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Abstract      

We suggest here a new solution of the initial space-time singularity. In this approach  the initial singularity of space-

time corresponds to a zero size singular gravitational instanton  characterized by a Riemannian metric configuration

(++++) in dimension D = 4. Connected with some unexpected topological datas corresponding to the zero scale of space-

time, the initial singularity is thus not considered in terms of divergences of physical fields but can be resolved in the

frame of topological field theory. Then it is suggested that the "zero scale singularity" can be understood in terms of

topological invariants (in particular the first Donaldson invariant ( 1)n i

i

). In this perspective  we here introduce a

new topological index, connected with 0 scale, of the form Z
ß 0

= Tr (-1)s,  which we call "singularity invariant".

Interestingly, this invariant corresponds also to the invariant topological current yield by the hyperfinite II  von

Neumann algebra describing the zero scale of space-time. Then we suggest that the (pre)space-time is in

thermodynamical equilibrium at the Planck scale state and is threrefore subject to the KMS condition. This might

correspond to a unification phase between  "physical state" (Planck scale) and "topological state" (zero scale). Then we

conjecture that the transition from the topological phase of the space-time (around the scale zero) to the physical phase

observed beyond the Planck scale should be deeply connected to the supersymmetry breaking of the N=2 supergravity.
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0.  INTRODUCTION

One of the limits of the standard space-time model remains its inability to provide a description of the

singular origin of space-time. Here we suggest, in the context of N=2 supergravity, that the initial

singularity, associated with zero scale of space-time, cannot be described by (perturbative) physical

theory but might be resolved by a (non-perturbative) dual theory of topological type. Such an

approach is based on our recent results [6-7] concerning the quantum fluctuations (or q-

superposition) of the signature of the metric at the Planck scale.  We have suggested that the signature

of the space-time metric  (+++ ) is not anymore frozen at the Planck scale p  and presents quantum

fluctuations (+++±) until zero scale where it becomes Euclidean (++++). Such a suggestion appears

as a natural consequence of the non-commutativity of the space-time geometry at the Planck scale

[11]. In this non-commutative setting, we have constructed (cf. 4.1) the "cocyle bicrossproduct" [6] :

 Uq(so(4)op   Uq(so(3, 1))                                                                                                     (1)

where Uq(so(4)op and Uq(so(3,1)) are Hopf algebras (or "quantum groups"[16]), the symbol  a

(bi)crossproduct and  a 2-cocycle of deformation (for more specific definitions, see ref[29]). The

bicrossproduct (1) suggests an unexpected kind of "unification" between the Lorentzian and the

Euclidean Hopf algebras at the Planck scale and yields the possibility of a "q-deformation" of the

signature from the Lorentzian (physical) mode  to the Euclidean (topological) mode [6-30]. Moreover

equ.(1) defines implicitly a (semi)duality transformation between Lorentzian and Euclidean quantum

groups (see equ.(42)). This is important insofar we consider that the Euclidean theory is the simplest

topological field theory.

In other respect, it has been stated in string theory  [25] that  the behavior of string amplitudes at very

high temperature (Hagedorn limit) reveals the existence of a possible phase transition and the

restoration of large-scale symmetries of the system. In the context of this "unbroken phase", generally

expected at the Planck scale, the theory is characterized by a general covariance preserving the exact
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symmetry of the system. The metric g  is developed around zero and there exists at this level neither

light cone, wave propagation, nor movement. The exploration of this unbroken (and non-physical)

phase of the system is accessible only in the framework of a new kind of field theory proposed by E.

Witten under the name "topological field theory" [37].

Topological field theory is usually defined as the quantization of zero, the Lagrangian of the theory

being either (i) a zero mode or (ii) a characteristic class   cn (V )  of a vectorial bundle V M  built

on space-time [31]. Starting from the Bianchi identity TrR R* = 1

30
 TrF F* , our approach of 4D

supergravity leads us to describe the energy content of the pre-space-time system by the curvature R.

We therefore put  ~ R R*.  The value of the topological action 
  
Scl ass class

M

cn (V )
M

k  is

then either zero or corresponds to an integer. The topological limit of quantum field theory, described

in particular by the Witten invariant  Z = Tr (-1)n  [36] is then given by the usual quantum statistical

partition function taken over the (3+1) Minkowskian space-time

 Z = Tr (-1)n  e ßH                                                                                                                            (2)

with ß = 
1

kT
 and n being the zero energy states number of the theory, for example the fermion number

in supersymmetric theories [1]. Then Z describes all zero energy states for null values of the

Hamiltonian H.

Now, we propose here (§(1.2)) a new topological limit  of quantum field theory, non-trivial (i.e.

corresponding to the non-trivial minimum of the action). Built from scale ß  0 and independent  of

H, this unexpected topological limit (in 4D dimensions) is then given by the temperature limit

(Hagedorn temperature) of the physical system (3+1)D. In a way this can be derived from the

"holographic conjecture" [42] following which the states of quantum gravity in d dimensions have a

natural description in terms of a (d 1)-dimensional theory. In agreement with [4-34-39] and, in

particular, the recent results of C. Kounnas and al [3-27], we argue in §(5.1.1) that on the hereabove

limit (i.e. at the Planck scale), the "space-time system" is in a thermodynamical equilibrium state [34]

and, therefore, is subject to the Kubo-Martin-Schwinger (KMS) condition [24]. A similar point of
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view has also been successfully developed in the context of thermal supersymmetry by Derendinger

and  Lucchesi in [13-28]. Surprisingly, the KMS and modular theories [11] might have dramatic

consequences onto Planck scale physics. Indeed, when applied to quantum space-time, the KMS

properties are such that the time-like direction of the system, within the limits of the "KMS strip" (i.e.

between the zero scale and the Planck scale) should be considered as complex : t tr iti . In this

case, on the ß  0  limit, the theory is projected onto the pure imaginary boundary t iti  of the

KMS strip. Then the partition function (2) gives the pure topological state connected with the zero

mode of the scale :

Z
ß 0

 = Tr (-1)s                                                                                                                                 (3)

where s represents the instantonic number. This new "singularity invariant" [6-7]), isomorphic to the

Witten index Z = Tr (-1)F, can be connected with the initial singularity of space-time, reached for ß =

0 in the partition function Z = Tr (-1)s e ßH . According to sec. 3, when ß  0, the partition function

Z gives the first Donaldson invariant

I = ( 1)n i

i

                                                                                                                                     (4)

a non-polynomial topological invariant, reduced to an integer for dim mod
(k)  = 0 (dim mod

(k)
 being the

dimension of the instanton moduli space). This suggests that the (topological) origin of space-time

might be successfully represented by a singular zero size gravitational instanton [41]. A good image of

this euclidean point-like object is the "transitive point", whose orbits  under the action of  are dense

everywhere from zero  to infinity. Then at zero scale, the observables  O i  should be replaced by the

homology cycles Hi  mod
(k)  in the moduli space of gravitational instantons. We get then a deep

correspondence -a symmetry of duality- [2-19-32], between physical theory and topological theory.

More precisely, it may exist, at the Planck scale, a duality transformation (which we call              

"i-duality"[6]) between the BRST cohomology ring (physical mode) and the cohomology ring of

instanton moduli space (topological mode) [19]. In the context of quantum groups [16-17], we have

shown that transition from q-Euclidean to q-Lorentzian spaces [30-35] can also be viewed as a Hopf
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algebra duality [29]. Interestingly, the Hopf algebra duality has been recently connected to

superstrings T-duality by C. Klimcik and P. Sevara [26].

The present article is organized as follows. In section 1 we define the topological field theory and

suggest that there exists at the scale limit ß  0 a non-trivial topological limit of quantum field theory,

dual to the topological limit associated with ß  . In section 2  we evidence that the ß  0 limit of

some standard theories is topological. We give several examples of such a topological limit. In section

3, we show that the high temperature limit of quantum field theory corresponding to ß  0 should

give the first Donaldson invariant. The signature of the metric of the underlying 4-dimensional

manifold  is therefore expected to be Euclidean (++++) at the scale zero. In section 4, we emphasize,

in the quantum groups context, the existence of a symmetry of duality between the Planck scale

(physical sector of the theory) and zero scale  (topological sector). In section 5, we discuss in the

framework of KMS state and von Neumann C*- algebras a way to understand the transition from the

topological (ultraviolet) phase of space-time  to the standard physical (infrared) phase.  

1. TOPOLOGICAL THEORY AT SCALE 0

1.1 Preliminaries

The field theory considered here is thermal supersymmetric [13-28] and in the context of D4 manifolds

[40]. We have detailed the content of the (thermal) supermultiplet in a previous work [6]. The theory

belongs to the class of N=2 supergravities [19], the Hamiltonian being given by the squared Dirac

operator D 2 [11-31]. As such, the simplest bosonic multiplet reduces to a vector field plus two scalars

exhibiting a special Kähler geometry. Rightly, N=2 is here  of a particular interest, for two main

reasons :

(i) the complex scalar fields of the theory (for example the dilaton S-field [32] or the T-field [2]) can

be seen as "signatures" of the KMS condition [11-25] to which the space-time might be subject at the

Planck scale. They might also be one of the best keys to understand the possible duality between

physical observables (infrared) and topological states (ultraviolet) :
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Topological vacuum (ß = 0,  instanton ) i dualité
 Physical  vacuum  (ß = Planck, monopole )

This is based on the instantons / monopoles duality  initially suggested by us in [6] and recently

proved in the superstrings context by C.P. Bacchas, P. Bain and M.B. Green [5]. Moreover, in

string theory again, has been conjectured a U=S T-symmetry [25] from which we can infer the

hereabove duality between (physical) observables and (topological) cycles on a four-manifold M :

  O 1O 2  ...  O n  
U duality

 ( 1 , 2 ,. .. , n )

Then the main contribution of the present article would be to emphasize that, as for conifolds cycles,

a zero  topological cycle might control the blow up of the space-time Initial Singularity.

(ii) From another point of view, the S/T fields are closely related to the existence, in the Lagrangian,

of non-linear terms. As recalled by A. Gregori, C. Kounnas and P. M. Petropoulos [23], in the frame

of N=2 supergravity, the theory is generally inducing some non perturbative corrections and a BPS-

saturated coupling with higher derivative terms R2 + ... As our model is proposed in 4D dimensions,

the development of higher derivative terms can be limited in a natural way to the R2 term. Then the

Lagrangian usually considered in supergravity is :

L =  d4 x  g l2 (  R R R2) R +  LM                                                                              (5)

from which we pull the simplified Lagrangian density that we use here :

 Lsupergravité  = ˆ  R
1

g2 R2  RR*
                                                                                                    (6)                                                                                                               

This type of Lagrangian density is coupling the physical component (the Einstein term ˆ R) with the

topological term RR* . This is of crucial interest since, as observed in ex.(2.1), when ß  0, we are

only left with the topological term RR*(decoupled, on this limit, of the axion field ).

