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Abstract

We suggest hereanew solution of the initial space-time singularity. In this approach the initial singularity of space-
time corresponds to a zero size singular gravitational instanton characterized by a Riemannian metric configuration
(++++) in dimension D = 4. Connected with some unexpected topological datas corresponding to the zero scale of space-
time, the initial singularity is thus not considered in terms of divergences of physical fields but can be resolved in the

frame of topological field theory. Then it is suggested that the "zero scale singularity” can be understood in terms of

topological invariants (in particular the first Donaldson invariant E (—1)ni ). In this perspective we here introduce a
i

new topological index, connected with O scale, of the form z = Tr (-1)3, which we call "singularity invariant".
30

Interestingly, this invariant corresponds also to the invariant topological current yield by the hyperfinite o von
Neumann algebra describing the zero scale of spacetime. Then we suggest that the (pre)space-time is in
thermodynamical equilibrium at the Planck scale state and is threrefore subject to the KMS condition. This might
correspond to a unification phase between "physical state" (Planck scale) and "topological state”" (zero scale). Then we
conjecture that the transition from the topological phase of the space-time (around the scale zero) to the physical phase

observed beyond the Planck scale should be deeply connected to the supersymmetry breaking of the N=2 supergravity.
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O. INTRODUCTION

Oneof thelimits of the standard space-time model remainsitsinability to provide a description of the
singular origin of space-time. Here we suggest, in the context of N=2 supergravity, that the initial
singularity, associated with zero scale of space-time, cannot be described by (perturbative) physical
theory but might be resolved by a (non-perturbative) dual theory of topological type. Such an
approach is based on our recent results [6-7] concerning the quantum fluctuations (or o-
superposition) of the signature of the metric at the Planck scale. We have suggested that the signature
of the space-time metric (+++-) isnot anymorefrozen at the Planck scale 7, and presents quantum
fluctuations (+++z) until zero scalewhere it becomes Euclidean (++++). Such a suggestion appears
as anatural consequence of the non-commutativity of the space-time geometry at the Planck scale

[11]. In this non-commutative setting, we have constructed (cf. 4.1) the"cocyle bicrossproduct” [6] :
4
Ug(so(4)or [~ Ugso(3, 1)) Q)

where Uq(so(4)°P and Ug(so(3,1)) are Hopf algebras(or "quantum groups'[16]), the symbol >4 a
(bi)crossproduct and v a 2-cocycle of deformation (for more specific definitions, see ref[29]). The
bicrossproduct (1) suggests an unexpected kind of "unification” between the Lorentzian and the
Euclidean Hopf algebras at the Planck scale and yields the possibility of a "g-deformation” of the
signaturefrom the Lorentzian (physical) mode to the Euclidean (topological) mode [6-30]. Moreover
equ.(1) definesimplicitly a (semi)duality transformation between Lorentzian and Euclidean quantum
groups (see equ.(42)). Thisisimportant insofar we consider that the Euclidean theory is the simplest

topological fieldtheory.

In other respect, it has been statedin string theory [25] that the behavior of string amplitudes at very
high temperature (Hagedorn limit) reveals the existence of a possible phase transition and the
restoration of large-scale symmetries of the system. In the context of this "unbroken phase”, generally

expected at the Planck scale, the theory is characterized by a general covariance preserving the exact
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symmetry of the system. Themetric g,,, is developed around zero and there exists at this level neither

light cone, wave propagation, nor movement. The exploration of this unbroken (and non-physical)
phase of the system is accessible only in the framework of a new kind of field theory proposed by E.

Witten under the name "topological field theory" [37].

Topological field theory is usualy defined as the quantization of zero, the Lagrangian of the theory
being either (i) azeromodeor (ii) a characteristic class ¢, (V) of avectorial bundle V——M built

on space-time [31]. Starting from the Bianchi identity TrR A R* = 3i0 TrFE A F* , our approach of 4D

supergravity leads us to describethe energy content of the pre-space-time system by the curvature R.
Wetherefore put £ ~R A R*. Thevalueof thetopological action S, =chlass =an V)=k&Z is
M M

then either zero or corresponds to an integer. The topological limit of quantum field theory, described
in particular by the Witten invariant Z = Tr (-1)" [36] is then given by the usua quantum statistical

partition function taken over the (3+1) Minkowskian space-time
Z =Tr (-1 e-~H (2
with 3= % and n being the zero energy states number of thetheory, for example the fermion number

in supersymmetric theories [1]. Then Z describes all zero energy states for null values of the

Hamiltonian H.

Now, we propose here (§(1.2)) a new topological limit of quantum field theory, non-trivia (i.e.
corresponding to the non-trivial minimum of the action). Built from scale 3 — 0 and independent of
H, this unexpected topological limit (in 4D dimensions) is then given by the temperature limit
(Hagedorn temperature) of the physical system (3+1)D. In a way this can be derived from the
"holographic conjecture” [42] following which the states of quantum gravity in d dimensions have a
natural description in terms of a (d- 1)-dimensional theory. In agreement with [4-34-39] and, in
particular, therecent results of C. Kounnas andal [3-27], we argue in §(5.1.1) that on the hereabove
limit (i.e. at the Planck scale), the "space-time system"” is in a thermodynamical equilibrium state [34]

and, therefore, is subject to the Kubo-Martin-Schwinger (KMS) condition [24]. A similar point of
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view has also been successfully developed in the context of thermal supersymmetry by Derendinger
and Lucches in [13-28]. Surprisingly, the KMS and modular theories [11] might have dramatic
consequences onto Planck scale physics. Indeed, when applied to quantum space-time, the KMS

propertiesare such that the time-like direction of the system, within the limits of the "KMS strip” (i.e.

between the zero scaleand the Planck scale) should be considered as complex : t = 7 =t, +it;,. In this
case, onthel3 — O limit, thetheory is projected onto the pure imaginary boundary t — 7 =it; of the
KMS strip. Then the partition function (2) gives the pure topologica state connected with the zero

mode of thescale:
— _1\S
rséo Tr (-1) 3

where srepresentstheinstantonic number. This new "singularity invariant” [6-7]), isomorphic to the
Witten index Z = Tr (-1)F, can be connected with the initial singularity of space-time, reached for 3 =
0 in thepartition functionZ = Tr (-1)S e —BH . According to sec. 3, when B — 0, the partition function

Z givesthefirst Donaldsoninvariant
| = E (_]_)n i (4)
i

anon-polynomial topological invariant, reduced to an integer for dimM%d =0 (dimM%d being the
dimension of the instanton moduli space). This suggests that the (topological) origin of space-time
might be successfully represented by asingular zero size gravitational instanton [41]. A good image of

this euclidean point-like object is the "transitive point", whose orbits under the action of [ are dense

everywhere from zero to infinity. Then at zero scale, the observablesO; should be replaced by the

homology cycles H; C M ﬁnkgd in the moduli space of gravitational instantons. We get then a deep

correspondence -a symmetry of duality- [2-19-32], between physical theory and topologica theory.
More precisely, it may exist, a the Planck scale, a duality transformation (which we cal
"I-duality"[6]) between the BRST cohomology ring (physica mode) and the cohomology ring of
instanton moduli space (topologica mode) [19]. In the context of quantum groups [16-17], we have

shown that transition from g-Euclidean to g-Lorentzian spaces [30-35] can also be viewed as a Hopf
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algebra duality [29]. Interestingly, the Hopf algebra duality has been recently connected to
superstrings T-duality by C. Klimcik and P. Sevara[26].

The present article is organized as follows. In section 1 we define the topological field theory and
suggest that thereexists at the scalelimit 3 — 0 anon-trivia topological limit of quantum field theory,
dual to thetopological limit associated with 3 — 0. In section 2 we evidence that the 3 — O limit of
some standard theoriesis topological. We give several examples of such a topological limit. In section
3, we show that the high temperature limit of quantum field theory corresponding to 3 — 0 should
give the first Donaldson invariant. The signature of the metric of the underlying 4-dimensional
manifold istherefore expected to be Euclidean (++++) at the scale zero. In section 4, we emphasize,
in the quantum groups context, the existence of a symmetry of duality between the Planck scale
(physical sector of the theory) and zero scale (topological sector). In section 5, we discuss in the
framework of KMS stateand von Neumann C” - algebras a way to understand the transition from the

topological (ultraviolet) phase of space-time to the standard physical (infrared) phase.
1. TOPOLOGICAL THEORY AT SCALEO

1.1 Preliminaries

Thefield theory considered hereis thermal supersymmetric [13-28] and in the context of D4 manifolds
[40]. Wehavedetailed the content of the (thermal) supermultiplet in a previous work [6]. The theory
belongs to the class of N=2 supergravities [19], the Hamiltonian being given by the squared Dirac
operator D2 [11-31]. Assuch, the simplest bosonic multiplet reducesto avector field plus two scalars
exhibiting a special Kahler geometry. Rightly, N=2 is here of a particular interest, for two main

reasons :

(i) thecomplex scalar fields of the theory (for example the dilaton S-field [32] or the T-field [2]) can
be seen as "signatures” of the KM S condition [11-25] to which the space-time might be subject at the
Planck scale. They might also be one of the best keys to understand the possible duality between

physical observables (infrared) and topological states (ultraviolet) :
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i —dualité

Topological vacuum (3= 0, instanton) Physical vacuum (I3 = £pjanck, Monopole)

This is based on the instantons / monopoles duality initially suggested by us in [6] and recently
proved in the superstrings context by C.P. Bacchas, P. Bain and M.B. Green [5]. Moreover, in
string theory again, has been conjectured a U=S®T-symmetry [25] from which we can infer the

hereabove duality between (physical) observables and (topological) cycleson afour-manifold M :

U —dualit
(0,0, . 0py =Y oy 20 )

Then the main contribution of the present article would be to emphasize that, as for conifolds cycles,

azero topological cycle might control the blow up of the space-time Initial Singularity.

(i) From another point of view, the S/T fields are closely related to the existence, in the Lagrangian,
of non-linear terms. Asrecaled by A. Gregori, C. Kounnas and P. M. Petropoulos [23], in the frame
of N=2 supergravity, the theory is generally inducing some non perturbative corrections and a BPS-
saturated coupling with higher derivative termsR2 + ... As our model is proposed in 4D dimensions,
the development of higher derivative terms can be limited in a natural way to the R2 term. Then the

Lagrangian usually considered in supergravity is:

L= [d*x Jﬁ{lz(u Ry R™ +BR%) + R+x LM} (5)

from which we pull the smplified Lagrangian density that we use here:
~ 1 2 %
L supergravite = BR +? R*+aRR (6)

Thistype of Lagrangian density is coupling the physical component (the Einstein term ﬁ R) with the
topological term RR" . Thisis of crucial interest since, as observed in ex.(2.1), when B — 0, we are

only left with the topological term RR" (decoupled, on thislimit, of theaxionfield o).

