIO Ethernet interface on the host (running Linux).
By loading the network, we could get a good validation
of the bridge (as well as the Ethernet part), because the
bridge was accessed in read and write simultaneously on
both sides (the Ethernet chip is a bus master). We just
had to create important transfers on the network
interface, and to analyze the bus behavior.

B. VxWorks development environment
Apart from the messaging layer specification, the I2O

specification defines a standard interface to a real time
OS. Part of this interface has been developed for
VxWorks. The main interest of this interface is to define
access to low level (bus, adapters, and interrupts…). We
could then imagine writing drivers portable across
platforms with no other adaptation than recompiling.
This is of great interest for all the peripherals that will be
tested individually before being integrated in the DAQ
demonstrator with links to detector front end and builder
network. Those components are developped and tested
in parallel. See [7] and [8].

C. RUlib and Labview test environment
A number of hardware components comprising the

DAQ prototype system need custom software for
debugging and testing. RU library, which is based on an
object oriented shared library and NI Labview human
interface, has been built for this purpose. The use of OO
programming allows easier evolutions and “add on”.

RU library is the latest evolution of an OO class
library already used for tests in the past [9]

RU library objects are based on a class named
“BaseObject” from which almost every object inherits.
BaseObject defines common features for every object

such as getting environment variables, debug printing
command, log file facilities… Two generic classes
inherit from this “BaseObject”: “PCIMaster” and
“PCIBoard” which respectively define common feature
for PCI masters and PCI boards. The PCI board class
accesses the hardware with its PCI Master. The generic
PCI board class has member functions that delegate the
real accesses to the PCI master. Therefore, a given PCI
board derived class works unmodified on any type off
host (if PCI master is available).

The Labview application provides the user with a
panel allowing all kinds of accesses to the bus : memory
space, configuration space and I/O space. For each
board, we developed a specific class, which provides
specific functionalities, and the corresponding Labview
panels.

EnvObject

EnvHandler

LogObject

BaseObject

PCIMaster

PCIBoard

MacMaster

LinuxMaster

VxMaster (linux)

VxMaster (Mac)

FCBoard

RUIOBoard

RUMBoard

RUMOfflineBoard

RUMVirtual

RUMFile

Server
(VxWorks)

Displayer

Uses the object...

Inherits from...

Object

Object Platform dependent

Platform independent

Figure 5 : Objects organization in RUlib

Currently, the library is supported on Linux and Mac
OS environments. We can also access the PCI bus of an
embedded system running VxWorks, through TCP/IP,
thanks to a server. The client side works on both MacOS
and Linux.

1) Mac OS environment

For configuration space and IO space, we use Mac’s
PCI API. Memory space accesses are done directly by
the library.

2) Linux environment

A specific driver (a kernel module) has been
developed to allow accesses. Communication between
kernel space and user space is done through a character
file with major number 123. This module is in charge of
searching PCI boards, PCI accesses, and of
communication with the library. Configuration accesses
are made through IOCTL calls that wrap kernel
functions. IO space and memory space accesses are
made from user space using memory mapping, in order
to have better performances by dramatically reducing the
number of system calls.

3) VxWorks facilities

A specific program has been developed for remotely
accessing PCI boards on a VxWorks host, through
network. This allows the user to debug boards on a nice

UI. The program is in charge of searching for PCI
boards, executing PCI accesses, and of communication
with the library through network (it’s a TCP server).
From library point of view, on Linux, communication is
made through TCP sockets and on Mac OS using open
transport’s API.

V. FUTURE WORKS

A. RUM logic validation
RUM logic will be partly validated using RU library

facilities. A general class “RUMvirtual” defines
common features for the RUM board. “RUMboard”
object implements a real hardware component whereas,
“RUMoffline” object allows offline analyses of dumps
generated in case of error during automatic tests.
“RUMsim” object is in charge of simulation.

For a real hardware RUM board, “RUMboard”
provides accesses to the different memories in the RUM,
RUM’s command functions, RUM’s configuration.
“RUMsim” is in charge of emulating the input and
output, sending level 1 and 2 triggers. It is a virtual
event manager. Knowing what the software sends, we
can then check the behavior of hardware by several test
functions. These functions mainly consist on reading the
MMU memory and data memory, and checking pointer
logic and even event data on thorough tests.

Offline analyses are available through “RUMOffline”
object. RUM’s MMU memory can be stored in a file,
which can later be checked by test functions to search
for occurred troubles. This allows RUM board to run
endlessly (for instance, during the night), and then to
save MMU memory when an error occurs, and reset the
board to re-run the test. Test and analysis can be
performed later, since data is saved in a file. This is used
to find very infrequent error.

B. RUM-RUIO integration
The next step in the prototyping and testing of the

RU is to integrate two RUIOs, and RUM in order to get
a complete RU. The RUIOs will enable links (from
detector and to builder network) to utilize the full
bandwidth of the input and output busses. In this setup,
the commands can be received either by the IOP on the
RUM (using the Ethernet interface) or from the host.

If host receives the commands, it will pass them to
the RUM’s IOP through the message-passing scheme.
Optionally, the host can also access the RUM registers
directly.

We also plan to assign monitoring tasks to the IOPs.

C. Readout column demonstrator
Once the RU will be validated in its full form, it will

be integrated into the DAQ demonstrator, for testing
actual event building over a scaled-down network. The
current candidate for this builder network is Myrinet.
The test of the Myrinet network is described in [7].

D. Xdaq application
The I2O message passing scheme can be used as a

fast transport protocol for the XDAQ. The XDAQ is a
software toolkit developed for the testbeam [10]. This
toolkit allows the user to choose the network interface
by using different objects. We will integrate the I2O
messages as one of those transport objects.

REFERENCES

[1] The CMS Collaboration, The Compact Muon
Solenoid, CERN, Technical Proposal, No 7, LHCC 94-
38 December 1995

[2] http://www.pcisig.org

[3] G. Antchev, D. Gigi 20 - 24 September 1999,
Colorado, USA LEB 5th Workshop on LHC
Electronics,. dual-port memory with reconfigurable
structure.

[4] G. Antchev et Al. Readout Unit Prototype for
CMS DAQ System, Poster session, this workshop.

[5] http://cmsdoc.cern.ch/~dgigi/ruio.htm and
http://cmsdoc.cern.ch/~dgigi/rum.htm

[6] http://www.i2osig.org

[7] F. Meijers, Evaluation of Myrinet for the Event
Builder of the CMS experiment, MUG 2000, First
Myrinet User Group Conference, Sep 2000, Lyon,
France.

 [8] A. Racz and L.Pollet, A 400 MB/sec data link
based on GE componants and reconfigurable hardware
platforms, This workshop.

 [9] T.Ladzinski et al CMS Data Links and Event
Builder Studies, Third Workshop on Electronics for LHC
Experiments

[10] J. Gutleber, A software development toolkit for
the CMS Data acquisition, Poster session, CHEP2000 7-
11 February 2000, Padova Italy