Now, let's begin with a brief reminder of topological field theory as originally introduced by E. Witten

in 1988 [37] :
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Definition 1.1 Topological field theory is defined by a cohomological field such that a correlation

function of n physical observables   O1 O2 .... ..  On  can be interpreted as the  number of  intersections

O 1 O 2   O n   #(H1 H2 Hn)

of  n cycles of homology Hi  mod
(k) , in moduli space mod

(k)   of configurations of the instanton type

[ (x)], on the fields of the  theory.

The content of  "cohomological fields" (for which the general covariance is exact)  is given by the field

variations (which induce a Fadeev-Popov ghost contribution and gauge fixing part). The point,

however, is that the total gauge fixed action is a BRST commutator and the energy-momentum tensor

is BRST invariant [19-37]. In other words, the correlation functions of cohomological fields are

independent of the metric. Now, the topological field theory (for D = 4) is established when the

Hamiltonian (or the Lagrangian) of the system is H=0, such as the theory is independent of the

underlying metric. We propose to extend this definition, stating that a theory can also be topological if

it does not depend on the Hamiltonian H (or the Lagrangian L ) of the system.

Definition 1.2 A theory is topological if (the Lagrangian L  being non-trivial)  it does not depend

on L.  

Def (1.2) means that L  is a topological invariant of the form L  = R R . Based on this definition,

we suggest that there exists a second topological limit of the theory, dual to that given by H = 0. In

this case, we can have H  0, but the theory is taken at the limit of  scale zero associated with ß  0.

Then the minimum of the action is not zero (as it is in the trivial case) but has a non-trivial (invariant)

value.

We  consider the possible existence of such a "topological field " at the high temperature limit of the

system.

1.2 A new topological limit

Proposition 1.3  There exists at the scale ß  0 a non-trivial topological limit of the theory, dual to

the topological limit corresponding to ß  .
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 Proof  The (thermo)dynamical content of the quantum field theory can be described by the partition

function :

Z = Tr (-1)n e  ßH          (7)               

 where n  is the "metric number" of the theory. When ß  0, the theory is no longer dependent on H.

On this limit, such that the temperature T  THag(Hagedorn limit), equ.(7) becomes Z0 = Tr(-1)n, H

vanishing from the metric states partition function.  ß  plays the role of a coupling constant, such that it

exists an infinite number of states not interacting with each other and independent of H. The point is

that for ß = 0, the action S is projected onto a non trivial minimum, corresponding to the  self-duality

condition R = ± R* .  But in this case, the field configuration is necessarily Euclidean and defines a

gravitational instanton, i.e. a topological configuration [6]. We are therefore confronted to a 4D pure

topological theory , as described by the first Donaldson invariant [14] :

I = ( 1)n i

i

                                                                                                                                     

ni being the instanton number. The limit ß = 0 is here dual (in a sense precised in §(4)) to the usual

topological limit  ß   given by H = 0. The density operator of the (pre)space-time system is written

as :

= e H 0

0  being (classically) a factor of re-normalization of the system. When ß = 0, the density operator is

thus reduced to = e 0 , which is independent of H  0, characteristic of a second topological limit of

the theory.

Now we propose to show, through some very simple examples, that interesting contacts with

topological field theory can be made in taking the ß  0 limit of some established standard results. To

be as demonstrative as possible, we shall most often proceed in a heuristic way.
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2.  THE  ß    0 LIMIT  OF SOME STANDARD THEORIES

To warm up, we first consider the ß  0 topological limit of the standard (quantum) thermal field

theory.

Example 2.1 The topological 0-scale limit of the heat kernel

(i) One famous mathematical  proof of the Atiyah-Singer theorem (given, for example, by E.Getzler

[20]) lies in the heat equation [21-22]. Considering the heat operator e ßH  acting on the differential

forms on a closed, oriented manifold X, the ß  0 limit of this operator corresponds to the local

curvature invariants of the manifold [31].

Let's consider a (quantum) thermal field theory on a system defined by the first order elliptic

differential operator P and it's adjoint P*. We put the laplacian  = PP* et ' = P*P. For any ß > 0,

we can evaluate the partition function K = Tr e ß  giving the states of the metric of the system.

Now, to get the asymptotic ß 0 limit, we take the symbol  of Tr e ß  (which can be expressed in

terms of ( ) and its derivatives) and we get :

Tr e ß Tr (e ß )dxdk
M

                                                                                (8)

For ß  0, K  degenerates on the Dirac mass and the right-hand side of (8) has an asymptotic

expansion such that

Tr e ß t
i n

2

0

Bi                                                                                                         

and as a result, we get the well known ß-independent topological index (in the Atiyah-Singer        

sense [22]) :

Ind(P) Bn[ ] Bn[ ']                                                                                                                        

With this index  we see in a simple way that  the ß  0 limit of thermal field theory is topological.
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Another important argument lies in the fact that at Planck , the (pre)space-time might enter a phase of

thermodynamical equilibrium (§(5.1.1)). Consequently (§(5.1.2))  it should be subject to the KMS

condition [24]. As evidenced in §(5.1.3) and in the ex.(5.2.1), this implies the holomorphicity of the

time-like direction, the real time-like and the real space-like directions given by  g44
c  being

compactified on the two circles St like
1  and Ss like

1  [6]. But one can easily see that this configuration  is

equivalent to the dimensional reduction of the 4D Lorentzian theory onto a 3D theory.  This type of

reduction has been described by Seiberg and Witten [33]. We then are left with three-manifold

invariants, in particular the Floer invariant of a supersymmetric non linear -model [18]. In this case,

the three dimensional pseudo-gravity (3)  is coupled to the S,T complex scalar fields :

(1)  S = 
1

g2  ± i. i (axion)    with S and S 

(2) T = g44  ± i g* i4                     with T and T 

Those scalar fields are propagating. Then the  coupling of the S/T-fields with the 3D pseudo-gravity

is given by the extended -model :

 = SO(3)
SL(2,  )

SO(2)

SL(2, )

SO(1,1)
(9)

As the theory is independent of g44 , the 2D field 
SL(2,  )

SO(1,1)
 in the Lorentzian case and 

SL(2,  )

SO(2)
 in the

Euclidean  case can be viewed as equivalent. Thus the corresponding "superposition state" of the

signature (+++±) is able to be described by the symmetric homogeneous space

h =
SO(3,1) SO(4)

SO(3)

SO(3) being diagonally embedded in SO(3, 1)  SO(4). Next step, as suggested in [6], a

"monopoles+instantons" configuration can be associated to this 5D metric configuration at the Planck

scale. Instantons and monopoles are here connected by a S-field. The form of the 5D metric induced

by the -model (9) and constructed in [6]  is :
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ds2 a(w)2 d (3)
2 dw2

g2 dt2                                                                                                        (10)                 

where the axion term is a = ƒ(w , t), the 3-geometry being d (3)
2 (x, y, z). Clearly  the expected

values of the running coupling constant (dilaton) 
1

g2  are giving the two 4D limits of the 5D metric

of equ.(10). Thus  we get: - Infrared : ß . In this strong coupling sector  we have
dw2

g2  0 and

the w  direction of 5 is cancelled. So  after dimensional reduction (D=5  D= 4)  the metric on 5

becomes 4D Lorentzian :

ds2 a(w)2 d (3)
2 dt2     (11)

The -model (9) is reduced to the usual Lorentzian symmetry :

SO(3)
SL(2,  )

SO(1,1)
 

ß(g) infrared

 SO(3, 1)                                   (12)     

Likewise, when g  , the R2 term cancels in the 5D Lagrangian density              

Lsupergravité = ˆ  R
1

g2 R2  RR* ,  and, as R = R*, the topological term RR*  is also suppressed.

So, we get   L = ˆ  R .

Let's see now what happens on the (dual) ultraviolet limit, when   ß  0.

- Ultraviolet : ß 0. We can construct a boundary of equ.(10), corresponding to the small

coupling constant sector of the coupled theory and we get divergent values for the real dilaton field
1

g2 . Then naïvely, we can apply one of the results of [23] saying that  the axion field is decoupled

of the theory on this limit and we are left with the divergent dilaton field only. So, we have for the

metric on 5 the new Euclidean form :

ds2 a(w)2 d (3)
2 dw2

g2     (13)

Therefore, in the ultraviolet, the -model (9) is reduced to the four-dimensional target space :
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SO(3)
SL(2,  )

SO(2)
  

ß(g) ultraviolet 0
 SO(3) SO(3) = SO(4)               (14)               

and on this small coupling limit, the reduced theory becomes Euclidean, i.e. topological.. Again, it

appears reasonable to conclude that the ß  0 limit has a pure topological content. Incidentally, this

result could as well be understood in the frame of the isodimensional instanton-monopole duality

proposed by us in [6] and proved in the string context by Bacchas and al [5]. Indeed, we have shown

that the q-deformed 5D theory is dominated by the (3+1)D monopoles in the infrared (ß  Planck )

and by the 4D instantons in the ultraviolet ( ß  0) [6]. In this sense, the Euclidean signature (++++)

can be seen as i-dual to the Lorentzian one (+++ ). Likewise, the topological limit  ß  0 should be

viewed as i-dual  to the physical limit  ß  Planck . This might be an unexpected application of the

Seiberg-Witten S/T-duality  [32].

At present, let's explore the ultraviolet limit of another standard result, i.e. the Feynmann Path integral

[39].

Example 2.2 The topological 0-scale limit of the Feynmann (3+1) path-integral approach

(i) It's well known that in quantized Minkowski  space-time, the  amplitude (g2 , 2, 2   g1, 1, 1)  is

given by :

(g2 , 2, 2   g1, 1, 1)  =   D[ ] exp [i S(  )]                                        

 To include the point-like (0-modes) configurations of g , we put  Tr(-1)n in the integral and we get :

(g2 , 2, 2   g1, 1, 1)  =   Tr(-1)nD[ ] exp [i S(  )]           (15)

 So, the trivial {t=ß  0, S=0} Lorentzian vacuum is distinct of the "topological vacuum" connected

to the minimum of the Euclidean action SE = 
8 2

g2 . But it has been shown [15-37] that the zero modes

in the expansion about the minima of S are tangent to the instanton moduli space Mk, so the
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topological vacuum should be viewed as the "true vacuum" of the theory. Then equ.(15) becomes for

ß 0 :

(g0 , 0, 0   g0 , 0, 0 ) = I0 =   Tr(-1)n D[ 0]  (16)

To define I0, one can assume that at zero scale, the measure D[ 0] is concentrated on one unique point

and becomes a pure state, i.e. a positive trace class operator with unit trace. Concerning the field

content can be given by the non linear term R2, so that the ß-dependant typical form of the Lagrangian

density is, as seen in [6] :

L supergravité
ˆ  R

1

g2 R2  RR* (17)

Now, for g= ß  0, the Einstein term R is cancelled and as R =R* , the only remaining term in

equ.(17) is the topological invariant RR*(itself decoupled from the axion field ). So, equ.(15) takes

the new form :

(g0 , 0, 0   g0 , 0, 0 )   Tr R2 =  TrRR*  = I0 (18)

and I0 becomes a topological invariant. As

Tr(R(A)2

X

) 8 2k(E)

and we apply the Gauss-Bonnet theorem to find :

(M)
1

32 2 abcdRab Rcd

X

(19)

Therefore, the ß  0 limit of the Feynmann path integral is giving the Euler Characteristic, i.e. the

"true vaccum" mentioned hereabove and corresponding to the topological pole of the theory.