Now, let's begin with a brief reminder of topological field theory as originally introduced by E. Witten
in 1988 [37] :
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Definition 1.1 Topological field theory is defined by a cohomological field such that a correlation
function of n physical observables (O, G, ...... O,) can beinterpreted asthe number of intersections
{0105... O )= #(H N HN...NH,)

of ncyclesof homology H; C ¥ , inmoduli space MR of configurations of the instanton type
| mod mod

[#(X)], on thefields ¢ of the theory.

The content of "cohomological fields" (for which the general covariance is exact) isgivenby thefield
variations (which induce a Fadeev-Popov ghost contribution and gauge fixing part). The point,
however, isthat thetotal gaugefixed action is a BRST commutator and the energy-momentum tensor
is BRST invariant [19-37]. In other words, the correlation functions of cohomologica fields are
independent of the metric. Now, the topological field theory (for D = 4) is established when the
Hamiltonian (or the Lagrangian) of the system is H=0, such as the theory is independent of the
underlying metric. We propose to extend this definition, stating that atheory can aso be topological if

it does not depend on the Hamiltonian H (or the Lagrangian L ) of the system.

Definition 1.2 A theory is topological if (the Lagrangian L being non-trivial) it does not depend

onlL.

Def (1.2) meansthat L is atopological invariant of theform L = Ra R*. Based on this definition,
we suggest that there exists a second topological limit of the theory, dual to that given by H = 0. In
this case, we can haveH = 0, but thetheory istaken at thelimit of scale zero associated with 3 — 0.
Then the minimum of theaction isnot zero (as it is in the trivial case) but has a non-trivia (invariant)
value.

We consider the possible existence of such a "topological field " at the high temperature limit of the

system.
1.2 A new topological limit

Proposition 1.3 Thereexists at thescale 3 — 0 anon-trivial topological limit of the theory, dual to

thetopological limit correspondingto 3 — co.

-7-
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Proof The (thermo)dynamical content of the quantum field theory can be described by the partition
function:

Z=Tr(-)Ne ™ (7)
wheren isthe"metric number" of thetheory. When 3 — O, thetheory is no longer dependent on H.
Onthislimit, such that the temperature T — Tag(Hagedorn limit), equ.(7) becomes Zp = Tr(-1)N, H
vanishing from the metric states partition function. 3 playstheroleof acoupling constant, such that it
exists an infinite number of states not interacting with each other and independent of H. The point is
that for 3= 0, theaction Sis projected onto a non trivia minimum, corresponding to the self-duality
condition R = + R*. But in this case, the field configuration is necessarily Euclidean and defines a
gravitational instanton, i.e. a topological configuration [6]. We are therefore confronted to a 4D pure

topological theory , as described by thefirst Donaldsoninvariant [14] :

1= > (-)"

i
nj being the instanton number. The limit 3= 0is here dual (in a sense precised in §(4)) to the usual
topological limit 13— < given by H = 0. The density operator of the (pre)space-time system is written

as:

p — e*ﬁH+}LO

Ag being (classically) afactor of re-normalization of the system. When 3 = 0, the density operator is
thus reducedto p = e’ whichis independent of H = 0, characteristic of asecond topological limit of

thetheory.

Now we propose to show, through some very simple examples, that interesting contacts with
topological field theory can be madein takingthef3 — O limit of some established standard results. To

be as demonstrative as possible, we shall most often proceedin aheuristic way.
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2. THE B — OLIMIT OF SOME STANDARD THEORIES

To warm up, we first consider the 3 — O topological limit of the standard (quantum) thermal field

theory.
Example 2.1 The topological 0-scale limit of the heat kernel

(i) Onefamous mathematical proof of the Atiyah-Singer theorem (given, for example, by E.Getzler
[20]) liesin the heat equation [21-22]. Considering the heat operator e 81 acting on the differential

forms on a closed, oriented manifold X, the 3 — O limit of this operator corresponds to the local

curvature invariants of the manifold [31].

Let's consider a (quantum) thermal field theory on a system defined by the first order elliptic

differential operator P and it's adjoint P*. We put the laplacian A = PP* et A" = P*P. For any 3> 0,
we can evauate the partition function K = Tr(e_ BA) giving the states of the metric of the system.

Now, to get the asymptotic 3 — 0 limit, we takethe symbol of Tr(e_ BA) (which can be expressed in

termsof o(A) and its derivatives) and we get :

Tr(e ™) =Tr fole "y dxdk (8)
M

For 3 — 0O, K degenerates on the Dirac mass and the right-hand side of (8) has an asymptotic

expansion such that
Tr(e‘ BA) = iti_%Bi
0

and as a result, we get the well known [&-independent topological index (in the Atiyah-Singer
sense[22)) :

INd(P) = B[ A] - B,[A']

Withthisindex we seeinasimple way that the3 — O limit of thermal field theory is topological.
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Another important argument liesin the fact that at / pj nq, the (pre)space-time might enter a phase of
thermodynamical equilibrium (§(5.1.1)). Consequently (§(5.1.2)) it should be subject to the KMS
condition [24]. Asevidenced in §(5.1.3) and in the ex.(5.2.1), this implies the holomorphicity of the
time-like direction, the real time-like and the real space-like directions given by gg, being
compactified on thetwo circles Sl_”ke and i_”ke [6]. But one can easily see that this configuration is
equivaent to the dimensional reduction of the 4D Lorentzian theory onto a 3D theory. This type of
reduction has been described by Selberg and Witten [33]. We then are left with three-manifold

invariants, in particular the Floer invariant of a supersymmetric non linear o-model [18]. In this case,

thethreedimensional pseudo-gravity I 5 is coupledtothe S, T complex scalar fields:

(1) S= g—12 +i.05 (axion) withSand S
QT=gu+igia withTand T

Those scalar fields are propagating. Then the coupling of the S/T-fields with the 3D pseudo-gravity
is given by the extended o-modd! :

_ SL2, R) SL(2 R)
S = S0O(3) x o2 <800 (9)

Asthetheory isindependent of g4, the 2D field S B in the Lorentzian caseand SR in the
SO(1,2) SO(2)

Euclidean case can be viewed as equivalent. Thus the corresponding "superposition state" of the

signature (+++z) is ableto be described by the symmetric homogeneous space

_S0(3,1) ®S0O(4)
2h= 03

SO(3) being diagonally embedded in SO(3, 1) ® SO(4). Next step, as suggested in [6], a
"monopolestinstantons” configuration can be associated to this 5D metric configuration at the Planck

scale. Instantons and monopoles are here connected by a S-field. The form of the 5D metric induced

by the -model (9) and constructed in[6] is:

-10-
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2
ds® = a(w)*dQ ) + dgﬂz —dt? (10)
where the axion termis a= f(w, t), the 3-geometry being dQ(ZS) = f(xY,2). Clearly the expected

values of the running coupling constant (dilaton) ¢ = E aregiving thetwo 4D limits of the 5D metric

2
of equ.(10). Thus weget: - Infrared : 3 — cc. In thisstrong coupling sector we ha\/edi2 — 0 and

the w direction of I'® is cancelled. So after dimensional reduction (D=5 — D= 4) the metric on I'®

becomes4D Lorentzian :

ds® = a(w)*dQ ) - dt® (11)

The o-model (9) isreducedto theusual Lorentzian symmetry :

SL2 B _ Rg) "o

SO(3) x S0

SO(3, 1) (12)

Likewise, when g — «, the RZ term cancels in the 5D Lagrangian density
~ 1 « . :

L supergravité =f8 R+?R2 +aRR, and, asR = R", the topological term oRR" is aso suppressed.

So, weget L= ﬁ R.

Let's see now what happens on the (dual) ultraviolet limit, when 3 — 0.

- Ultraviolet : 3 — 0. We can construct a boundary of equ.(10), corresponding to the small

coupling constant sector of the coupled theory and we get divergent values for the rea dilaton field
Q= 9_12 . Then naively, we can apply one of theresults of [23] saying that theaxionfield is decoupled

of the theory on this limit and we are left with the divergent dilaton field only. So, we have for the

metric on ' the new Euclidean form :
2 o o dw?
ds” = a(w)"dQ @t ? (13)

Therefore, in the ultraviolet, the o-model (9) is reduced to the four-dimensional target space:

-11-
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SL (2, [R) B(g) ultraviolet O
S0(2)

SO(3) x

SO(3) x SO(3) = SO(4) (14)

and on this small coupling limit, the reduced theory becomes Euclidean, i.e. topological.. Again, it

appears reasonable to conclude that the 3 — 0 limit has a pure topological content. Incidentally, this
result could as well be understood in the frame of the isodimensiona instanton-monopole duality

proposed by us in [6] and proved in the string context by Bacchasand al [5]. Indeed, we have shown
that the g-deformed 5D theory is dominated by the (3+1)D monopolesin the infrared (B — /pjank)

and by the 4D instantonsin the ultraviolet (3 — 0) [6]. In this sense, the Euclidean signature (++++)

can be seen asi-dual to the Lorentzian one (+++-). Likewise, the topological limit 3 — 0 should be

viewed as i-dual to the physical limit 3 — /.. This might be an unexpected application of the

Seiberg-Witten S/T-duality [32].

At present, let's explorethe ultraviolet limit of another standard result, i.e. the Feynmann Path integral

[39].
Example 2.2 The topological 0-scale limit of the Feynmann (3+ 1) path-integral approach

(1) It'swell known that in quantized Minkowski space-time, the amplitude (g,,9,, 0, | 0, ¢,0,) IS

givenby :

(@920, | Guh.0)) = J Dlo] exp[i S0 )]

To include the point-like (0-modes) configurations of g,,,, we put Tr(-1)"intheintegral and we get
(9292 | 0.6,,0) = J Tr(-1)"Dlo] expli (o )] (15

So, thetrivia {t=R — 0, S=0} Lorentzian vacuum is distinct of the "topological vacuum" connected

to the minimum of the Euclidean action Sg= 8g—j§2 But it has been shown [15-37] that the zero modes

in the expansion about the minima of S are tangent to the instanton moduli space Mg, so the

-12 -
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topological vacuum should be viewed as the "true vacuum™ of the theory. Then equ.(15) becomes for

R—0:

(9,90 % | Gor00:95) = lo = J Tr(-1)" Dlgq] (16)

To definelp, one can assumethat at zero scale, the measure D[¢g] is concentrated on one unique point
and becomes a pure state, i.e. a positive trace class operator with unit trace. Concerning ¢, the field
content can be given by the non linear term R2, so that the 3-dependant typical form of the Lagrangian

density is, asseenin[6] :
supergravité

~ 1 5 *
L —ﬁR+?R +aRR (17)

Now, for g= R — 0, the Einstein term R is cancelled and as R =R", the only remaining term in
equ.(17) isthetopological invariant RR* (itself decoupled from the axion field ). So, equ.(15) takes

thenew form:
(9090, T | go,¢0,ao)—>fTr R? :fTrRR* =lo (18)
and o becomesatopological invariant. As
~[Tr(R(A)?) =8x°K(E)

X
and we apply the Gauss-Bonnet theorem to find :

1

X(M)=W‘!(‘gabcd&bad (19)

Therefore, the 3 — O limit of the Feynmann path integral is giving the Euler Characteristic, i.e. the

"true vaccum" mentioned hereabove and corresponding to the topological pole of thetheory.

