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INTRODUCTION

This work documents the use of the LS-DYNA® [1, 2] finite element code to

benchmark a series of analytic expressions used in determining the stress distribution

in solid, high density targets which are thermally loaded by high-intensity proton

beams.  These targets are a critical sub-component of state-of -the-art spallation

neutron sources that provide neutron beams for the study of the structure and

dynamics of materials.  Conventional target designs use high-density metal plates

separated by water-cooling.  Concepts using liquid heavy metals have been adopted to

increase neutron production by making the target and coolant one and the same.  An

alternative to the conventional plate design is an edge-cooled design, which provides a

target of pure heavy metal but does not require a circulating liquid metal for cooling.

Such a design would increase the brightness of the neutron source (which increases

the intensity of the source) for the users.  It is this edge-cooled design that we

ultimately hope to accurately model using the results of this benchmark.

A solid rod spallation neutron production target, based on the anti-proton target

developed at CERN [3,4], is composed of essentially three components.  At the core

of the target is a solid cylinder of high-density material, typically Tungsten or Iridium.

The choice of a high-density target material allows for copious production of

neutrons.  Surrounding the target core is a hollow cylinder of graphite which acts

primarily to evacuate the heat, by radiation and conduction through the air/gas gap

and via chaotic contact points, to the third component, a thin-walled containment

shell, possibly an aluminum or titanium alloy.  This sub-assembly is contained within

another shell between which coolant flows to remove the heat generated from the

energy transfer from the proton beam to the target core material.

This numerical study will concentrate primarily on the transient dynamic response of

a perfectly elastic rod due to cylindrical stress waves generated by a uniformly applied

thermal loading and originating in the center of a cylinder.  These stress waves were

studied by Sievers [5] using a Fourier-Bessel series.

Prior to initiating a detailed computational study of the transient dynamic response of

an edge-cooled, multi-material production target, a numerical study should be
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undertaken to ensure that the code is a good predictor of the physical phenomena

expected in such a device.  There are many complex nonlinear phenomena involved in

simulating the response of the proposed composite neutron production target.  These

are typically in the form of contact, plasticity, material failure, and quite possibly

large deformation effects of the individual materials composing the target.  Although

these nonlinearities are not addressed in the present study, it is understood that if the

code can accurately represent the physics of the thermo-elastic model at hand, the

addition of more complex constitutive relations and other nonlinearities should not

hinder the ability of the code to accurately simulate these details as well.

LS-DYNA® is a large, general purpose, explicit code which contains many user

options from which to choose to accurately simulate nonlinear phenomena and to

adjust parameters such as hourglass control, bulk viscosity, damping, and time step

size, to name just a few.  A baseline study of a radially and axially constrained solid

cylinder (Figure 1) will serve to identify and define which analysis options should be

employed in solving this particular class of hyperbolic partial differential equations

(P.D.E.).  Since the primary element formulations used by LS-DYNA® employ one-

point integration, “hourglassing” might be of some concern and is studied here.  An

artificial bulk viscosity approach is used in LS-DYNA® to treat shock waves by

adding a “viscous” term to the pressure to smear shock discontinuities, this might also

be of some concern if large enough proton energies are absorbed which give rise to

shock waves.  The range of acceptable values for bulk viscosity will also be studied.

BACKGROUND

Analytic Solution

Analytic solutions are derived in a classical way by Sievers[5], based on principles of

acoustic waves in linear, elastic matter, for longitudinally and radially constrained

cylinders.  A more comprehensive assessment, including radially free solids and

liquids is in preparation [6] where some flaws contained in the earlier paper [5] are

also corrected.

The equation of motion for a cylindrical body is described by,
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Solving the differential equation according to these conditions yields, for the radial

component of dynamic stress [5]:
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The radial “quasi-static”, thermal stress component is described by:
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Here, E is the elastic modulus, α is the coefficient of thermal expansion and υ  is

Poisson’s ratio.  The “total” stress (dynamic + quasi-static) is obtained by superposing

Eqn’s 4 and 5 and evaluating them numerically using the Mathematica® [7] program.