Next, we provide a new example showing that the ß  0 limit of the N=2 supersymmetric theory is

topological.
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Example 2.3 The topological 0-scale limit of the (supersymmetric) quantum field theory

 We apply here a well known quantum mechanical account of Morse theory due to Witten [40]. First,

we start from the standard supersymmetry algebra Qi ,Qj QiQj QjQi 0. Next, we express this

superalgebra in terms of data provided only by the space-time manifold M. To do so, let's define a set

of coboundary operators, the conjugation of d by  e ßH  being parametrised by  ß = 
1

kT
:

d e ßHd e ßH

d ß
* e ßH d* e ßH

(20)           

for a Morse function H(x). Then the spectrum of the ß-dependant Hamiltonian is:

H ß d ßdß
* dß

*d ß (21)

Now, let's send ß onto zero. We get for the Hamiltonian the invariant value :

H0 = dd* + d*d = 
p 0

p (22)

But this invariant is nothing else than the Betti numbers of M, given by bp dimker p , which is a

discrete function, independent of ß. Consequently, the space of zero energy states of H is given by the

set of even (odd) harmonic forms on  M and equals the Betti number of M. So we have, for ß  0 :

Tr( 1)F  = ( 1)k bi   
k 0

4

= (M)             (24)

where bi  is the ith  Betti number and (M) the Euler-Poincaré characteristic of M. Finally, on the zero

scale limit, we recover the topological index [37] corresponding to any standard topological field

theory.

To finish, we obtain in the last following example some analog results in the frame of full (N=2)

supergravity.

Example  2.4  The topological ß  0 limit of (N=2) supergravity 

As a matter of fact, for a spin manifold, we can express H in terms of the Dirac operator D . Then in

dimension D=4, we can calculate on the  ß  0 limit the index of the squared Dirac operator :
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Ind( D +) = lim
ß 0

  Str  e  ß 2

=

1

(2 )  n
 Str e  

    2 1
2

R  ,  1
16

(R  R)  , B

T *M

 dx d

                                                  
By the Mehler formula, we find the Dirac index in function of the Dirac genus Â(M):

ind ( D + ) =  ch(B)Â(M)
M

                                                                                                          (25)

ch being the Chern character, B the curvature and Â(M) the Dirac genus of the auxillary fiber bundle.
Since the spinors are interacting with Yang-Mills fields, the Â(M) term is coming from the

gravitational part whereas the rest of equ.(25) comes from the gauge part. As Ch(B) = Tr e  
B

2 i ,

we get :

Â(M) = 
x j / 2

sinh (x j / 2) j =  1

k

                                                                                                          (26)

and we can express the complete Yang-Mills + gravity index through the following invariant :

Ind(D )
dim M

8 2 Tr(R R)
1

8 2 Tr(F F)   (27)

Finally, in  Yang-Mills + gravity context, we obtain again a topological invariant on the ß  0 limit.

Now, to go further, the next step consists to detect, on the ß  0 limit, the nature of the topological

invariant involved . We shall discover that Donaldson invariants are playing a very important role on

this boundary.  

3.  ß    0 SCALE AND DONALDSON INVARIANTS   

 From a topological point of view, Donaldson invariants are obtained from characteristic classes of an

infinite dimensional bundle on the manifold equally  infinite and canonically associated with a           

4-dimensional manifold :

 Definition  3.1  Let M be a 4-dimensional manifold . The Donaldson invariant  qd (M )  is a

symmetric integer polynomial of degree d in the 2-homology H2 (M; Z)  of M

qd (M ) :  H2 (M)   . ..  H2 (M) Z
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mod
(k)  being the instanton moduli space of degree k, the Donaldson invariant is defined by the map

m  : H2(M ) H2 (M) mod
(k)

Now, we suggest that on the ß  0 limit, the 4D field theory is projected onto the first Donaldson

invariant.

Proposition 3.2  The high temperature limit of quantum field theory corresponding to ß  0 in the

partition function   Z = Tr (-1) s e ßH  gives the first Donaldson invariant. The signature of the metric

of the underlying 4-dimensional zero scale manifold is therefore Euclidean (+ + + +).

Proof   Let the partition function Z = Tr(-1)s e ßH  connected with a set described by the density

matrix :

Q =  (-1) s e ßH             (28)

According to standard arguments, we can write :

Tr (-1) s e ßH   = d (t) 
CPB

d (t)exp SE ( ,  )        (29)

It has been shown [1-36] that given a supersymmetric QFT, one can define the invariant  I = Tr (-1)f,

f being the fermionic number. We propose to extend equ.(29) to supergravity and to define the

topological invariant

= Tr (-1) S      (30)

where S is the instanton number. So, the regularization of the trace (30) gives the index  of the Dirac

operator :

= Tr  e ßc  D 2  = Tr (-1) S e ßc  D 2   = [Dx] [D ] e
dt L

0

ß

cpl

    (31)

with ßc  .  Then for ßc = 0, the value of the partition function Z = Tr (-1) S e ßc  H  is  :

Z0 = Tr (-1) S      (32)
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 and Tr (-1)S can be seen as the index of an operator acting on the Hilbert space . Dividing  in

monopole  and instanton sub-spaces = + i and  Q being a generator of supersymmetry, we

get :

Q  = 0 ,  Q*  = 0         (33)

So Tr (-1)S = Ker Q - Ker Q* such that as topological index, Tr (-1)S is invariant under continuous

deformations of parameters which do not modify the asymptotic behavior of the Hamiltonian H at high

energy. H is given by  H = dd* +d*d, the space of zero energy states corresponding to the set of even

harmonic forms on Mn:  

Tr (-1)S e ßH   =  (M) = ( 1)k bk
k 0

n

       (34)

 = Tr (-1)S is independent of ß, the sole contributions to  coming from the topological sector of zero

energy :    = ni
E 0 nm

E 0 .  On formal basis, ni
E 0 nm

E 0  can be seen as the trace of the operator (-

1)S. Then  is a topological invariant, i.e. the first Donaldson invariant. The coupling constant g being

dimensional, the limit ß = 0 implies  = 0 and corresponds to the sector of zero size instantons [41].

So, Dim mod
(k) = 0. When Dim mod

(k)  0, the Donaldson invariants are given by :

Z( 1  . ..  r ) DX e S  Wk 1
 ii  1

r

 Wk i

 i
i  1

r

     (Dim mod
(k)  0)        (35)

What happens when ?  The solution is in the correspondence between the Donaldson invariants on 4D

manifolds and the Floer homology groups [18] on 3D manifolds. Indeed, Donaldson invariants

amount to the calculus of the partition function Z, expressed as an algebraic sum over the instantons

[15]:

Z Z
mod
(k) 0

= ( 1)n i

i

       (36)

i  indicating the i th instanton and ni = 0 or 1 determining the sign of its contribution to Z. Donaldson

has shown on topological grounds [14] that when dim mod
(k)  = 0, then ( 1)n i

i

is a non-polynomial

topological invariant, reduced to an integer. We find the same result starting from T Q ,  .

In fact, the partition function of the system at temperature ß-1 has the general form  Zq = Tr (-1)S e ßH
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. For ß = 0, Zq  becomes Z
ß=0

= Tr(-1)S, which is isomorphic to ( 1)n i

i

, s and ni giving in both

cases the instanton number of the theory.

This result strongly suggests that on the high temperature limit ß  0 parameterizing the 0 scale of the

theory, the partition function Z
mod
(k) 0

 projects the Lorentzian physical theory onto the Euclidean

topological limit.

Now, starting from hereabove, we suggest the existence of a deep correspondence, of the duality

symmetry type, between physical sector (  Planck scale) and topological sector (0 scale) of the

(pre)space-time.

 4. DUALITY SYMMETRY BETWEEN PHYSICAL AND TOPOLOGICAL STATES

Ideally, the duality we are looking for (which we call "i-duality" t
1

it
[5], of the type i = S T)

should exchange real time in strong coupling / large radius with imaginary time in weak coupling /

small radius. In this sense,  Planck (physical) scale should be i-dual to zero (topological) scale.

Let's first outline a few formal aspects of Lorentzian/Euclidean duality in terms of Hopf algebras.

 4.1 Duality between q-Lorentzian and q-Euclidean Hopf algebras

Considering the non commutative constraints at the Planck scale, it appears interesting to adopt an

approach in terms of "quantum groups" at this scale. So we have shown that in D=4, it should exist a

superposition (+++±) between Lorentzian (physical) and Euclidean (topological) algebraic structures.

Then we have constructed, in the enveloping algebras setting, the q-deformation of the cocyle

bicrossproduct [6]:

M (H) = Hop  H

where H is a Hopf algebra,  a bicrossproduct (i.e. a special type of crossproduct, defined in [29])

and  a 2-cocycle or"twist" in the Drinfeld sense [16-17]. This is inspired by the idea to unify two

different quantum groups within a unique algebraic structure. So, we propose the following :
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Proposition 4.1 The Euclidean and the Lorentzian Hopf algebras are related by the cocycle

bicrossproduct

Uq(so(4))op   Uq(so(3, 1))

Proof  Starting, in the setting of enveloping algebras, from the Euclidean Hopf algebra H =

Uq(so(4)), we have the well known decomposition H = Uq(su(2))  Uq(su(2)) and the "opposite"

Hop = Uq(su(2))op  Uq(su(2))op, whereas the Lorentzian form is A = H = Uq(su(2)) 

Uq(su(2))  Uq(so(3, 1)). As explained in [6], the cocycle of deformation is  = 23 . Then the action

and the coaction are :

(a   b)  (h   g) h(1)aSh(2) g(1)bSg(2)

ß(h g) (h(1) g(1)).(Sh(3) Sg(3)) h(2) g(2)

               h(1)Sh(3) g(1)Sg(3) h(2) g(2)                                                                                       (38)

where we find the structure of tensor product of the action and the coaction for each Uq(su(2)) copy.