Next, we provideanew example showing that the 3 — O limit of the N=2 supersymmetric theory is

topological.

-13-
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Example 2.3 The topological O-scale limit of the (supersymmetric) quantumfield theory

We apply hereawell known quantum mechanical account of Morse theory due to Witten [40]. First,
we start from the standard supersymmetry algebra {Q,,Qj} =QQ, +QQ =0. Next, we express this

superalgebrain termsof dataprovided only by the space-time manifold M. To do so, let's define a set

of coboundary operators, the conjugation of d by e™' being parametrised by = L.

KT
d, —e*de ™
(20)

dz —eMd e ™
for aMorsefunction H(x). Then the spectrum of the [3-dependant Hamiltonian is:

* *
H,=d.d, +d.d, (21)
Now, let's send I3 onto zero. We get for the Hamiltonian theinvariant value:
Ho=dd" +d'd= ®A, (22)

sz

But this invariant is nothing else than the Betti numbers of M, given by b, = dimkerA , whichis a

discrete function, independent of 3. Consequently, the space of zero energy statesof H is given by the

set of even (odd) harmonic formson M and equalsthe Betti number of M. So we have, for 3— 0:

Tr(-1)F = ;(—1)% = x(M) (24)

where b, istheith Betti number and y (M) the Euler-Poincaré characteristic of M. Finaly, on the zero
scale limit, we recover the topological index [37] corresponding to any standard topological field

theory.

To finish, we obtain in the last following example some analog results in the frame of full (N=2)

supergravity.

Example 2.4 Thetopological 3 — 0 limit of (N=2) supergravity
Asamatter of fact, for aspin manifold, we can express H in terms of the Dirac operator D. Thenin

dimension D=4, we can calculate on the 3 — 0 limit theindex of the squared Dirac operator :

-14-
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(D)= i 8 e )]

Ty 2+%Rf§, O,ihl—lG(RA R)(&i, &iha\
‘e \” %) \GE ' E) dedg

\

1
eon 4
T M

By the Mehler formula, we find the Dirac index in function of the Dirac genus A(M):
ind(Dy)= fch(B)A(M) (25)
M

ch being the Chern character, B the curvature and A(M) the Dirac genus of the auxillary fiber bundle.
Since the spinors are interacting with Yang-Mills fields, the A(M) term is coming from the

By
gravitational part whereastherest of equ.(25) comesfrom the gauge part. As Ch(B) = Tr(e 72 ’”) ,

we get :
k Xil 2
AM) = T[———— 26
(M) jl:llsinh (x;/2) (26)
and we can express the complete Yang-Mills + gravity index through the following invariant :

Ind(D, ) =di8m7MfTr(R/\ R —8%2fTr(FA F 7)

Finaly, in Yang-Mills + gravity context, we obtain again atopological invariant on the3 — 0O limit.

Now, to go further, the next step consists to detect, on the 3 — O limit, the nature of the topological
invariant involved. We shall discover that Donaldson invariants are playing a very important role on

this boundary.

3. B — OSCALE AND DONALDSON INVARIANTS
From atopological point of view, Donadsoninvariants are obtained from characteristic classes of an
infinite dimensional bundle on the manifold equally infinite and canonically associated with a

4-dimensional manifold :

Definition 3.1 Let M be a 4-dimensional manifold . The Donaldson invariant gq(M) is a
symmetric integer polynomial of degree d inthe 2-homology H,(M;Z) of M
QM) : Ho(M) x ... xHy(M) —=Z

-15-
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M ﬁ,fc),d being theinstanton moduli space of degree k, the Donaldson invariant is defined by the map
M : Ha(M) = HA(M)3(5

Now, we suggest that on the 3 — 0 limit, the 4D field theory is projected onto the first Donaldson

invariant.

Proposition 3.2 The high temperature limit of quantumfield theory corresponding to 3 — 0 in the
partition function Z=Tr (-1) Se-BH gives thefirst Donaldson invariant. The signature of the metric

of theunderlying 4-dimensional zero scale manifoldis therefore Euclidean (+ + + +).

Proof Let the partition function Z = Tr(-1)S e -®H connected with a set described by the density
matrix :
Q= (-1)Se—™ (28)

According to standard arguments, we can write:

Tr(-1)Se=B = fdg(t) dy () exp- S (¢, ¢) (29)

cre
It has been shown [1-36] that given a supersymmetric QFT, one can define the invariant | = Tr (-1)f,
f being the fermionic number. We propose to extend equ.(29) to supergravity and to define the
topological invariant

1=Tr(-1)S (30)

where S is theinstanton number. So, theregularization of thetrace (30) gives the index 1 of the Dirac

operator :
B
) ) j‘dtL
i=Trre ®*? =7r(1)Se™®? = fIDx][Dyle® (31)
cpl

with 3. & C. Thenfor ;= 0, thevalueof thepartition functionZ = Tr (-1) S e P is:

Zo=Tr(-1) S (32)
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and Tr (-1)S can be seen as the index of an operator acting on the Hilbert space #. Dividing % in
monopole and instanton sub-spaces # = #sg; + #j and Q being a generator of supersymmetry, we
get:

Qly) =0, Q" |y} =0 (33)

So Tr (-1)S = Ker Q - Ker Q" such that as topological index, Tr (-1)S is invariant under continuous
deformations of parameters which do not modify the asymptotic behavior of the Hamiltonian H at high
energy. H isgivenby H = dd* +d*d, the space of zero energy states corresponding to the set of even

harmonic forms on Mp:

Tr(DSe81 = (M)= (b, (34)

A =Tr (-1)S isindependent of 3, the sole contributions to A coming from the topological sector of zero

energy: A= niE=o nE %. Onformal basis, nE 0—nE O can be seen as the trace of the operator (-

1)S. Then Aisatopologica invariant, i.e. thefirst Donaldsoninvariant. The coupling constant g being
dimensional, thelimit 3= 0 impliesp = 0 and corresponds to the sector of zero size instantons [41].

So, DimeT'gd= 0. When Dimenkgd;a 0, theDonaldsoninvariants are given by :

Z(ry - 17) = [DXe ﬂ [V - <ﬂ fwK> (Dim (3= 0 (35)

What happens when ? The solutionisin the correspondence between the Donaldson invariants on 4D
manifolds and the Floer homology groups [18] on 3D manifolds. Indeed, Donaldson invariants
amount to the calculus of the partition function Z, expressed as an algebraic sum over the instantons

[15]:

Z— 7 :E(—l)"i (36)

i indicating thei thinstanton and nj = 0 or 1 determining the sign of its contribution to Z. Donaldson
has shown on topological grounds [14] that when dima¢{9, = 0, then E(—l)ni is a non-polynomial
i

topological invariant, reducedto an integer. We find the same result starting from T, = {Q v Aap }

In fact, the partition function of the system at temperature -1 has the general form Zg="Tr (-1)Se-fH
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. For 3=10, Z4 becom&sBZ = Tr(-1)S, which is isomorphic to E(—l)ni , sand nj giving in both
= i

cases theinstanton number of thetheory.

Thisresult strongly suggests that on the high temperature limit 3 — O parameterizing the O scale of the
theory, the partition function (% projects the Lorentzian physical theory onto the Euclidean
ar) _0

mod —

topological limit.

Now, starting from hereabove, we suggest the existence of a deep correspondence, of the duality
symmetry type, between physical sector (A = Planck scale) and topological sector (O scale) of the

(pre)space-time.

4. DUALITY SYMMETRY BETWEEN PHYSICAL AND TOPOLOGICAL STATES
Ideally, the duaity we are looking for (which we cal "i-duality” t—>%[5], of the typei = S®T)

should exchange real time in strong coupling / large radius with imaginary time in weak coupling /
small radius. In thissense, Planck (physical) scaleshould bei-dual to zero (topological) scale.

Let'sfirst outline afew formal aspectsof Lorentzian/Euclidean duality in terms of Hopf algebras.

4.1 Duality between g-Lorentzian and g-Euclidean Hopf algebras

Considering the non commutative constraints at the Planck scale, it appears interesting to adopt an
approachin termsof "quantum groups' at this scale. So we have shown that in D=4, it should exist a
superposition (++++) between Lorentzian (physical) and Euclidean (topological) algebraic structures.
Then we have constructed, in the enveloping algebras setting, the g-deformation of the cocyle

bicrossproduct [6]:
¥
My (H) =HOP [~ H, (37)

where H isaHopf algebra, [~ abicrossproduct (i.e. aspecial typeof crossproduct, defined in [29])
and x a 2-cocycle or"twist" in the Drinfeld sense [16-17]. Thisis inspired by the idea to unify two

different quantum groups within aunique algebraic structure. So, we propose thefollowing :

- 18-



Topologica Theory of the Initial Singularity of Spacetime

Proposition 4.1 The Euclidean and the Lorentzian Hopf algebras are related by the cocycle

bi crossproduct

Uq(so(4))°P ¢[>< Uq(so(3, 1))

Proof Starting, in the setting of enveloping algebras, from the Euclidean Hopf algebra H =
Uq(so(4)), we have the well known decomposition H = Uqg(su(2)) ® Uqg(su(2)) and the "opposite’
HOP = Ug(su(2))P ® Uq(su(2))%P, whereas the Lorentzian form is A = Hy = Ugsu(2)) P>
Ugsu(2)) = Ug(so(3, 1)). Asexplained in [6], the cocycle of deformationisy = % ,,. Thenthe action

and the coaction are:
(@® b) < (h® g)=hyad, ®g,bSy,
B(h® g) = (h(l) ®g(1)).(Sh(3) ® Sg(s)) ® h(z) ® g(z)

= Ny ® 9SGy ® hy) @9y (38)

where we find the structure of tensor product of the action and the coaction for each Ug(su(2)) copy.

On the other hand, thecocyclefor h,g € Ugsu(2)) is:

y(h®g)=(h, ®g,)N1® RN Sy ®SY,))1® e
(hiy ® G )(RP @ D(Sy ® Y (R PR )

wheretheproductisin H = Ug(su(2))® Uqg(su(2)). Thisgives:
p(h®g) =hyS,, ® g, R 59(4)%_(1) ® h, R S8 2@ 923

=hySy ® gy VYRV ® h, RV, P ® 1 (39)

for theexplicit bicrossproduct structures. ged

Clearly, prop.(4.1) proves the possible "unification" between the g-Lorentzian and the g-Euclidean
Hopf algebras at the Planck scaleWe give a detailed demonstration of this proposition in [6]. But
also, the hereabove result suggests a certain type of "duality” between Lorentzian (physical) and

Euclidean (topological) quantum groups. To see this, the next step consists in showing the existence
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of a very interesting "semidualisation” (proposed in the general case by S. Mgjid [29]) between
Lorentzian and Euclidean Hopf algebras. Better till, such a duality allows a description of the

transition from the g-Euclidean group to the g-Lorentzian group [30] :

Proposition 4.2 Ugi(su(2)) ® Uqsu(2) = Uq(su(2))P>4Uq(su(2)) is connected by
semidualisation to Ug(su(2)) ><1 Ug(su(2))9P* = D(Ugsu(2))). Then the semidualisation connects a

version of Ug(so(4)) to aversion of Ug(so(3, 1)).

Wehavegivenin[6] acomplete demonstration of prop. (4.2), based on the properties of the Drinfeld
double 3(Uq(su(2))). Then, using our general cocycle construction M (H), we get the interesting

relation ;

semidualisation

Ugsu(2) >4 Ugsu(2)) = Ug(so(4)) Ug(su(2))* [>X<] Uq(su(2)) ~Uq(so(3, 1))

(40)
The "g-deformation™ from g-Euclidean to g-Lorentzian Hopf algebras corresponds to a dudity
transformation and induces the existence of a 2-cocycle of deformation. Likewise, the cocycle

bicrossproduct
¥
Ug(so(4)or >« Uq(so(3, 1)) (41

definesimplicitly the new (semi)duality transformation

semidualisation

Ug(so(4))0" >4 Ug(so(3, 1)) = Ug(so(4))

SOq(3,1) ><] Uq(so(4))opP
X
where y is constructed from 1, this one being derived from the quasitriangular structure % of

Ug(su(2)) [5].

Now, an interesting consequence of those results concerns some duality characteristics at the level of
g-deformation of space-time itself. We have shown [6] that the natural structures of the g-Euclidean
space[l%;1 and of the g-Lorentzian space Rg' 1 , covariant under Uqg(so(4)) and Ug(so(3, 1)) [8] are

connected as follows:
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+-Hopf algebras duality

U, (su(2)) sU_ () - R:’/p=l
Transmutation] = T g- signature change (42)
BU (su(2 BSU 2) = R>1/p=1
q( (2) % - braided groups autoduality q() q P

where we get aduality relation between Rf;' and Rg’ ! asakind of T-duality [2]. This interpretation is

possible only when g = 1 - i.e. at the Planck scale -. We can extend those results to g-Poincaré

groups

RS ><] Uy(so (3, D) (43)

seen as dua tﬂhe Euclidean g-Poincarégroup

RS> <1 Ug(so (4)) (44)
Interestingly, the Hopf algebra duality has been recently related to superstrings T-duality by

C.Klimcik and P.Sevara [26]. Such dualities in terms of quantum groups have also been proposed by
S. Mgjid [29].

Now, we apply the hereabove results into amore physical context. So, we propose thefollowing :

Proposition 4.3 There exists, at the Planck scale, a symmetry of duality between the BRST
cohomology ring (physical sector of the theory) and the cohomology ring of instanton moduli space

(topological sector).

Proof Letbe, atthe Planck scale, BRST cohomology groups, of which the generic form, reviewed
in[37],is:

kerQ (9)
H (B%\)’ST =1 (%FE%T (43)
IMQBRsT

where Qé%gST Is the BRST charge acting on operators of the ghost number g. From the theory of

Donaldson [14-15], we conclude the existence, at 0 scale of space-ime, of cohomology groups

constructed by de Rham:
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kerd®
imd('™D

HO M) - (46)

where d represents the external derivative acting on the differential forms of degreei on an‘gd.

Topological theory then brings about ring injection which follows:

* AU * k d [ k
HBRsT =® 4 Hirsr——H* (3t ) = ® ¥ (1 (a1 (47)

and which, according to conditions givenin[19], becomesaring isomorphism. There exists therefore

an injective path from the physical mode to the topological mode. Now let O; be the physica

observables considered, such that a correlation function of n observables is the number given by the

matrix of intersectionsH;j :
{0, 0, ... 0,,)= #(H NHyN ... NH) (48)

number associated with n cyclesof homology H; CM g, iN moduli space M §n'2d of configurations
of the gravitational instanton type J[¢(x)], on the gravitational fields ¢ of the theory. The physical

sector of thetheory is described by theleft hand side of equation (48) and thetopological sector by the
right hand side. One observes that (OlO 5 e On) = 0, i.e. the theory has a physical content if
AUy =fa“jy d4x, with j, being the "ghost flow" of degree k, AU its integral anomaly and

di = gh[0O;] theghost number of O;. Moreover

dy = dimg 2% (49)

mod
isthedimension of moduli space of degree k. Following the theorem of Atiyah-Singer [21], one can

show that AUy = dy . From this point of view, the correlation functions of a set of local observables
G(xq - %) ={00%) - 0(%,)) (50)

amounts to the integral over moduli space of the number of cohomology classes of space. The

associated BRST chargeQisof theform Q=3 (-1)". When the divergence of the ghost flow is non-
zero, i.e. 94 j M = O, then the theory oscillates between (O;) and (Hj) - i.e. between the Coulomb
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branch and the Higgs branch in metric superposition space - . For the 0 mode of thescale, o j M = 0,

then
{0,0, ... 0y} =0 (51)

which suggests that on this limit, dimMﬁ'fgd = 0. In fact, after functional integration over the empty
degreesof liberty of thetheory, the physical observablesarereduced to closed forms Qj of degree di,

which signifies:
- K
AU=dim M(mgd

and when AU = 0, thereexists no embedding space for moduli space and the theory is projected into
the Coulomb branch, at theorigin of M(n'fgd, on asingular instanton of zero size, identified to space-
time at zero scale. The corresponding signature in this sector of the theory is therefore Euclidean

(++++).qed

This result suggests once more that at zero scale, the theory is no longer physical but purely

topological.

Now, hereisacritical question raised by this paper : how do we go from the topological state of the
(pre)space-time around the origin to the usual physical state? In thelast section, we shall try to answer

this question.

5. TRANSITION FROM INITIAL TOPOLOGICAL PHASE TO STANDARD
PHYSICAL PHASE

Considering all the preceding developments, it's of crucial interest to worry about how the initial
(generaly covariant) topological phase possibly characterizing the (pre)space-time at the vicinity of the
Initial Singularity does break down to the universe we observe to day. We then propose some

(hopefully) stimulant tracks ableto be worked out within some further researches.
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On genera basis, we claim hereafter that the transition Topological phase— Physical phase might be
deeply related to the breaking of the N = 2 supergravity at the Planck scale. In other words,
supersymmetry breaking, as showed by C. Kounnas and al in superstrings context [3-27], is
characterized by the loss of the thermodynamical equilibrium of the system. To sum up, the D-
dimensional space-time supersymmetry is spontaneously broken in (D-1) dimensions by thermal
effects. For thisreason, supersymmetry breaking might bring about the decoupling of the topological
and the physical states of the (pre)space-time system. How isit so ? To see it, according to [4-27],
let's recall that at the Planck scale, the (pre)space-time is generally characterized by two fundamental
properties : (i) the thermodynamical equilibrium state [34] and (ii) the non-commutativity of the
underlying geometry [11]. Those two properties are very often considered, together or separately.
However, it is critical to redlize that for any system, properties (i) and (ii) are inducing the famous
"Kubo-Martin-Schwinger"(KMS) condition [24]. Therefore, we propose now to consider that, most
likely, space-time, as athermodynamical system, issubjecttothe KMS condition at the Planck scale
[6]. Consequently, in the interior of the "KMS strip”, i.e. from B = 0to B = /pack, the fourth
coordinate g44 should be considered as complex, thetwo real polesbeing 3 =0 (topological pole) and
3=/ panck (physical pole). Thisisadirect (and standard) consequence of the KM S condition. So, we
suggest [6] that within the KMS strip, the Lorentzian and the Euclidean metric are in a "quantum
superposition state" (or coupled), this entailing a "unification” (or coupling) between the topological
(Euclidean) and the physical (Lorentzian) states of space-time. Conversely, the transition from the
topological state to the physical state of the space-time can be seen in terms of "KMS breaking" (cf.
conj. (5.2.5)).

Now, let's begin with the hypothesis of global thermodynamical equilibrium at the Planck scale.
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5.1 Thermodynamical equilibrium and KMS state of the space-time at the Planck

scale

5.1.1 Thermodynamical equilibrium of space-time

From athermodynamical point of view, it appearsthat the Planck temperature

. E hc? }/2 -1 32
Rk~ Tp = —Pz(—) kg~ ~14 x10°°K
P P kg TG
represents the upper limit of the physical temperature of the system. Indeed, it is currently admitted

that, before the inflationary phase, the ratio between the interaction rate (I') of the initial fields and

the (pre)space-time expansion (H) is % >> 1, so that the system can reasonably be considered in

equilibrium state. This has been established a long time ago within some precursor works of S.
Weinberg [34], E. Witten [4] and several others. It has recently been shown by C. Kounnas and a in
the superstrings context [27]. However, this natural notion of equilibrium, when viewed as a global
gauge condition, has dramatic consequences regarding physics at the Planck scale.  Which kind of

consequences? To answer, let's see on formal basis what an equilibrium stateis.

Definition 5.1 H being an autoadjoint operator and f# the Hilbert space of a finite system, the
Try(e BHA)
b

and
Try(e ™)

equilibrium state w of this system is described by the Gibbs condition ¢@(A) =
satisfiesthe KMS condition.