On the other hand, the cocycle for  h,g  Uq(su(2)) is :

 
(h g) (h(1) g(1) )(1

(1) )(Sh(4) Sg(4) )(1
(1))

                  (h(2) g(2 ))(
(2) 1)(Sh(3) Sg(3) )(

(2) 1)
                                        

where the product is in H = Uq(su(2))  Uq(su(2)). This gives:

(h g) h(1)Sh(4 ) g(1)
(1) Sg(4)

(1) h(2)
(2) Sh(3)

(2) g(2)Sg(3)

                 h(1)Sh( 4) g(1)
(1) Sg(2)

(1)  h(2)
(2) Sh(3)

(2)  1                                              (39)                

for the explicit bicrossproduct structures.   qed           

Clearly, prop.(4.1) proves the possible "unification" between the q-Lorentzian and the q-Euclidean

Hopf algebras at the Planck scale.We give a detailed demonstration of this proposition in [6]. But

also, the hereabove result suggests a certain type of "duality" between Lorentzian (physical) and

Euclidean (topological) quantum groups. To see this, the next step consists in showing the existence
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of a very interesting "semidualisation" (proposed in the general case by  S. Majid [29]) between

Lorentzian and Euclidean Hopf algebras. Better still, such a duality allows a description of the

transition from the q-Euclidean group to the q-Lorentzian group [30] :

Proposition 4.2 Uq-1(su(2))  Uq(su(2))   Uq(su(2))op Uq(su(2))  is connected by

semidualisation to Uq(su(2)) Uq(su(2))op*   (Uq(su(2))). Then the semidualisation connects a

version of Uq(so(4)) to a version of Uq(so(3, 1)).

We have given in [6] a complete demonstration of prop. (4.2), based on the properties of the Drinfeld

double (Uq(su(2))). Then, using our general cocycle construction M (H), we get the interesting

relation :

Uq(su(2))  Uq(su(2)) Uq(so(4))
semidualisation

 Uq(su(2))*  Uq(su(2)) ~ Uq(so(3, 1))          

           (40)

The "q-deformation" from q-Euclidean to q-Lorentzian Hopf algebras corresponds  to a duality

transformation and induces the existence of a 2-cocycle of deformation. Likewise, the cocycle

bicrossproduct

Uq(so(4)op   Uq(so(3, 1))                                              (41)

defines implicitly the new (semi)duality transformation

Uq(so(4))op  Uq(so(3, 1)) Uq(so(4))
semidualisation

 SOq(3,1) Uq(so(4))op                            

where  is constructed from  this one being derived from the quasitriangular structure  of

Uq(su(2)) [5].

Now, an interesting consequence of those results concerns some duality characteristics at the level of

q-deformation of space-time itself. We have shown [6] that the natural structures of the q-Euclidean

space q
4

 and of the q-Lorentzian space q
3,  1  , covariant under Uq(so(4)) and Uq(so(3, 1)) [8] are

connected as follows :
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U
q
(su(2))

  -Hopf algebras duality
SU

q
(2) ~  

q
4 / 1

Transmutation     q - signature change 

       BU
q
(su(2))   

  - braided groups autoduality  
       BSU

q
(2) =  

q
3, 1 / 1 

  (42)

where we get  a duality relation between q
4  and q

3, 1 as a kind of T-duality [2]. This interpretation is

possible only when  q  1 - i.e. at the Planck scale -.  We can extend those results to q-Poincaré

groups

 q
3, 1   Uq (so (3 ,  1))

~
                                                                                                       (43)

seen as dual to the Euclidean q-Poincaré group

q
4  Uq (so (4))

~
                   (44)

Interestingly, the Hopf algebra duality has been recently related to superstrings T-duality by

C.Klimcik and P.Sevara [26]. Such dualities in terms of quantum groups have also been proposed by

S. Majid  [29].

Now, we apply the hereabove results into a more physical context. So, we propose the following :

 Proposition 4.3 There exists, at the Planck scale, a symmetry of duality between the BRST

cohomology ring (physical sector of the theory) and the cohomology ring of instanton moduli space

(topological sector).

 Proof  Let be, at the Planck scale, BRST cohomology groups, of which the generic form, reviewed

in [37], is :

HBRST
(g)

 =
kerQBRST

(g)

imQBRST
(g 1)          (45)

where QBRST
(g)  is the BRST charge acting on operators of the ghost number g. From the theory of

Donaldson [14-15], we conclude the existence, at 0 scale of space-time, of cohomology groups

constructed by de Rham :
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H
(i)

(Mmod
(k )

)
ker d (i)

im d ( i 1)      (46)

where  d (i)  represents the external derivative acting on the differential forms of degree i on mod
(k) .

Topological theory then brings about ring injection which follows:

 HBRST  g 0

 U k  HBRST
g

H mod
(k )

 i 0

 dk H
(i )

mod
(k )

        (47)

and which, according to conditions given in [19], becomes a ring isomorphism. There exists therefore

an injective  path from the physical mode to the topological mode. Now let   O i  be the physical

observables considered, such that a correlation function of n observables is the number given by the

matrix of intersections Hi :

  O 1 O 2  .. . O n  # (H1 H2  ...  Hn )      (48)

number associated with n cycles of homology   Hi Mmod , in moduli space mod
(k)  of configurations

of the gravitational instanton type [ (x)], on the gravitational fields  of the theory. The physical

sector of the theory is described by the left hand side of equation (48) and the topological sector by the

right hand side. One observes that   O 1O 2  ...  O n   0, i.e. the theory has a physical content if

Uk j  d4x , with j being the "ghost flow" of degree k, U its integral anomaly and

  di gh [O i ] the ghost number of   O i . Moreover

dk dim mod
(k )       (49)

is the dimension of moduli space of degree k. Following the theorem of Atiyah-Singer [21], one can

show that Uk = dk . From this point of view, the correlation functions of a set of local observables

  G(x1 ...  xn) O(x1) . ..  O(xn )       (50)

amounts to the integral over moduli space of the number of cohomology classes of space. The

associated BRST charge Q is of the form Q =  (-1)n . When the divergence of the ghost flow is non-

zero, i.e.  j M  0,  then the theory oscillates between (  O i ) and (Hi) - i.e. between the Coulomb
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branch and the Higgs branch in metric superposition space - . For the 0 mode of the scale,  j M = 0,

then

  O 1O 2  ...  O n  = 0    (51)

which suggests that on this limit, dim mod
(k)  = 0. In fact, after functional integration over the empty

degrees of liberty of the theory, the physical observables are reduced to closed forms i of degree di,

which signifies :

U = dim mod
(k)     

and when U = 0, there exists no embedding space for moduli space and the theory is projected into

the Coulomb branch, at the origin of mod
(k) , on a singular instanton of zero size, identified to space-

time at zero scale. The corresponding signature in this sector of the theory is therefore Euclidean            

(+ + + +). qed

This result suggests  once more that at zero scale, the theory is no longer physical but purely

topological.

Now, here is a critical question raised by this paper : how do we go from the topological state of the

(pre)space-time around the origin to the usual physical state ? In the last section, we shall try to answer

this question.

5.  TRANSITION FROM INITIAL TOPOLOGICAL PHASE TO STANDARD

PHYSICAL PHASE

Considering all the preceding developments, it's of crucial interest to worry about how the initial

(generally covariant) topological phase possibly characterizing the (pre)space-time at the vicinity of the

Initial Singularity does break down to the universe we observe to day. We then propose some

(hopefully) stimulant tracks able to be worked out within some further researches.
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On general basis, we claim hereafter that the transition Topological phase  Physical phase might be

deeply related to the breaking of the N = 2 supergravity at the Planck scale. In other words,

supersymmetry breaking, as showed by C. Kounnas and al in superstrings context [3-27], is

characterized by the loss of the thermodynamical equilibrium of the system. To sum up, the D-

dimensional space-time supersymmetry is spontaneously broken in (D-1) dimensions by thermal

effects. For this reason, supersymmetry breaking might bring about the decoupling of the topological

and the physical states of the (pre)space-time system. How is it so ? To see it, according to [4-27],

let's recall that at the Planck scale, the (pre)space-time is generally characterized by two fundamental

properties : (i) the thermodynamical equilibrium state [34] and (ii) the non-commutativity of the

underlying geometry [11].  Those two properties are very often considered, together or separately.

However, it is critical to realize that for any system, properties (i) and (ii) are inducing the famous

"Kubo-Martin-Schwinger"(KMS) condition [24]. Therefore, we propose now to consider that, most

likely,  space-time, as a thermodynamical system,  is subject to the KMS condition at the Planck scale

[6]. Consequently, in the interior of the "KMS strip", i.e. from ß = 0 to  ß = Planck, the fourth

coordinate g44 should be considered as complex, the two real poles being  ß =0 (topological pole) and

ß = Planck (physical pole). This is a direct (and standard) consequence of the KMS condition. So, we

suggest [6] that within the KMS strip, the Lorentzian and the Euclidean metric are in a "quantum

superposition state" (or coupled), this entailing a "unification" (or coupling) between the topological

(Euclidean) and the physical (Lorentzian) states of space-time. Conversely, the transition from the

topological state to the physical state of the space-time can be seen in terms of "KMS breaking" (cf.

conj. (5.2.5)).

Now, let's begin with the hypothesis of global thermodynamical equilibrium  at the Planck scale.
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5.1  Thermodynamical equilibrium and KMS state of the space-time at the Planck

scale

5.1.1 Thermodynamical equilibrium of space-time

 From a thermodynamical point of view, it appears that the Planck temperature

ßplanck
-1   Tp  

EP

kB

c5

G

1
2

kB
1 1,4 1032 K

represents the upper limit of the physical temperature of the system. Indeed, it is currently admitted

that, before the inflationary phase,  the ratio between the interaction rate ( ) of the initial fields and

the (pre)space-time expansion (H) is 
H

 >> 1, so that the system can reasonably be considered in

equilibrium state. This has been established a long time ago within some precursor works of S.

Weinberg [34], E. Witten [4] and several others. It has recently been shown by C. Kounnas and al in

the superstrings context [27]. However, this natural notion of equilibrium, when viewed as a global

gauge condition, has dramatic consequences regarding physics at the Planck scale.  Which kind of

consequences? To answer, let's see on formal basis  what an equilibrium state is.

       
Definition  5.1 H being an autoadjoint operator and the Hilbert space of a finite system, the

equilibrium state of this system is described by the Gibbs condition  (A)
Tr (e ßH A)

Tr (e ßH )
 and

satisfies the KMS condition.