: 1 . . e
Here, Tr is the usual trace, B=ﬁ is the inverse of the temperature, H the Hamiltonian, i.e. the

generator of the one parameter group of the system. Of course, A is a von Neumann C”* - algebra

(see 8§(5.1.4) for definitions). The equilibrium state implies that 3 must be seen as a periodic
(imaginary) timeinterval [0, 3= /o). Now, the famous Tomita-Takesaki modular theory [10-11]

has established that to each state ¢(A) of the system corresponds, in a unique manner, the strongly

continuous one parameter * - automorphisms group o :

at(A) = @iHt A eg-iHt (52)
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with t € R. This one parameter group describes the time evolution of the observables and
corresponds to the well known Heisenberg algebra. At this stage, we are brought to find the

remarkable discovery of Takesaki and Winnink, connecting (i) the evolution group o (A) of a
Tr(Ae™™)

system (i.e. the modular group M = At A A=) with (ii) its equilibrium state @(A) = e ™)
[11]. The famous "KMS condition” [24] is nothing else than this relation between o; (A) and ¢(A),

the content of thisrelation being precisedin (i) and (ii) of §(5.1).

Thenwe claim in anatural way that the space-time, in equilibrium state at the Planck scale, is therefore

subject to the KM S condition at thisscale.
5.1.2 The (pre)space-timein KMS state at the Planck scale

When viewed as a hyperfinite system at the Planck scale, the (pre)space-time may be described by a
von Neumann C* -algebraA (avon Neumann algebrais hyperfinite if it is generated by an increasing
sequenceof finite dimensional sub-agebras). Now, let's see the essence of the KMS condition, given
by the Haag-Hugenholtz-Winnink theorem [23] : a state w on the C* -algebra A and the continuous

one parameter automorphisms group of A at thetemperature 3= 1/ k T verify the KMS condition if,

for any pair A, B of the* - sub-algebras of A, it exists a f(tc) function holomorphic in the strip
{tc=t+iBR€eC,Imtce[0, R]} suchthat:

) f®O=9A(xatB)),
(i) f(t+iR)= g ot (B)A), VtieR. (53)

Thenwe observe with (i) and (ii), thetwo crucial propertiesof the KM S condition : the holomor phicity
of theKMS strip and of course, due to the cyclicity of the trace, the non commutativity ¢((ctA)B) =

@(B(o+i rA)) characterizing any "KMS space” (in fact, the two boundaries of the strip do not

commute with each other).
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Now, if we admit that around /p 4, the hyperfinite (pre)space-time system is in a thermal

equilibrium state, then according to [24], we are also bound to admit that this system is in a KMS
state. Incidentally, another good reason to apply the KM S condition to the space-time at / p 4k IS that
at such a scale, the notion of commutative geometry vanishes and should be replaced by non
commutative geometry [11]. In this new framework, the notion of "point" in the usual space collapses
and is replaced by the "algebra of functions' defined on a non commutative manifold. Non
commutative geometry and quantum groups theory [16-29] are addressing such non-commutative
constraints. But the non-commutativity induced by the KM S stateis in natural correspondence with the

expected non commutativity of the space-time geometry at the Planck scale.
Next, let's push forwards the consequencesraised by the holomorphicity of the KM S strip.

5.1.3 Holomorphic time flow at the Planck scale

As a consequence of the application of the KMS condition to space-time itself, we are induced to
consider that thetime-like coordinate gog becomesholomorphic withinthe limits of the KMS strip. So
we should have[11-24] :

t—1 =tr+it (54
asshowed in[6]. In the sameway, the physical (real) temperature becomesal so complex at the Planck

scae:

T—Tc= Ty +iTj (55)
as proposed by Atick and Witten in another context [4]. So, the KM S condition suggests the existence

at the Planck scale, of an effective one loop potential coupled, in N = 2 supergravity, to the complex
dilaton + axion fieldgp = giz +ia andyielding the following dynamical form of the metric

My - disgd, 1,1, €% (56)
Thesignatureof (56) is Lorentzian (physical) for 6 = = st and can become Euclidean (topological) for
8 = 0. Thisunexpected effect is simply due to the fact that, within the boundaries of the analytic KMS

field -i.e. from the scale zero up to the Planck scale- the "time-like" direction is extended to the
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complex varigbletc=tr+iti € C, ImtcEJitj , tf] , thefunction f(t) being analytic within the limits
of theKMS field and continuous on the boundaries. What happens on the 3 = 0 limit ? Applying the
KMS properties, we find that thetime like direction t becomes pure imaginary so that the signature is
Euclidean (++++). Conversdly, t is pure real for B = / pjanck (+++-). So, according to Tomita's
modular theory [11], the KMS condition, when applied to the space-time, induces, within the KMS
strip, the existence of the"extended" (holomorphic) automorphisms group :

Moo (Mg)=e "tM, e % (57)

with the 3 parameter being formally complex and able to be interpreted as a complex timet and / or

temperature T. It is interesting to remark that in the totally different context of superstrings, J.J.

Atick and E. Witten were the first to propose such an extension of the real temperature towards a
complex domain[4]. Recently, in N=4 supersymmetric string theory, |. Antoniadis, J.P. Deredinger

and C. Kounnas [3] have also suggested to shift the real temperature to imaginary one by

identification with the inverse radius of a compactified Euclidean time on S, with R = 1 / 2aT.

Consequently, one can introduce a complex temperature in the thermal moduli space, the imaginary

S/T/U

pat coming from the By, antisymmetric field under type IIA type 1IB

S/T/U

H eter otic string-string dualities. More precisely, in Antoniadis and al approach, the field
controlling the temperature comes from the product of the real parts of three complex fields :

= Re S, t=ReT and u= Re U. Within our KMS approach, the imaginary parts of themoduli S, T,

U can beinterpreted in term of Euclidean temperature. Indeed, from our point of view, a good reason
to consider the temperature as complex at the Planck scale is that a system in thermodynamical

equilibrium state must be considered as subject to the KM S condition [24].

Now, let's step forward a more algebraic comprehension of KMS state, in terms of von Neumann

algebras.
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5.1.4 KMS state in terms of von Neumann algebras

The von Neumann algebras are, naively speaking, the non commutative analogs of measure theory.
They haveacritical importance in our understanding of non commutativity of space-time around the
Planck scale.

In the KM S state, the only von Neumann algebrasinvolved are what is called "factors’, i.e. a specia
type of von Neumann algebra, whose the center is reduced to the scalarsa & . There exists three
typesof factors: the type | and type Il (in particular here 1) -which are commutative and endowed
with atrace- and thetypelll, non commutative and traceless. A trace T on a factor M is alinear form
such that 7(AB) = ©(BA), VA,BEM. In thiscase, any measureon M is invariant. When the measure
on M isill defined (which isthecaseof type Ill), the notion of trace vanishes and is replaced by the
oneof "weight", which isalinear map from M4 to R+ = [0, +oc]. Thetypelll factorshaveno definite
trace. They are very important hereafter as far as they are the only one involved in KMS states. We

work herewith "111," factors, A €]0, 1, characterized by theinvariant S(M) = A7y {0}.

Rightly, the KM S condition, when applied to the (pre)space-time at the Planck scale, cuts up three
different scales on the (pre)light cone, which can be described by three different types of von

Neumann algebras (or "factors").
5.1.5 From the topological scale to the physical scale of the space-time

(i) the topological scale (R = 0, signature { ++++}) : thisinitial "topological" scale correspond to
the imaginary vertex of the light cone, i.e. a zero-size gravitational instanton. All the measures
performed on the Euclidean metric being p-equivalent up to infinity, the system is ergodic. As shown
by A. Connes, any ergodic flow for an invariant measure in the Lebesgue measure class gives a
unique type 11, hyperfinite factor [11]. This strongly suggests that the singular O-scale should be
described by atype Il ,, factor, endowed with ahyperfinite trace noted Tr.. By hyperfinite, we simply

mean that thetrace of the Il . factor is not finite. Wecall MTOC',; such a"topological" factor, whichis an

infinite tensor product ®* of matrices algebra (ITPFI) of the Ry, Araki-Woods type [11]. Now, the

-29-



Topologica Theory of the Initial Singularity of Spacetime

initial state on MTO(;E, corresponding in ex. (2.1) to the divergent values of the dilaton field g_12 is

givenby :
Tr, (e M2t
Moyl — ® Top 58
(M) -5~ (58)

and, considering the hyperfinite characteristic of thetrace Tr., we haveequivalently
®(Mrp) = Tr.. (e *'Mrg, e™) (59)

where ¢( M) represents avery special typeof "current”, that we propose to call 'trace current” T
Clearly, theinvariant hyperfinite Il trace current T4 is a pure topological amplitude [19-37] and, as
such, "propagates’ inimaginary time from zeroto infinity. In this sense, ¢( MTO(',;) can be seen as a
"zero topological cycle" which represents an intrinsic "Euclidean dynamic” controlling the blow up

of the space-time Initial Singularity [6].

(i) the quantum scale (0 < B< /g« » Signature {+++x}) : we reach the KMS domain [24].

Considering the quantum fluctuations of g, there is no more invariant measure on the non
commutative metric. Therefore, according to von Neumann algebra theory, the "good factor"

addressing those constraintsis uniquely a non commutative traceless algebra, i.e. atype Il factor [9]

(theonly one ableto beinvolvedin KM S state). Moreprecisely, itisatypelll) that we cal M, with
the period A €] 0, 1[. Important, it has been demonstrated that any type Ill; factor can be
canonically decomposed into thefollowingway [9] :

Iy =y ><Jg RY, (60)

R* . (dual of R) acting periodically onthe" 1, factor". Then the R-dependant periodicity of the action

of R*, on Mys takestheform :

R*
Mg= M'I%Iln ><]e %Z = M'I%[l) ><]e (S, (61)
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The relation between A and 3 is such that A =2—g, so that when 3 — «, we get A— 0 (the

periodicity is suppressed). Now, the theory being given on the infinite Hilbert space £(f) =
gle(R%Zﬂ’ M q becomes:

[R*
Mg= Moy, ><:1933[|_2( /sz)] (62)
Thetypel factor £ [LZ(R%Q)] yieldsthe modular flow of (periodic) evolution of the system. So,

the KMS type Il factor Mg connects the "topological" type Il factor MTOC',; with the "physical"
type e factor Mpps :

Ma= My ><lg Mppys (63)

In terms of "flows", Equ. (63) connects the topologica flow of weights of MTOC’,%, with the physical

modular flow raised by & lLZ(R%Z)] . This furnishes a good image of the unification between

¥
topological and physical states, to be compared to the bicrossproduct (41) Ugq(so(4)or [+

Ug(so(3,1)) unifying Euclidean and Lorentzian ¢g-groups. The quantum  flow

0r (Mg fow) =€"My goue " isconstructed in prop. (5.2).

q flow

(iii) the physical scale (3> /. Signature {+++-}) : this |ast scale represents the physical part
of thelight cone and, consequently, the notion of (Lebesgue) measureis fully defined. Therefore, the
(commutative) algebrainvolved is endowed with ahyperfinite trace and is given on theinfinite Hilbert
space £(B), with§ = LZ([R). Then L£(LZ(R)) is atype | factor, indexed by the real group R, which
we cal Mpy,s. So, L(LYR)) = Mprys and the flow raised by Mg, is simply the (real) time
evolution, given by the modular group :
Gt(MPhys)=eth — iHt

Mppys © (64)

In this case (type |« factor) all the automorphisms are inner automorphisms. We call "physical flow"
[if; this evolution flow in real time. Of course, o;(Mpys) is simply giving the usual algebra of

observables[12].
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At present, we shall evidence that the KMS state "unifies" the physical flow and the topological

current.