Here, Tr is the usual trace, ß
1

kT
 is the inverse of the temperature, H the Hamiltonian, i.e. the

generator of the one parameter group of the system. Of course,  A is a von Neumann C*- algebra  

(see §(5.1.4) for definitions). The equilibrium state implies that  ß must be seen as a periodic

(imaginary) time interval [0, ß = Planck ]. Now, the famous Tomita-Takesaki modular theory [10-11]

has established that to each state (A) of the system corresponds, in a unique manner,  the strongly

continuous one parameter *  - automorphisms group t :

 t (A)  =   e i H t  A  e  i H t                                                                                                                                                              (52)
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with t  . This one parameter group describes the time evolution of the observables  and

corresponds to the well known Heisenberg algebra. At this stage, we are brought to find the

remarkable discovery of Takesaki and Winnink, connecting (i) the evolution group t (A)   of a

system (i.e. the modular group M = it A it) with  (ii) its equilibrium state (A)
Tr(Ae ßH )

Tr(e ßH )

[11]. The famous "KMS condition" [24] is nothing else than this relation between t (A) and (A),

the content of this relation being precised in (i) and (ii) of §(5.1).  

Then we claim in a natural way that the space-time, in equilibrium state at the Planck scale, is therefore

subject to the KMS condition at this scale.

5.1.2  The (pre)space-time in KMS state at the Planck scale

When viewed as a hyperfinite system at the Planck scale, the (pre)space-time may be described by a

von Neumann C*-algebra A (a von Neumann algebra is hyperfinite if it is generated by an increasing

sequence of finite dimensional sub-agebras). Now, let's see the essence of the KMS condition, given

by the Haag-Hugenholtz-Winnink theorem [23] :  a state  on the C*-algebra A and the continuous

one parameter automorphisms group of A at the temperature  ß = 1 / k T verify the KMS condition if,

for any pair A, B of the * - sub-algebras of A, it exists a ƒ(tc) function  holomorphic  in the strip     

{tc = t + i ß  , Im t c  [ 0 , ß ] } such that :

(i)    ƒ (t) = (A ( t B)) ,          

(ii)  ƒ (t + i ß ) =  ( t (B)A) ,           t  . (53)

Then we observe with (i) and (ii), the two crucial properties of the KMS condition : the holomorphicity

of the KMS strip and of course, due to the cyclicity of the trace, the non commutativity (( tA)B) =

(B( t+i ßA)) characterizing any "KMS space" (in fact, the two boundaries of the strip do not

commute with each other).
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Now,  if we admit that around Planck , the hyperfinite (pre)space-time  system is in a thermal

equilibrium state, then according to [24],  we are also bound to admit  that this system is in a KMS

state. Incidentally, another good reason to apply the KMS condition to the space-time at Planck  is that

at such a scale, the notion of commutative geometry vanishes and should be replaced by non

commutative geometry [11]. In this new framework, the notion of "point" in the usual space collapses

and is replaced by the "algebra of functions" defined on a non commutative manifold. Non

commutative geometry and quantum groups theory [16-29] are addressing such non-commutative

constraints. But the non-commutativity induced by the KMS state is in natural correspondence with the

expected non commutativity of the space-time geometry at the Planck scale.

Next, let's push forwards the consequences raised by the holomorphicity of the KMS strip.

 5.1.3 Holomorphic time flow at the Planck scale

As a consequence of the application of the KMS condition to space-time itself, we are induced to

consider that the time-like coordinate g00  becomes holomorphic  within the limits of the KMS strip. So

we should have [11-24] :

 t    = tr + i ti   (54)

as showed in [6]. In the same way, the physical (real) temperature becomes also complex at the Planck

scale :

T Tc =  Tr + iTi                                  (55)

as proposed by Atick and Witten in another context [4]. So, the KMS condition suggests the existence

at the Planck scale, of an effective one loop potential coupled, in N = 2 supergravity, to the complex

dilaton + axion  field = 
1

g2 i  and yielding the  following dynamical form of the metric

diag(1 ,  1 ,  1 ,  e
i

)           (56)       

The signature of (56) is Lorentzian (physical) for  = ±  and can become Euclidean (topological) for

= 0. This unexpected effect is simply due to the fact that, within the boundaries of the analytic KMS

field -i.e. from the scale zero up to the Planck scale- the "time-like" direction  is extended to the



Topological Theory of the Initial Singularity of Spacetime
_________________________________________________________________________________________________________________________________________________________________

- 28 -

complex variable tc = tr + i ti  , Im t c  [i ti  , tr] , the function ƒ(t) being analytic within the limits

of the KMS field and continuous on the boundaries. What happens on the ß = 0 limit ? Applying the

KMS properties, we find that the time like direction t becomes pure imaginary so that the signature is

Euclidean (++++). Conversely, t is pure real for ß  Planck (+++ ). So, according to Tomita's

modular theory [11], the KMS condition, when applied to the space-time, induces, within the KMS

strip, the existence of the "extended" (holomorphic) automorphisms group :

Mq ßc
(Mq ) e 

Hßc Mq  e 
 Hßc

with the ß parameter being formally complex and able to be interpreted as a complex time t and / or

temperature T. It is interesting to remark that  in the totally different context of  superstrings, J.J.

Atick and E. Witten were the first to propose such an extension of the real temperature towards a

complex domain [4]. Recently, in N=4 supersymmetric string theory, I. Antoniadis, J.P. Deredinger

and C. Kounnas [3] have also suggested to shift the real temperature to imaginary one by

identification with the inverse radius of a compactified Euclidean time on S1, with R = 1 / 2 T.

Consequently, one can introduce a complex temperature in the thermal moduli space, the imaginary

part coming from the B  antisymmetric field under type IIA S / T/ U type IIB

S / T/ U Heterotic string-string dualities. More precisely, in Antoniadis and al approach, the field

controlling the temperature comes from the product of the real parts of three complex fields :           

s= Re S, t= Re T and u= Re U. Within our KMS approach, the imaginary parts of the moduli S, T,

U can be interpreted in term of Euclidean temperature. Indeed, from our point of view, a good reason

to consider the temperature as complex at the Planck scale  is that a system in thermodynamical

equilibrium state must be considered as subject to the KMS condition [24].

Now, let's step forward a more algebraic comprehension of KMS state,  in terms of von Neumann

algebras.
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5.1.4 KMS state in terms of von Neumann algebras

The von Neumann algebras are, naïvely speaking, the non commutative analogs of measure theory.

They have a critical importance in our understanding of non commutativity of  space-time around the

Planck scale.

In the KMS state, the only von Neumann algebras involved are what is called "factors", i.e. a special

type of von Neumann algebra, whose the center is reduced to the scalars a  . There exists three

types of factors : the type I and type II (in particular here II ) -which are commutative and endowed

with a trace-  and the type III, non commutative and traceless. A trace on a factor M is a linear form

such that (AB) = (BA), A,B M . In this case, any measure on M is invariant. When the measure

on M  is ill defined (which is the case of type III), the notion of trace vanishes and is replaced by the

one of "weight", which is a linear map from M+ to + = [0, + ]. The type III factors have no definite

trace. They are very important hereafter as far as they are the only one involved in KMS states. We

work here with "III " factors, 0, 1 , characterized by the invariant  S(M) 0 .

Rightly, the KMS condition, when applied to the (pre)space-time at the Planck scale, cuts up three

different scales on the (pre)light cone, which can be  described by three different types of von

Neumann algebras (or "factors").

5.1.5 From the topological scale to the physical scale of the space-time

(i) the topological scale (ß = 0, signature {++++}) : this initial "topological" scale correspond to

the imaginary vertex of the light cone, i.e. a zero-size gravitational instanton. All the measures

performed on the Euclidean metric being -equivalent up to infinity, the system is ergodic. As shown

by A. Connes, any ergodic flow for an invariant measure in the Lebesgue measure class gives a

unique type II  hyperfinite factor [11]. This strongly suggests that the singular 0-scale should be

described by a type II  factor, endowed with a hyperfinite trace noted Tr . By hyperfinite, we simply

mean that the trace of the II  factor is not finite. We call MTop
0,1

 such a "topological" factor, which is an

infinite tensor product of matrices algebra (ITPFI) of the RO,1 Araki-Woods type [11]. Now, the
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initial state on MTop
0,1 , corresponding in ex. (2.1) to the divergent values of the dilaton field 

1

g2 , is

given by :

(MTop
0,1 )

Tr (e ßH MTop
0,1 )

Tr (e ßH )
 (58)

and, considering the hyperfinite characteristic of the trace Tr , we have equivalently   :

( MTop
0,1 ) =  Tr (e ßHMTop

0 ,1  e ßH ) (59)

where ( MTop
0,1 ) represents a very special type of "current", that we propose to call 'trace current" T .

Clearly, the invariant hyperfinite II  trace current T  is a pure topological amplitude [19-37] and, as

such, "propagates" in imaginary time from  zero to infinity. In this sense, ( MTop
0,1 )  can be seen as a

"zero  topological cycle" which represents an intrinsic "Euclidean dynamic" controlling the blow up

of the space-time Initial Singularity [6].

(ii) the quantum scale (0 < ß < Planck  , signature {+++±}) : we reach the KMS domain [24].

Considering the quantum fluctuations of g , there is no more invariant measure on the non

commutative metric Therefore, according to von Neumann algebra theory, the "good factor"

addressing those constraints is uniquely a non commutative traceless algebra, i.e. a type III factor [9]

(the only one able to be involved in KMS state). More precisely, it is a type III  that we call Mq , with

the period  0, 1 . Important, it has been demonstrated that any type III factor can be

canonically decomposed into the following way [9] :

III II   *+ (60)

*+ (dual of ) acting periodically on the "II  factor". Then the ß-dependant periodicity of the action

of *+  on MTop
0,1 takes the form :

Mq = MTop
0,1

 
*

ß   MTop
0,1

 ß S1 (61)
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The relation between  and ß is such that 
2

ß
, so that when ß  , we get  0 (the

periodicity is suppressed). Now, the theory being given on the infinite Hilbert space ( ) =

L2
*

ß , Mq becomes :

Mq = MTop
0,1

  L2
*

ß (62)

The type I  factor L2
*

ß  yields the modular flow of (periodic) evolution of the system. So,

the KMS type III  factor Mq  connects the "topological" type II  factor MTop
0,1  with the "physical"

type I  factor MPhys  :

Mq = MTop
0,1

  MPhys  (63)

In terms of "flows", Equ. (63) connects the topological flow of weights of MTop
0,1  with the physical

modular flow raised by L2
*

ß . This furnishes a good image of the unification between

topological and physical states, to be compared to the bicrossproduct (41) Uq(so(4)op

Uq(so(3,1)) unifying Euclidean and Lorentzian q-groups. The  quantum flow

ßc
(Mq flow ) e ßc HMq flowe ßc H  is constructed in prop. (5.2).

(iii) the physical scale (ß > Planck , signature {+++ }) : this last scale represents the physical part

of the light cone and, consequently, the notion of (Lebesgue) measure is fully defined. Therefore, the

(commutative) algebra involved  is endowed with a hyperfinite trace and is given on the infinite Hilbert

space ( ), with = L2( ). Then (L2( )) is a type I  factor, indexed by the real group ,  which

we call MPhys . So, (L2( )) = MPhys  and  the flow raised by MPhys  is simply the (real) time

evolution, given by the modular group :   

t (MPhys ) e iHtMPhys  e  iHt      (64)

In this case (type I  factor) all the automorphisms are inner automorphisms. We call "physical flow"

P
ß 0

 this evolution flow in real time. Of course, t (MPhys ) is simply giving the  usual algebra of

observables [12].
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At present, we shall evidence that the KMS state "unifies" the physical flow and the topological

current.

Proposition 5.2  At the KMS scale 0 < ß < lPlanck , the two automorphisms groups t (MPhys )  and

ß(MTop
0 ,1 )  are coupled up to Planck scale within a unique III factor of the form Mq = MTop

0,1
 

L2
*

ß . The corresponding extended one (complex) automorphisms group describing the

quantum evolution is

 Mq ß (M
q
) e 

Hßc M
q

 e 
 Hßc

Mq corresponds to the coupling between the one parameter automorphisms group giving the physical

flow and the automorphisms semi-group giving the topological flow of the system.

Proof  The KMS state of the (pre)space-time is yield by the unique III factor given by equ. (60) :

Mq = MTop
0,1

  L2
*

ß = MTop
0,1

  MPhys (65)

which represents the KMS "unification" of the topological state and the physical state of the

(pre)space-time at the Planck scale. Now, since it exists an operatorial weight of Mq on its sub-group

MTop
0,1 ,  the equilibrium state  on Mq is given by the state on MTop

0,1 . We express the state  under the

new form constructed in [6] :

(Mq -state)  =  Tr (e ßHMTop
0 ,1  e ßH ) 

This represents what we have called in (5.1.5) the "trace current" of the "topological factor" MTop
0,1 .

However, Connes-Takesaki have shown [10] that the flow of weights on a factor is given by the flow

of weights on the associated II  factor. For  it exists an homomorphism OUT III OUT II  such

that the sequence (66) is exact :

 1 H1(F)
M

OUTM OUT , (N)  1 (66)



Topological Theory of the Initial Singularity of Spacetime
_________________________________________________________________________________________________________________________________________________________________

- 33 -

The multiplicative action of  :  o S e S ,   s  on MTop
0,1  translates the trace  of MTop

0,1 , which

generates the flow of weights on MTop
0,1 and Mq (cf.[10]). So, (Mq -state)  becomes a ß-dependant

automorphism (semi)group :

ß (Mq- state)  =  e ßHMTop
0 ,1  e ßH  (67)

Equ. (67) describes the flow of weights [10] of the type III factor Mq. But as pointed in [6], we can

also interpret equ.(67) as  a " modular flow  in imaginary time" it, dual to the modular flow in real time

given by :

t (Mq -evolution ) `= e iHtMPhyse  iHt    ,  t  .

An interpretation of this type has also been proposed (in a different context, however) by Derendinger

and Lucchesi in [13]. Finally, the KMS flow connects the flow of weights ß (Mq- state) to the modular

group t (Mq -evolution ) :

ßc
(Mq flow ) ß (MTop

0 ,1 ) t (MPhys )

                     e ( ß it)H Mq flow  e( ß it) H

                     e ßcHMq flowe ßcH

which is indexed by the complex time variable ßc. Again, this flow is expressing the unification

between the physical flow t (Mq -evolution ) = t (MPhys ) and the topological flow ß (Mq- state) =

ß(MTop
0,1 )  within the unique KMS (or quantum) flow Q

0 ß P
given by the automorphisms group of

Mq  :

 ßc
(Mq flow ) = ß (Mq- state)  t (Mq -evolution )

The (pre)space-time KMS strip has zero as infimum and the Planck scale as supremum. So between

those bounds, the Euclidean topological flow and the Lorentzian physical flow are unified in a natural

way within the holomorphic "quantum flow" Q
0 ß P

  ßc
(Mq flow ) e ßc HMq flowe ßc H .

Another way to verify the coupling of MPhys  and MTop
0,1  in the unique type III factor lies in the

Conne's invariant

 :   OUT M = 
AUT M

INT M
  (68)
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(automorphisms of M quotiented by the inner automorphisms, necessarily present in the non

commutative case). This M invariant represents an ergodic flow  {W(M) , W } where W is a one

parameter group of transformations - i.e. a flow - which admits a description in terms of class of

weights and whose the natural parameter is +
*. We consider now the type III  factor Mq of equ.(61).

Starting from equ. (68), we can construct the extension Ext (noted T) of OUT Mq by INT Mq in AUT

Mq :

AUT Mq   OUT Mq T INT Mq (69)

with {x,y}  OUT Mq  and  {x',y'}  INTMq. The inner automorphisms group INTMq is a normal

sub-group of AUT Mq . Considering two weights et of Mq, and applying the Radon-Nikodym

theorem [10], it exists a unitary of Mq such that t (x) ut t (x)ut , with ut (D  ; D )t  and

t (x)   INT Mq for a certain class of modular automorphisms. Considering the fact that under the

trace of the factor II  involved in the crossproduct Mq = MTop
0,1

  *+ all the modular

automorphisms are inner automorphisms, we restrict INTMq to the sub-group of the modular

automorphisms, which we call INTmod Mq. Then we look for the image of the inner modular group in

OUTMq. Within a certain cohomology class {K}, the group t (x) is given by INTmodMq, whereas

the non-unitary transformations ß(x) are given by OUT Mq. We get then for the "physical" flow :

t (x)  = e iHtMq  e iHt  INTmod Mq                    (70)

whereas the "topological" flow of weights of Mq is given by :

ß(x) = e ßHMq  e ßH  OUT Mq  (71)

and  the extension AUT Mq   OUT Mq T INTmod Mq    yields :

  (t T ß )  t (x) T ß(x) (72)

Within the general group of extensions {Ext}, we get the trivial holomorphic sub-group :  

ß it (Mq ) e ( ß it )HMq  e( ß it)H = ßc
(Mq ) e Hßc Mq  e  Hßc or

which corresponds to the KMS state and"unifies" within the unique extended form ßC
(Mq) the

physical flow  t (x)  and the topological current ß(x). Clearly, we get ßC
(Mq)  OUT Mq T

INTmod Mq. Again we find : ßc
(Mq flow ) = ß (Mq- state)  t (Mq -evolution )  qed
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Now, let's get over the last step. Our aim is to explain the transition from the topological state to the

physical state (TP transition) of the space-time. We shall cope with this problem following two

different ways  :

(i) we conjecture that such a transition could be related to the N=2 supergravity breaking beyond

Planck  ;

(ii) likewise, TP transition could be explained in terms of  "decoupling", beyond the Planck scale,

between the (Euclidean) "topological current" (raised by  MTop
0,1 ) and the (Lorentzian) physical flow

(yield by MPhys ).

5.2  TP transition, supersymmetry breaking and flows decoupling

First of all, let's put in evidence the link between KMS state and supersymmetry. To do this, we

propose hereafter a relevant example able to be seen as a good toy model expliciting the deep

correspondence between thermal states, supersymmetry and extended space-time (i.e. extension of the

time-like direction in the complex plane).   

 Example 5.2.1  thermal states, supersymmetry and KMS condition

In the following, we shall focus on some important results recently obtained by J.P. Derendinger and

C. Lucchesi [13]. Interestingly, it has been demonstrated that thermal supersymmetry (as opposed to

T=0  supersymmetry) must be considered in the context of thermal (i.e. KMS) superspace. We remark

here that the authors apply the KMS condition to the thermal superspace  (i.e. the thermal

supersymmetric space)  in a general setting. In our own approach, as suggested in ref. 6 and in the

present paper as well, we apply the KMS condition to the thermal (pre) space-time at the Planck scale.

Considering that  in the standard “hot big-bang” theory the (pre) space-time is generally viewed as

supersymmetric, such an identification is natural. Namely, the authors have established that the

thermal supersymmetry parameters must be both time dependant and (anti)periodic in imaginary time

on the interval [0, ß], where ß = 1/T.  In other words, focusing on field representations of the thermal

super-Poincaré algebra and on chiral supermultiplet, one can straightfully see that thermal superfields



Topological Theory of the Initial Singularity of Spacetime
_________________________________________________________________________________________________________________________________________________________________

- 36 -

are characterized by their time/ temperature periodicity properties. To explicit this, let's simply recall

that at zero temperature, supersymmetry can heuristically be represented as a set of "generalized

translations", including Grassmann variables that are translated by the supersymmetry generators.

Therefore, a "point" X in superspace has coordinates

X (x , , ) (73)

where  and  are the usual Grassmannian objets. Since at zero temperature the parameters of

supersymmetry transformations are constant, the zero-temperature superspace coordinates are also

space-time constants. In fact, at T=0, the (anticommuting) Grassmann coordinates simply turn

bosonic commutation relations into fermionic anticommutators and conversely. Now, what happens at

finite temperature (i.e. the case of primordial universe investigated here)? As a matter of fact, the

situation is not so simple, because fermion and boson statistics involve, in addition, the appropriate

statistical weight in field theory Green's functions. In such a context, as pointed in refs [13] and [28],

it is natural to require that the variables which are translated by the effect of thermal supersymmetry

transformation express the same properties as the thermal supersymmetry parameters. Therefore, the

construction of thermal supersymmetry requires that the Grassmann variables get promoted to be time-

dependant and (anti)periodic in imaginary time. To see this, let's precise that the thermal average ... ß

of a field operator O is, as usual,  given by

  
O ß

1

Z( ß)
Tr e ßHO (74)

with the lowest energy state being E0 0 , so that we have on the zero temperature limit :

  
O ß 0 O 0

Now, at finite temperature, the Green's functions are necessarily subject to periodicity constraints in

imaginary time. However, as showed in [6], those constraints are exactly defining the KMS

condition. To verify this important point, we now review those conditions for bosonic and fermionic
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fields. Let's first begin with a free scalar (i.e. bosonic) field  at x = (t, x) whose evolution is such

that :

(x) eiHt (0, x)e iHt (75)

where the time coordinate t is allowed to be complex. Then the n-point thermal Green's function GnC

of the system is :

  
GnC (x1,. .., xn ) TC (x1). .. (xn )

ß
(76)

  TC  being the path-ordering operator and ...  the canonical thermal average. Then  the thermal path-

ordered propagator takes the form ( Dc  being the thermal propagator of the theory) :

DC(x1, x2) C(t1 t2 )DC(x1, x2 ) C(t2 t1)DC(x1, x2 )... (xn ) (77)

where c  is the path Heaviside function. Then  the thermal bosonic two-point functions DC  ,  DC  are

defined as :