Proposition 5.2 At theKMSscale 0< 3 < lpjanck , the two automor phisms groupso, (Mpy,,) and

B(MTop) are coupled up to Planck scale within a unique 111 3, factor of the form Mq = MTOO; ><g

£ l" (R%Z” . The corresponding extended one (complex) automorphisms group describing the

guantumevolutionis
M oM )=eeM e
q q q

Mq corresponds to the coupling between the one parameter automor phisms group giving the physical

flow and the automor phisms semi-group giving thetopological flow of the system.

Proof TheKMS stateof the (pre)space-timeisyield by the uniquellly, factor given by equ. (60) :

-
Ma= My >’<]e«5~’3[|—2( /52)1: Mrep > <lo Mprys (65)

which represents the KMS "unification" of the topologica state and the physical state of the
(pre)spaceti me at the Planck scale. Now, sinceit exists an operatorial weight of Mg on its sub-group
Top , theequilibrium state on Mqis given by the state on MTOID We express the state ¢ under the

new form constructed in [6] :

R’H R’H
P(Mygae) = Tro. (& M7 ™)

This represents what we have caled in (5.1.5) the "trace current” of the "topologica factor" MTOC;Fl) .

However, Connes-Takesaki have shown [10] that theflow of weights on afactoris given by the flow

of weights on the associated 1l factor. For it exists an homomorphism OUT Ill; — OUT Il such

that the sequence (66) isexact :
{1} - HY(F)—~0UuTM—L-0UT, ,(N) - { 1} (66)
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0

Themultiplicative action of R : 7005=€"°r, sER on M, trandates the trace T of My, which

generates the flow of weights on M and Mg (cf.[10]). SO, ¢(M_gue) becomes a R-dependant

automorphism (semi)group :

o (Mg gae) = € "My, € (67)

Equ. (67) describestheflow of weights [10] of thetypelll; factor Mg But as pointedin [6], we can
also interpret equ.(67) as a" modular flow inimaginary time" it, dual to themodular flow inreal time

givenby :

O't(M iHt — iHt

q-evolution) =e Mphyse , teR.

Aninterpretation of thistype has also been proposed (in a different context, however) by Derendinger

and Lucches in[13]. Finally, theKM S flow connectstheflow of weights oz (M, 4.) to the modular

group o (Mq-evolution) :

O'BC(Mq row)= O-B(M?;))@OE(MPhys)

(B+it)H (B+it)H
=e Iqu flow € :

—e"m g e

q flow
which is indexed by the complex time variable 3. Again, this flow is expressing the unification

between the physical flow (Mg eoution) = Tt(Mpnys) and the topological flow op(My gae) =

o (M2s) within the unique KMS (or quantum) flow ; (r?sf ) given by the automorphisms group of
<8< /£P

Mg :
OGC(Mq flow) = UB(Mq-state) @ Gt(Mq-evqution)
The (pre)space-time KMS strip has zero as infimum and the Planck scale as supremum. So between

those bounds, the Euclidean topological flow and the Lorentzian physical flow are unified in a natural
way within the holomorphic "quantum flow" 0 (%fép — 0. (Mg fiow) = ec"m e et

g flow

Another way to verify the coupling of Mg, and M%;) in the unique type lll, factor lies in the

Conne's invariant

AUT M
INT M

0: R— OUTM =

(68)
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(automorphisms of M quotiented by the inner automorphisms, necessarily present in the non
commutative case). This M invariant represents an ergodic flow {W(M) , W, } where W, is a one

parameter group of transformations- i.e. a flow - which admits a description in terms of class of
weights and whose the natural parameter is IR:. We consider now thetypelll, factor Mq of equ.(61).
Starting from equ. (68), we can construct the extension Ext (noted T) of OUT Mg by INT Mqin AUT

Mq:
AUTMq= OUTMqT INT Mq (69)

with{x,y} € OUT Mg and {X',y'} € INTMg. The inner automorphisms group INTMq is a normal
sub-group of AUT Mq . Considering two weights ¢ et y of Mg, and applying the Radon-Nikodym
theorem [10], it exists a unitary of Mgq such that o (x) = yof(X)u;, with u, = (Dy ; Dg¢), and
o/ (x) € INT Mgqfor a certain class of modular automorphisms. Considering the fact that under the

trace of the factor Il involved in the crossproduct Mq :M%)lp =<]g R*+ al the modular

automorphisms are inner automorphisms, we restrict INTMgq to the sub-group of the modular
automorphisms, which we cal INT g Mg Thenwe look for theimage of the inner modular group in
OUTMgq. Within a certain cohomology class {K}, the group o, (x)is given by INTmogMg, Whereas
the non-unitary transformations o ;(Xx) aregiven by OUT Mag. We get then for the"physical” flow :
o' (x) = €™My e "™ & INTmoa Mg (70)
whereas the "topological” flow of weightsof Mgis given by :

og(x) =e "M, e* e oUT Mg (71)

and theextensonAUT Mg= OUTMqT INTmog Mg  yields:

geTr) = o’ ()T or(X) (72)

Within the general group of extensions{ Ext}, we get thetrivial holomorphic sub-group :
o (M) =€ (M, €M = o (M) = e oM, e Meor

which corresponds to the KMS state and"unifies' within the unique extended form o (Mg the
physical flow o (x) and the topological current o 4(x). Clearly, we get 0g. (Mg C OUT Mq T

|NTmod MQ- Againwefind: O'GC(Mq flow) = OTS(Mq-state) @ O"[(I\/lq-e'volution) qed
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Now, let's get over the last step. Our aim is to explain the transition from the topological state to the
physical state (TP transition) of the space-time. We shall cope with this problem following two

different ways :

(i) we conjecture that such a transition could be related to the N=2 supergravity breaking beyond

fPIanck ,

(i) likewise, TP transition could be explained in terms of "decoupling”, beyond the Planck scale,

between the (Euclidean) "topological current” (raised by MTOC;E) and the (Lorentzian) physical flow
(vieldby Mpy.).

5.2 TP transition, supersymmetry breaking and flows decoupling

First of all, let's put in evidence the link between KMS state and supersymmetry. To do this, we
propose hereafter a relevant example able to be seen as a good toy model expliciting the deep
correspondence between thermal states, supersymmetry and extended space-time (i.e. extension of the

time-like direction in the complex plane).
Example 5.2.1 thermal states, supersymmetry and KM S condition

In thefollowing, we shall focus on some important results recently obtained by J.P. Derendinger and
C. Lucchesi [13]. Interestingly, it has been demonstrated that thermal supersymmetry (as opposed to
T=0 supersymmetry) must be considered in the context of thermal (i.e. KMS) superspace. We remark
here that the authors apply the KMS condition to the therma superspace (i.e. the thermal
supersymmetric space) in a genera setting. In our own approach, as suggested in ref. 6 and in the
present paper as well, we apply the KM S condition to thethermal (pre) space-time at the Planck scale.
Considering that in the standard “hot big-bang” theory the (pre) space-time is generally viewed as
supersymmetric, such an identification is natural. Namely, the authors have established that the
thermal supersymmetry parameters must be both time dependant and (anti)periodic in imaginary time
ontheinterval [0, 3], where3= 1/T. In other words, focusing on field representations of the thermal

super-Poincaréalgebra and on chiral supermultiplet, one can straightfully see that thermal superfields
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are characterized by their time/ temperature periodicity properties. To explicit this, let's smply recall
that at zero temperature, supersymmetry can heuristically be represented as a set of "generalized
trandations’, including Grassmann variables that are trandated by the supersymmetry generators.

Therefore, a"point” X in superspace has coordinates
X=(x",0%8%) (73)

where 6 and 6 are the usual Grassmannian objets. Since at zero temperature the parameters of
supersymmetry transformations are constant, the zero-temperature superspace coordinates are also
space-time constants. In fact, at T=0, the (anticommuting) Grassmann coordinates simply turn
bosonic commutation relations into fermionic anticommutators and conversely. Now, what happens at
finite temperature (i.e. the case of primordial universe investigated here)? As a matter of fact, the
situation is not so simple, because fermion and boson statistics involve, in addition, the appropriate
statistical weight in field theory Green's functions. In such acontext, as pointed in refs [13] and [28],
it is natura to require that the variables which are translated by the effect of thermal supersymmetry
transformation express the same properties as the thermal supersymmetry parameters. Therefore, the
construction of thermal supersymmetry requiresthat the Grassmann variables get promoted to be time-

dependant and (anti)periodic inimaginary time. To seethis, let's precisethat thethermal average (...}

of afieldoperator Ois, asusual, givenby

i 1 _
(0} = ﬁTr(e o) (74)

with thelowest energy statebeing Ey = 0, so that we have on the zero temperature limit :
(o) P e 010)

a

Now, at finite temperature, the Green's functions are necessarily subject to periodicity constraintsin
imaginary time. However, as showed in [6], those constraints are exactly defining the KMS

condition. To verify thisimportant point, we now review those conditions for bosonic and fermionic

-36 -



Topologica Theory of the Initial Singularity of Spacetime

fields. Let's first begin with a free scalar (i.e. bosonic) field ¢ at X = (t, Xx) whose evolution is such

that :

jHt —iHt

¢(x)=¢€"9(0,x)e (75)

where thetime coordinate t is allowed to be complex. Then the n-point thermal Green's function G,

of thesystemis:
Grc (X3,- -+ Xn) = {Tc$(X)- ¢ (Xn)) (76)

Tc being the path-ordering operator and (...)ﬁ the canonical thermal average. Then the thermal path-

ordered propagator takestheform ( D, being thethermal propagator of thetheory) :
De (%, X2) = <9c(t1 ~t2)DE(Xq, o) + B¢ (tz — t1) DS (X, X2)---¢(Xn)> (77)

where 6, isthe path Heavisidefunction. Then the thermal bosonic two-point functions D , D¢ are

definedas:

D& (X1, %) = {p(X)9 (%)}

(78)
DE (¥, %2) ={9(%2)9 (%)}

H

Atthis stage, as proposed in [6], the Boltzman weight e ™ can be seen as an evolution operator in

Euclidean time, so that after atrandation inimaginary time we get theformula(79) :
e ™Mot x)e™ = pt+iRx) (79)

which is exactly the KMS condition formulated in equ. (53). Then D&(xg, X,) in equ.(78) becomes:

1

D304 %2) = 5 Tl € “ox)9(x2)] (80)

Likewisefor DS(xg,X,). So using the cyclicity of the thermal trace and the notion of evolution in

Euclidean time it, one can construct the "bosonic KMS condition" [13-28]. Interestingly, such a

condition relates DZ and D¢ by atrandation in Euclidean (imaginary) time::
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D& (ty Xg,tiXo) = DE(t +iM3 %, t5;X5) (81)

Of course the same construction holds for fermions. Indeed, defining the fermionic two-point function
&, ad &, » (witha,b=1...4 for Dirac four-componentsspinors) as

S (%) = a0 Po (%))

. Xa.X2) = ={Tp (%) v a(X)) (82)

and as in the bosonic case, thefermionic KM S condition takestheform:
S (X0, 12iX5) ==, (b +iBXy,t5X5) (83)

which differsfrom the bosonic condition only by arelative sign. From the structure of equ.(81) and
equ.(83), we deduce that when the temperature of the supersymmetric system (here the (pre)space-
time) is not zero, then bosonic fields are periodic in imaginary time whereas fermionic fields are
antiperiodic. Let's remark that supersymmetry algebrais not sensible to this periodicity-antiperiodicity
distinction. If (aspointedin[13-28]) it is true that the supersymmetry breaking is "encoded" in this
difference, the breaking becomeseffective only when the KMS stateis cancelled. For this reason, as
demonstrated in the hereabove refs., the KMS condition must be applied to the superfields of the
theory. In [13-28], the superfields are superspace expansions which contain as components the

bosonic and fermionic degrees of freedom of supermultiplets. Such superfields are usually formulated
using two-component Weyl spinors 1, and 7, related to Dirac spinors through v, = % Then

the KMS condition for Dirac spinors can be extended to Weyl spinors and, in the same way, to

Majorana spinors. Thefermionic KMS condition for majorana spinors takestheform :

%f(xl’ %) = <U’a (xl)wﬁ(x2)> X
| | (84
S, 000) = (TP 0w ()
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Now, one can redlize that imposing the KMS condition to superfields components implies that one
must also allow Grassmann parameters to depend on imaginary time. In fact, in the context of
supersymmetry, the main question is the following : under therma constraints, how do we
successfully achieve the transformation of periodic bosons into antiperiodic fermions and vice-versa?
Theanswer, developed in [13-28], consists in constructing thethermal superspace, i.e. in introducing
time dependant and antiperiodic space-time coordinates. Henceforth, a point in therma superspace

has "KMS coordinates’, given by anew set of Grassmannian variables:
X=(x*,0%(1), 6%1)) (85)

where the symbol "' denotesthethermal quantities and é“(t),@é‘(t) are subject to the antiperiodicity

conditions
O(t +iR) = —6%(t), B(t +iR)=-B(t) (86)

Consequently, the condition (86) induces a temperature-dependant constraint on the time-dependant
superspace Grassmann coordinates é“(t) and éb‘(t). From equ. (85), we finally observe that the
KMS condition must be applied to the space-time metric itself, as formulated in §(5.1.2). Among the
consequences, we aretherefore induced to consider that the time-like direction must be extended in the

complex plan (see §(5.1.3)).

Now, what does these results mean in the context of our research? As a matter of fact, Derendinger
and Lucches have clearly confirmed that there exists a deep relation between (thermal)
supersymmetry and KM S condition. This relation is implemented at the level of thermal Grasmann
coordinates, because of the (anti)periodicity conditionsgiven by equ.(86). Indeed, it has been proved
by the authorsthat the only way to preserve supersymmetry in the thermal context is to consider that
the space-time metric itself must be subject to the KM S condition. Otherwise, the periodic bosons and
antiperiodic fermions could not be related by supersymmetry. Now, let's put this ssmple question :
what happens when the KM S state collapses? The analysis of the "KMS Grassmann coordinates’, in

particular the equ.(86), clearly show that supersymmetry cannot be implemented without applying the
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KMS condition to space-time coordinates. Thereason of thisis that when the space-time system is not
subject to the KM S state (e.g. non-equilibrium state), a point X of superspace is endowed again with

the usual Grassmann coordinates
X=(x",0%8%)

This is equivalent to T=0 supersymmetry, for which the parameters of transformation (i.e. the
Grassmannians @ and 8) are space-time constants. But rightly, the main result of refs [13-28]
establisheswithout ambiguity that at finite temperature, one cannot makeuse of constant parameters in
supersymmetry transformations rules. The supersymmetry parameters must be time dependant
variables, (anti)periodic in imaginary time. So, in a natural way, the thermal Grassmann coordinates
X = (x“,é“(t),@d(t)) must be "trandated" in imaginary time and are consequently subject to the
antiperiodicity conditions é“(t +il}) = _p° (t) and §d(t +i3) = —éé‘(t) of equ.(86). Obvioudly, the
only way to implement such acondition isto consider that globally, the space-time system isin KMS
state at a given scale (i.e. in our case between the scale zero and the Planck scale). Incidentaly, the
hereabove approach can be seen as a confirmation that the 3 — O limit is topological. As a matter of
fact, the 3 — O limit of equ.(79) is given by the scalar field ¢(x), which, by construction, is a

topological configuration marking the origin of theimaginary time direction of thetheory.

From hereabove we can now conclude that (thermal) supersymmetry and KMS states are linked in
such amanner that the breaking of the KM S state beyond the Planck scale should induce the breaking
of supersymmetry at the same scale. Let's go further in the exploration of such a breaking. In a very
stimulating way, Derendinger and Lucchesi have emphasized the fact that the thermal field boundary
conditions characterizing KMS state carry information that is of global nature in space-time. By
construction, the supersymmetry algebra being a local structure is insensitive to this global
information. What is the nature of this"global information”? Indeed, the trandation of Grassmannians
variables into imaginary (topological) time clearly indicates that the natural state of such a global
information is atopological state, correctly described by topological field theory (which is precisely a

non local theory). Moreexactly, the boundary conditions characterizing the euclidean time dependence
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of the supersymmetry parameters can be seen as topological invariants. In this perspective,
supersymmetry breaking can then be investigated in terms of cancellation of such topological

invariants. Let's now explorethis occurrence.

5.2.2 Supersymmetry and topological invariants

In afamous precursor paper [36], and in some others, E. Witten has clearly put in evidence that if we
want supersymmetry breaking to occur, the various four-manifolds invariants (such that the
Donaldsoninvariant, the Euler number, the Witten index etc..) must necessarily vanish. The outline of
the argument is that the canceling of the supersymmetry index Tr(-1)F is canceling the zero energy
modes, which consequently breaks the Bose-Fermi pairs [1]. At this stage, if we agree with
supersymmetry theory, a reasonable conclusion is that (N=2) supergravity breaking could be viewed
as related to the canceling of topological configurations. Let's now go further : can supersymmetry
breaking explain the Topological — Physical transition? In a certain sense, the answer might be yes.
In fact, since the context of the theory is supergravity N= 2, we may precise the conditions of

topological modes canceling within supersymmetry breaking. So :

Conjecture 5.2.3 On a D = 4 Riemannian (pre)space-time manifold, the N = 2 supergravity
breaking at the Planck scaleis related to the canceling of the Euler characteristic and of the topological

mode of the manifold.

Let M be the four dimensional Riemannian N=2 supersymmetric (pre)space-time. The Euler

characteristicof M is
1
X(M) =3?_L_fg,uvpoR,uv A Rpo
M

We have shown in prop. (3.2) that this invariant is given by Tr(—l)S. Now, according toWitten's
results [36], a discontinuous change of Tr(—l)S is possible, due to the asymptotic behavior of the
manifold, allowing, for large field strengths, some energy states to "move in from infinity". For
instance, let's consider the potentia

V() =(me - g¢°)
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Onecan easily observe that arbitrarily small g = O induces the existence of extralow-energy states at
o ~ % which have no counterpart for the pure g = 0 value. Therefore, Tr(—l)FwiII change

discontinuously fromg = 0tog = 0. The same result can be extended toTr(—l)S, when coupling the
instanton radius to g. In this case, we meet again the conclusions of (ii) in example (2.1) (i.e. the

instanton configuration is cancelled for largevalues of Q).

Next, we have seen (5.1.2) that the (pre)space-time should bein KMS stateat # p)4n0, SO that the time
likedirection t becomes holomorphic within the KMS strip. The metric configuration is described by
the symmetric homogeneous space

_S0(3,1) ® SO(4)

= 87
2h ) (87)
SO(3) being diagonally embedded in SO(3, 1) ® SO(4) [6]. To 3h corresponds, at the level of the
31 4
underlying spaces involved, thetopological quotient space Yiop = % from which, assuming

that the compact part of the 3-geometry is a sphere S3, the topology of the five dimensional
(pre)space-time can be viewed as isomorphic to S®R* (IR+ being the space-like direction and
R~ thetime-like direction, out of the orbit of theaction of SO(3) on B> 1@ R*). Wethen meet again
theequivalent form S3 ® R™ ® R~ of the five dimensional manifold described in (2.1). The point is
that R— allows us to definethe boundary conditions of the (pre)space-time 5-geometry I'>.  Therefore,

theform of the 5D metricis[6] :

2
ds? = a(w)? 2, + 22

—dt? (88)

wheretheaxiontermisa= f(w, t), the 3-geometry deg) = f(x,Y,2). Then, as showed in (2.1), on
the (infrared) strong coupling bound (i.e. the Planck scale, in respect of the (ultraviolet) zero scale),
condition (i) imply ? — 0 and the w direction of I'® is cancelled. So, we get a dimensiona reduction

(D=4 — D=3) of the compact Riemannian 4-geometry embedded in the five dimensional (pre)space-

time manifold I'S. We havefor the metric :

(++++ _) w compactification on St —0 (+++(O) _) Dimensional reduction (+++_)-
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Obviously, the boundary condition R — oo gives rise to the asymptotic cancellation of the I'4 Euler

characteristic:
1 _ F_
A(M)= = [e Ry A R, = TH-LF =0 (89)
M

Likewise, the asymptotic flatness condition [6] for B — o« gives R,, A R,, — 0, which implies that
thedimension D of the asymptotic manifold must be odd, so that, again, we get ¢ = O for the (3+1)
usual space-time. Therefore, according to ref. [36], the supersymmetry is broken. Simultaneously, the
topological state, given by even values of the Euler number y vanishes, implying the "TP transition” :

TP transition

Topological mode Physical mode .