DC(x1, x2) (x1) (x2 )
ß

DC(x1, x2) (x2 ) (x1)
ß

(78)

At this stage, as proposed in [6], the Boltzman weight e ßH  can be seen as an evolution operator in

Euclidean time, so that  after a translation in imaginary time we get the formula (79) :

e ßH ( t, x)e ßH (t iß,x) (79)

which is exactly the KMS condition formulated in equ. (53). Then DC(x1, x2)  in equ.(78) becomes :

DC(x1, x2)
1

Z ( ß)
Tr e ßH (x1) (x2 ) (80)

Likewise for DC(x1, x2) . So  using the cyclicity of the thermal trace and the notion of evolution in

Euclidean time it, one can construct the "bosonic KMS condition" [13-28]. Interestingly, such a

condition relates DC  and DC   by a translation in Euclidean (imaginary) time :
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DC(t1; x1,t2;x2 ) DC (t1 iß; x1,t2 ;x2) (81)

Of course the same construction holds for fermions. Indeed, defining the fermionic two-point function

SCab
and SCab

, (with a,b = 1 ...4 for Dirac four-components spinors) as

SCab
(x1,x2 ) a(x1) b (x2 )

ß

SCab
(x1,x2 ) b (x2 ) a(x1)

ß
 (82)

and as in the bosonic case, the fermionic KMS condition takes the form :

SCab
(t1;x1,t2;x2 ) SCab

( t1 iß;x1,t2 ;x2 ) (83)

which differs from the bosonic condition only by a relative sign. From the structure of equ.(81) and

equ.(83), we deduce that when the temperature of the supersymmetric system (here the (pre)space-

time) is not zero,  then bosonic fields are periodic in imaginary time whereas fermionic fields are

antiperiodic. Let's remark that supersymmetry algebra is not sensible to this periodicity-antiperiodicity

distinction. If  (as pointed in [13-28])  it is true that the supersymmetry breaking is "encoded" in this

difference, the breaking becomes effective only when  the KMS state is cancelled. For this reason, as

demonstrated in the hereabove refs., the KMS condition must be applied to the superfields of the

theory. In [13-28], the superfields are superspace expansions which contain as components the

bosonic and fermionic degrees of freedom of supermultiplets. Such superfields are usually formulated

using two-component Weyl spinors  and 
˙ 
, related to Dirac spinors through a ˙ . Then

the KMS condition for Dirac spinors can be extended to Weyl spinors and, in the same way, to

Majorana spinors. The fermionic KMS condition for majorana spinors takes the form :

SC
 ˙ 

(x1, x2 )   (x1)
˙ 
(x2 )

ß

SC
 ˙ 

(x1, x2 )
˙ 
(x2 ) (x1 )

ß

(84)
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Now, one can realize that imposing the KMS condition to superfields components implies that one

must also allow Grassmann parameters to depend on imaginary time. In fact, in the context of

supersymmetry, the main question is the following : under thermal constraints, how do we

successfully achieve the transformation of periodic bosons into antiperiodic fermions and vice-versa?

The answer, developed in [13-28], consists in constructing the thermal superspace, i.e. in introducing

time dependant and antiperiodic space-time coordinates.  Henceforth, a  point in thermal superspace

has "KMS coordinates", given by a new set of Grassmannian variables:

ˆ X (x , ˆ ( t), ˆ ˙ 
( t)) (85)

where the symbol "^" denotes the thermal quantities and ˆ (t), ˆ ˙ 
(t)  are subject to the antiperiodicity

conditions

ˆ (t iß) ˆ (t) ,   ˆ ˙ 
(t iß) ˆ ˙ 

(t) (86)

Consequently, the condition (86) induces a temperature-dependant constraint on the time-dependant

superspace Grassmann coordinates ˆ (t)  and ˆ ˙ 
(t) . From equ. (85), we finally observe that the

KMS condition must be applied to the space-time metric itself, as formulated in §(5.1.2). Among the

consequences, we are therefore induced to consider that the time-like direction must be extended in the

complex plan (see §(5.1.3)).  

Now, what does these results mean in the context of our research?  As a matter of fact, Derendinger

and Lucchesi have clearly confirmed  that there exists a deep relation between (thermal)

supersymmetry and KMS condition. This relation is implemented at the level of thermal Grasmann

coordinates, because of the (anti)periodicity conditions given by equ.(86). Indeed, it has been proved

by the authors that the only way to preserve supersymmetry in the thermal context is to consider that

the space-time metric itself must be subject to the KMS condition. Otherwise, the periodic bosons and

antiperiodic fermions could not be related by supersymmetry. Now, let's put this simple question :

what happens when the KMS state collapses? The analysis of the "KMS Grassmann coordinates", in

particular the equ.(86), clearly show that supersymmetry cannot be implemented without applying the
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KMS condition to space-time coordinates. The reason of this is that when the space-time system is not

subject to the KMS state (e.g. non-equilibrium state), a point X of superspace is endowed again with

the usual Grassmann coordinates

X (x , , )

This is equivalent to  T=0 supersymmetry, for which the parameters of transformation (i.e. the

Grassmannians  and ) are space-time constants. But rightly, the main result of refs [13-28]

establishes without ambiguity that at finite temperature, one cannot make use of constant parameters in

supersymmetry transformations rules. The supersymmetry parameters must be time dependant

variables, (anti)periodic in imaginary time. So, in a natural way, the thermal Grassmann coordinates

ˆ X (x , ˆ ( t), ˆ ˙ 
( t)) must be "translated" in imaginary time and are consequently subject to the

antiperiodicity conditions ˆ (t iß) ˆ (t)  and ˆ ˙ 
(t iß) ˆ ˙ 

(t) of equ.(86). Obviously, the

only way to implement such a condition is to consider that globally, the space-time system is in KMS

state at a given scale (i.e. in our case between the scale zero and the Planck scale). Incidentally, the

hereabove approach can be seen as a confirmation that the ß  0 limit is topological. As a matter of

fact, the ß  0 limit of equ.(79) is given by the scalar field (x), which, by construction, is a

topological configuration marking the origin of the imaginary time direction of the theory.

From hereabove  we can now conclude that (thermal) supersymmetry and KMS states are linked  in

such a manner that the breaking of the KMS state beyond the Planck scale should induce the breaking

of supersymmetry at the same scale. Let's go further in the exploration of such a breaking. In a very

stimulating way, Derendinger and Lucchesi have emphasized the fact that the thermal field boundary

conditions characterizing KMS state carry information that is of global nature in space-time. By

construction, the supersymmetry algebra being a local structure is insensitive to this global

information. What is the nature of this "global information"? Indeed, the translation of Grassmannians

variables into imaginary (topological) time clearly indicates that the natural state of such a global

information is a topological state, correctly described by topological field theory (which is precisely a

non local theory). More exactly, the boundary conditions characterizing the euclidean time dependence
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of the supersymmetry parameters can be seen as topological invariants. In this perspective,

supersymmetry breaking can then be investigated in terms of cancellation of such topological

invariants. Let's now explore this occurrence.

5.2.2 Supersymmetry and topological invariants

In a famous precursor paper [36], and in some others, E. Witten has clearly put in evidence that if we

want supersymmetry breaking to occur, the various four-manifolds invariants (such that the

Donaldson invariant, the Euler number, the Witten index etc..) must necessarily vanish. The outline of

the argument is that the canceling of the supersymmetry index Tr(-1)F is canceling the zero energy

modes, which consequently breaks the Bose-Fermi pairs [1]. At this stage, if we agree with

supersymmetry theory, a reasonable conclusion is that (N=2) supergravity breaking could be viewed

as related to the canceling of topological configurations. Let's now go further : can supersymmetry

breaking explain the Topological  Physical transition? In a certain sense, the answer might be yes.

In fact, since the context of the theory is supergravity N= 2, we may precise the conditions of

topological modes canceling within supersymmetry breaking. So :

Conjecture 5.2.3 On a D = 4 Riemannian (pre)space-time manifold, the N = 2 supergravity

breaking at the Planck scale is related to the canceling of the Euler characteristic and of the topological

mode of the manifold.

Let M be the four dimensional Riemannian N=2 supersymmetric (pre)space-time. The Euler

characteristic of M is

(M)
1

32
R R

M

We have shown in prop. (3.2) that this invariant is given by Tr( 1)S. Now, according toWitten's

results [36], a discontinuous change of Tr( 1)S is possible, due to the asymptotic behavior of the

manifold, allowing, for large field strengths, some energy states to "move in from infinity". For

instance, let's consider the potential

V( ) (m g 2 )
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One can easily observe that arbitrarily small g  0 induces the existence of extra low-energy states at   

 ~ m
g  which have no counterpart for the pure g = 0 value. Therefore, Tr( 1)F will change

discontinuously from g = 0 to g  0. The same result can be extended toTr( 1)S, when coupling the

instanton radius to g. In this case, we meet again the conclusions of (ii) in example (2.1) (i.e. the

instanton configuration is cancelled for large values of g).

Next, we have seen (5.1.2) that the (pre)space-time should be in KMS state at Planck , so that the time

like direction t becomes holomorphic within the KMS strip. The metric configuration is described by

the symmetric homogeneous space

h =
SO(3,1) SO(4)

SO(3)
(87)

SO(3) being diagonally embedded in SO(3, 1)  SO(4) [6]. To h corresponds, at the level of the

underlying spaces involved, the topological quotient space top = 
3, 1  4

SO(3)
 from which, assuming

that the compact part of the 3-geometry is a sphere S3, the topology of the five dimensional

(pre)space-time can be viewed as isomorphic to S3  ( being the space-like direction and

the time-like direction, out of the orbit of the action of SO(3) on  3, 1  4 ). We then meet again

the equivalent form S3   of the five dimensional manifold described in (2.1). The point is

that allows us to define the boundary conditions of the (pre)space-time 5-geometry 5.  Therefore,

the form of the 5D metric is [6] :

ds 2 a( )2 d (3)
2 d 2

g2 dt2                                                                                                         (88)

where the axion term is a = ƒ( , t), the 3-geometry d (3)
2 (x, y, z). Then, as showed in (2.1), on

the (infrared) strong coupling bound (i.e. the Planck scale, in respect of the (ultraviolet) zero scale),

condition (i) imply 
1

g2  0 and the  direction of 5 is cancelled. So, we get a dimensional reduction

(D=4  D=3) of the compact Riemannian 4-geometry embedded in the five dimensional (pre)space-

time manifold 5. We have for the metric :

(++++ )  w  compactification on  S1 0   (+++(0) Dimensional reduction +++
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Obviously, the boundary  condition ß   gives rise to the asymptotic cancellation of the 4 Euler

characteristic:

(M)
1

32
R R

M

= Tr( 1)F = 0 (89)

Likewise, the asymptotic flatness condition [6] for ß   gives R R   0, which implies that

the dimension D of the asymptotic manifold must be odd, so that, again, we get  = 0 for the (3+1)

usual space-time. Therefore, according to ref. [36], the supersymmetry is broken. Simultaneously, the

topological state, given by even values of the Euler number   vanishes, implying the "TP transition" :

Topological mode TP  transition Physical mode .