To finish, we meet anovel problem: could TP transition be, in some way, related to the breaking of
the KMS statedescribedin (5.1)? Thisquestionis discussed in thelast paragraph.

5.2.4 TP transition and decoupling between topological flow and physical flow

In answer to the hereabove question, we now conjecture that for 3= / i.e. at the (semi-classical)

Planck »
scale where supersymmetry is being broken, the topological flow (evolution in imaginary time)
corresponding to the zero topological pole of the theory is decoupled from the physical flow
(evolution in real time).

According to most of the models, supergravity is considered as broken for scales greater than the
Planck scale[25]. But thermal supersymmetry breakingis also closely connected to the cancellation of
the thermodynamical equilibrium state[27-28]. Indeed, as already pointed in this paper, 1. Antoniadis
and al have recently demonstrated that a five-dimensional (N = 4) supersymmetry can effectively be
described by a four-dimensional theory in which supersymmetry is spontaneously broken by finite
thermal effects[3]. In a similar way, Derendinger and Lucchiesi have outlined the fact that thermal
supersymmetry isaglobal (i.e. topological) property of the space-time in KMS state [13-28]. In this
context, the cancellation of the thermodynamical equilibrium state necessarily cancels the KMS state
and, consequently, breaksthe supersymmetry [6]. This scenariois typically the one characterizing our

setting. Asamatter of fact, thefive dimensional supersymmetric theory evoked hereabove correponds
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to the five dimensional supersymmetric (pre)space-time in KMS state. Then the (thermal)
supersymmetry breaking is characterized in Kounnas approach, by a D=5 — D=4 dimensiona
reduction, which corresponds exactly, in our case, to the decoupling between imaginary time and real
time. Indeed, we could have:

B° ®C ( five dimensional KMS space-fime) =t {IRZ@ R* (four dimensional topological space - ti
R°®R (four dimensional physical space - timx

So, supersymmetry breaking, KM S breaking and topological — physical transition appear as deeply

connected. To see this, let's come back to the KMS state. We call "KMS breaking" the end of the

KMS statebeyond the Planck's scale. The observed cancellation of the thermodynamical equilibrium

beyond the Planck scale (which gives the inflationary phase and the beginning of the cosmological

expansion) isinducing KM S breaking (see ex. (5.2.1)). Such a breaking must be seen as the inverse

of the KMS coupling between equilibrium state and physical evolution of the system. And logically,

such a breaking should bring about the transition from the pure (non perturbative) topological phase

around thelnitial Singularity to the physical phase of the universe we can observeto day.
Now, hereis our conjecture:

Conjecture 5.2.5 In theinfrared B = 7, scale, KMS breaking is inducing the decoupling

between the topological flow and the physical flow of thetheory.

Considering the KMS state of space-time at the Planck scale, the KMS flow, as shown in prop.

(5.2),is:

O'BC(Mq) = UB(Mq-state) @ Gt(Mq-evqution) = eBCHqu For (90)
or

O_BC(Mq) - e (B+it)H Mq e(B+it)H (91)

Top

Now, starting from Mg= My ><lp £ [LZ(R%ZH = M2t =<y L[L2(RSY)], we cansay that B >

L oianck 1S €Quivalent to 3 — oo, with respect to the scalezero. So, when 3> /.., the period of the
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system is so large that we can consider it as supressed from equ.(62), whereas the circle St is
decompactified on the straight lineR. Moreover, this limit corresponds to A = Z_ér — 0. So, on this

limit R%SZ — R” +. But the suppression of the period R%Z IS equivalent to the cancellation of the

equilibrium state and therefore induces the breaking of the KMS state. To see this, we can write the

"extended" automorphisms group corresponding to the KM S state:

or(Mg) = e®" M =<, R 4]e B = (B MAL >, R* 4] e!FOF (92)

Thenfor 3> >/ weget R* + — o so the corresponding weight ¢ on Mg is such that ¢ — .

Planck »

But, according to Connes-Takesaki [10], theinfinite dominant weight on Mqisdual to the hyperfinite

trace on MTOC',;. Therefore, the image of the "flow of infinite weights' on Mg becomes, under the

ergodicaction of R + :
Opa Mg gae) = T (€ MOy ™) (93)

where we meet again the topologica "trace current” T of MToc',Flj, independent of 3. But the

independence of T/ with respect to 3 impliesin the same way that TS isdso independent of R* + on
this limit. So, R* + must be decoupled of MToc',Flj, which means that the modular evolution group

0t(Mppys) = AitMphysA_ s itsalf decoupled from the crossed product (65). Moreover, since the

hyperfinite trace (93) isindependent of 3, we areleft with the"topological” state :

Og—s0 (Mq-state) = Tr, (MTE)O:;

which is equivalent to say that the only value of 3 contributing to equ. (79) is 3 = 0. So, on this
boundary, (see equ.(64)), o (M) isreducedto thereal pole, so that :

iHt —iHt~
O'BC(Mq) g Ot(Mq-e\/qution) =€ Mg aouion®

But of course, inthiscase Mg, astypelll algebra, is aso suppressed. Thisis simply because, on the

0,1

infinite limit of theaction of R on My, , the infinite trace Tre on MTO(;E, dual to the dominant weight

on Mg, is left invariant. Applying a result of [11] on infinite weights, one can find that the infinite
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weight ¢, on Mgisinvariant under theinner automorphisms of Mq. Therefore, ¢, is atrace, which
isasufficient condition to cancel Mgasallly factor. But thisis equivaent to say that on thislimit, the

action of B is decoupled of MTO(;:). Therefore, the crossed product (65) is broken into its two

subgroups Mry, and £(L2(R” +)). Thisis as it should be, since beyond the Planck scale, i.e. at the

classical scale, the KM S stateis broken and the measure space on the metric is again well defined, so
that the underlying algebra must be endowed with a trace. Consequently, it cannot be Mg anymore.
So, the new agebrainvolved should be a type | sub-algebra of Mg Considering the decomposition
My > <o L(L2R" +)), thissub-algebrais necessarily L(L2R" +)) = M. Then o, (M

q-evolution)

becomessimply :

iHt — iHt
o-t(M Phys) =€ M Phys€ | (94)

This corresponds to the usual modular group giving the physical evolution of the space-time. So the

product Mfg,é ><lo. Mppys shrinks onto My, s so thatwefindly gt Mg = My intheinfrared.

B3> planck
In the sameway, applyingtheresult of prop. 5.2, we see that the breaking of KM S stateimplies
AUT Mg= OUTMg T INTmod Mg
reduces to the well known case of afactor I, where all the automorphisms of the algebra are inner
automorphisms:
AUT Mg= INT Mq
So obvioudly, this transition causes the decoupling between OUTMg and INTmod Mg, i.e. between

thetopological current o (x) and the physical flow o’ (x) .

As aresult of prop.(5.2.5), we finaly can conclude that the breaking of the KMS state beyond the

Planck scaleinduces the decoupling betweenthe physical flow o, (Mpps) =€ Hip Phys€ Ht and the

zerotopological current

01,y _ - 0,1 .
UI'S(MTop)_ Troo(e BH IVITop eBH)-
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= Tr.(e "'Mpy e™)
iHt — iHt
—€ Ithw@

Atthelevel of thevon Neumann agebras, starting from the KMS agebra Mq= MTOC;Fl) ><lp Mppys,

g and Mg, This decoupling

the KMS breaking can be seen as the decoupling between M
describes the transition from the topological phase (zero scale) to the physical phase ( beyond the

Planck scale).

6. CONCLUSION

Even though certain of the hereabove results might seem mysterious, their interest is to outline,
through quantum groups theory and non commutative geometry, a possible phase transition from the
topological zero scaleto the physical Planck scale. We describe with more details in a forthcoming
paper the unexpected "algebraic blow up" of the topological initid singularity. At this stage, we

propose to draw thefollowing mainideas :
(i) the metric, onto the zero scale, might be considered as Euclidean (++++) i.e. topological ;

(i1) the Initial Singularity of space-time could be understood as a O-size singular gravitational

instanton;

(iti) From (i) and (ii), we suggest the existence of adeep symmetry, of the duality type (i - duality),
between physical state (Planck scale) and topological state (zero scale).

Then the possible resolution of theinitial singularity in the framework of topologica theory allows us
to envisagethe existence, before the Planck scale, of a purely topological first phase of expansion of
Space-time, parameterized by the growth of the dimension of moduli space dimM and described by

the Euclidean "pseudo-dynamic” :

0,1 egH

O'B(MO'l) = e"BH MTop

Top
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So, the chain of events able to explain the transition from the zero topological phase to the physical
phase of the space-time might be thefollowing :

{Supersymmetry breaking } — {ther modynamical equilibrium breaking} — {KMSstate breaking} —
— {imaginary time/real timedecoupling} — {topological state / physical state decoupling }

In termsof C*-algebras, the hereabove transformations aregiven by :

Topologica fl —
opological flow Tf—>oc,3(|\/|0'l ersHMo,leBH

KMsflow QF - Top) = Top

”00®R: — aﬂc(Mq)=e_ : quGCH Physical flow P=f — o (Mpy, )—ethM hys €
Phys/ = Phys
>0

—iHt

In a forthcoming article, we push forward the idea following which, that at O scale, the Lorentzian
dynamic is replaced by anintrinsic "Euclidean dynamic”. A first path to follow would be to investigate

the zero limit of the The Euclidean dynamic engendered by the non-stellar automorphisms of the

algebra M%,lp implies, following the results of [6], a "spectral increase" in the diameters of the space

of states d(¢, ) in Euclidean time (dual to the space of observables in Lorentzian time). This
Euclidean pseudo-dynamic, linked with semi-group automorphisms og( M%’i,) isdescribedin a natura
way by the flow of weights (in the Connes-Takesaki [9] sense) of algebra Mq ; we suggest equally
(i1) that the Euclidean modular flow representing the evolution of a system in imaginary time can be
associated with an increase in the spectral distance separating the states of the system. Finally, it has
been proposed by one of us [7] that the Euclidean dynamic raised above results from the existence of

the topological amplitude yield by the topological charge Q = Qf d*x Tr R, R*" of the zero size

singular gravitational instanton connected to the (topological) origin of space-time.
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