To finish, we meet a novel problem : could TP transition be, in some way, related to  the breaking of

the KMS state described in (5.1)?  This question is discussed in the last paragraph.

5.2.4  TP transition and decoupling between topological flow and physical flow

In answer to the hereabove question, we now conjecture that for ß  Planck  , i.e. at the (semi-classical)

scale where supersymmetry is being broken, the  topological flow (evolution in imaginary time)

corresponding to the zero topological pole of the theory is decoupled  from the physical flow

(evolution in real time).

According to most of the models, supergravity is considered as broken for scales greater than the

Planck scale [25]. But thermal supersymmetry breaking is also closely connected to the cancellation of

the thermodynamical equilibrium state [27-28]. Indeed, as already pointed in this paper, I. Antoniadis

and al have recently demonstrated that a five-dimensional (N = 4) supersymmetry can effectively be

described by a four-dimensional theory in which supersymmetry is spontaneously broken by finite

thermal effects [3]. In a similar way, Derendinger and Lucchiesi have outlined the fact that thermal

supersymmetry is a global (i.e. topological) property of the space-time in KMS state [13-28]. In this

context, the cancellation of the thermodynamical equilibrium state necessarily cancels the KMS state

and, consequently, breaks the supersymmetry [6]. This scenario is typically the one characterizing our

setting. As a matter of fact, the five dimensional supersymmetric theory evoked hereabove correponds
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to the five dimensional supersymmetric (pre)space-time in KMS state. Then the (thermal)

supersymmetry breaking is characterized in Kounnas approach, by a D=5  D=4 dimensional

reduction, which corresponds exactly, in our case, to the decoupling between imaginary time and real

time. Indeed, we could have :

3  ( five dimensional KMS space - time) ss breaking
3 ( four dimensional topological space - time)
3  ( four  dimensional  physical  space - time)

So, supersymmetry breaking, KMS breaking and topological  physical transition appear as deeply

connected. To see this, let's come back to the KMS state. We call "KMS breaking" the end of the

KMS state beyond the Planck's scale. The observed cancellation of the thermodynamical equilibrium

beyond the Planck scale (which gives the inflationary phase and the beginning of the cosmological

expansion) is inducing KMS breaking (see ex. (5.2.1)). Such a breaking must be seen as the inverse

of the KMS coupling between equilibrium state and physical evolution of the system. And logically,

such a breaking should bring about the transition from the pure (non perturbative) topological phase

around the Initial Singularity  to the physical phase of the universe we can observe to day.

Now, here is our conjecture :

Conjecture 5.2.5  In the infrared ß  Planck  scale, KMS breaking is inducing  the decoupling

between the topological flow and the physical flow of the theory.

 Considering the KMS state of space-time at the Planck scale, the KMS flow, as shown in prop.

(5.2), is :

ßc
(Mq ) = ß (Mq- state)  t (Mq -evolution )  = e ßc HMqe

ßcH (90)

or

ßc
(Mq ) = e ( ß it )H Mq  e( ß it) H (91)

Now, starting from Mq = MTop
0,1

  L2
*

ß = MTop
0,1

  [L2(ßS1)], we can say that ß >

Planck  is equivalent to ß   , with respect to the scale zero. So, when ß > Planck , the period of the
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system is so large that we can consider it as supressed from equ.(62), whereas the circle S1 is

decompactified on the straight line R. Moreover, this limit corresponds to 
2

ß
  0. So,  on this

limit 
*

ß   *+. But the suppression of the period 
*

ß   is equivalent to the cancellation of the

equilibrium state and therefore induces the breaking of the KMS state. To see this, we can write the

"extended" automorphisms group corresponding to the KMS state :

ßc
(Mq ) = e ßc H [ MTop

0,1  *+]e ßc H   = e ( ß it )H [ MTop
0,1  *+] e( ß it) H (92)

Then for ß > > Planck , we get *+   so the corresponding weight  on Mq is such that   .

But, according to Connes-Takesaki [10], the infinite dominant weight on  Mq is dual to the hyperfinite

trace on MTop
0,1 . Therefore, the image of the "flow of infinite weights" on Mq   becomes, under the

ergodic action of *+ :

(Mq- state)  =  Tr (e ßHMTop
0 ,1  e ßH ) (93)

where we meet again the topological "trace current" T of MTop
0,1 , independent of ß. But the

independence of T with respect to ß implies in the same way that T  is also independent of *+ on

this limit. So, *+ must be decoupled of MTop
0,1 , which means that the modular evolution group

t (MPhys)  it MPhys
 it is itself decoupled from the crossed product (65). Moreover, since the

hyperfinite trace (93) is independent of ß, we are left with the "topological" state  :

(Mq- state)   Tr ( MTop
0,1 )

which is equivalent to say that the only value of ß contributing to equ. (79) is  ß = 0. So, on this

boundary, (see equ.(64)), ßc
(Mq ) is reduced to the real pole, so that :

ßc
(Mq )  t (Mq -evolution ) e iHt Mq -evolutione  iHt `             

But of course, in this case Mq, as type III algebra, is also suppressed. This is simply because, on the

infinite limit of the action of on MTop
0,1 , the infinite trace Tr  on MTop

0,1 , dual to the dominant weight

on Mq, is left invariant. Applying a result of [11] on infinite weights, one can  find that the infinite
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weight  on Mq is invariant under the inner automorphisms of Mq. Therefore,  is a trace, which

is a sufficient condition to cancel Mq as a III factor.  But this is equivalent to say that on this limit, the

action of is decoupled of MTop
0,1 . Therefore, the crossed product (65) is broken into its two

subgroups MTop
0,1  and (L2( *+)). This is as it should be, since beyond the Planck scale, i.e. at the

classical scale, the KMS state is broken and the measure space on the metric is again well defined, so

that the underlying algebra must be endowed with a trace. Consequently, it cannot be Mq anymore.

So, the new algebra involved should be a type I  sub-algebra of Mq. Considering the decomposition

MTop
0,1  (L2( *+)), this sub-algebra is necessarily (L2( *+)) = MPhys . Then t (Mq -evolution )

becomes simply :

t (MPhys ) e iHtMPhyse  iHt     (94)

This corresponds to the  usual modular group giving the physical evolution of the space-time. So the
product MTop

0,1  MPhys  shrinks onto MPhys  so that we finally get Mq
ß Planck

= MPhys  in the infrared.

In the same way, applying the result of prop. 5.2, we see that the breaking of KMS state implies

AUT Mq   OUT Mq T INTmod Mq  

reduces to the well known case of a factor I, where all the automorphisms of the algebra are inner

automorphisms:

AUT Mq    INT Mq

So obviously, this transition causes the decoupling between OUTMq and INTmod Mq , i.e. between

the topological current ß(x) and the physical flow t (x) .

As a result of prop.(5.2.5), we finally can conclude that the breaking of the KMS state beyond the

Planck scale induces the decoupling between the physical flow t (MPhys ) e iHtMPhyse  iHt  and the

zero topological current  

ß ( MTop
0,1 ) =  Tr  (e - ß H  MTop

0,1   e ß H  ) :
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ßc
(Mq ) = e ßc H MTop

0,1 e ßc H  
KMS  breaking

Tr (e ßHMTop
0,1

 e ßH )

e iHtMPhyse  iHt
(95)

At the level of the von Neumann algebras, starting from the KMS algebra  Mq = MTop
0,1

  MPhys ,

the KMS breaking can be seen as the decoupling between  MTop
0,1  and MPhys . This decoupling

describes the transition from the topological phase (zero scale) to the physical phase ( beyond the

Planck scale).

6.  CONCLUSION

Even though certain of the hereabove results might seem mysterious, their interest is to outline,

through quantum groups theory and non commutative geometry,  a possible phase transition from the

topological zero scale to the  physical Planck scale.  We describe with more details in a forthcoming

paper the unexpected "algebraic blow up" of the topological initial singularity. At this stage, we

propose to draw the following main ideas  :

 (i) the metric, onto the zero scale, might be considered as Euclidean (++++) i.e. topological ;

(ii) the Initial Singularity of space-time could be understood as a 0-size singular gravitational

instanton;

 (iii) From (i) and (ii), we suggest the existence of a deep symmetry, of the  duality type  (i - duality),

between physical state (Planck scale) and topological state (zero scale).  

Then the possible resolution of the initial singularity in the framework of topological theory allows us

to envisage the existence, before the Planck scale, of a purely topological first phase of expansion of

space-time, parameterized by the growth of the dimension of moduli space dimM and described by

the Euclidean "pseudo-dynamic" :  

ß ( MTop
0,1 ) =  e - ß H  MTop

0,1   e ß H   
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So, the chain  of events able to explain the transition from the zero topological phase to the physical

phase of the space-time might be the following :

Supersymmetry breaking thermodynamical  equilibrium  breaking KMS state  breaking

imaginary  time / real  time decoupling topological  state / physical state  decoupling

In terms of C*-algebras, the hereabove transformations are given by :

Physical flow    
P
ß 0 t (MPhys ) eiHt MPhys e iHt

Topological flow T
ß 0 ß (MTop

0,1 ) e ßH MTop
0,1 e ßH

II +
*

 KMS flow Q
0 ß P

ßc
(Mq ) e

ßcH
Mq e

ßcH

In a forthcoming article, we push forward the idea following which, that at 0 scale, the Lorentzian

dynamic is replaced by an intrinsic "Euclidean dynamic". A first path to follow would be to investigate

the zero limit of the The Euclidean dynamic engendered by the non-stellar automorphisms of the

algebra MTop
0,1  implies, following the results of [6], a "spectral increase" in the diameters of the space

of states d( ) in Euclidean time (dual to the space of observables in Lorentzian time). This

Euclidean pseudo-dynamic, linked with semi-group automorphisms ß( MTop
0,1 ) is described in a natural

way by the flow  of weights (in the Connes-Takesaki [9] sense) of algebra Mq ; we suggest equally

(ii) that the Euclidean modular flow representing the evolution of a system in imaginary time can be

associated with an increase in the spectral distance separating the states of the system. Finally, it has

been proposed by one of us [7] that the Euclidean dynamic raised above results from the existence of

the topological amplitude yield by the topological charge Q = d4x Tr  R R
~

  of the zero size

singular gravitational instanton connected to the (topological) origin of space-time.
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