In the dynamic stress (Eq. 4), z0,n represents the zeros of the first order Bessel

function.  An approximation to these zeros is given as:

z0,n=π(n+
4

1
)

(6)

The total stress computed using this approximation to the zeros as well as the “exact”

roots, as computed by the Mathematica® root finding algorithm, will be compared.
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It can readily be shown [6] that for rapid heating at time zero all principle components

of the total stress are equal and have a value:

µ
α

21

)(

−
rTE (7)

A more representative finite pulse can readily be derived by folding the instantaneous

solution with the rise of the pulse by solving the convolution integral, as indicated in
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where t0 is the pulse length.

Similar expressions have been derived for the hoop (tangential) and axial components

and may be found in [5].

The derivation given in [5] for the stress components ignores the effects of thermal

conduction.  This is a reasonable assumption where the loading is applied over a time

scale of microseconds, as in the case of high-intensity proton accelerators, since the

Fourier modulus is very much less than unity.  The dimensionless Fourier modulus

compares a characteristic body dimension, in this case the radius of the rod, with an

approximate temperature-wave penetration depth for a given time.  For our particular

material, geometry, and analysis period (50µs), this Fourier modulus is on the order of

10-4.

One note of caution, the stress components in [5] carry a sign convention which is

opposite of that traditionally defined in solid mechanics texts and that which is

employed in most commercial Finite Element codes so the analytic results must be

adjusted to compare with the numerical work.
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Computational Solution

LS-DYNA® is a general-purpose explicit finite element program [1, 2] used to

analyze the nonlinear, transient dynamic response of three-dimensional solids and

structures. As an explicit code, LS-DYNA® is appropriate for problems where high

rate dynamics or stress wave propagation effects are important.  In contrast to an

implicit code, LS-DYNA® does not form and solve the large matrix equation typical

of an implicit code and does not require iteration at each time step.

LS-DYNA® is based on a finite element discretization of the three spatial dimensions

and a finite difference discretization of time.  The explicit central difference method is

used to integrate the equations of motion in time.  The central difference method is

conditionally stable, with stability governed by the Courant limit on the time step, ∆t.

For solid elements, this limit is essentially the time required for an elastic stress wave

to propagate across the shortest dimension of the smallest element in the mesh.

Equivalently, this maximum time step may be related to the period of the highest free

vibration mode of the finite element mesh.  LS-DYNA® automatically calculates the

maximum time step size at each step of the solution, thus minimizing the cost of the

analysis while ensuring that stability is maintained.

LS-DYNA® uses a lumped mass formulation for efficiency.  This produces a

diagonal matrix, M, which renders the solution of the momentum equation

int
1 ff −=+

ext
nMD (9)

trivial at each step in that no simultaneous system of equations must be solved.  In the

above equation, fext are the applied external forces, and fint are the element internal

forces.  The new accelerations an+1 are easily found, from which the updated velocity

and coordinates are calculated using the central difference integration formulas.  In

LS-DYNA® the initial conditions to the transient dynamic problem are specified as

initial velocities.  Boundary conditions of many types ranging from constrained nodal

translations and rotations to nonreflecting boundaries are easily prescribed.

In an explicit code there are many small time steps so it is important to minimize the

number of operations performed at each time step.  This minimization is

accomplished by using elements with one-point Gauss quadrature for the element
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integration.  This formulation leads to spurious zero energy deformation modes, the

so-called “hourglass modes”, within the element.  Using an “hourglass viscosity” or

“hourglass stiffness” while retaining legitimate deformation modes stabilizes these

spurious modes.

DISCUSSION

Idealization of Problem and LS-DYNA Options

All calculations were made on a Sun Microsystems® Ultra60 running the Solaris2.7

OS with a single 360-MHz UltraSparc-II processor and 1GB of RAM.  Mesh

generation is provided externally to the LS-DYNA® code by using the commercially

available pre-processing package TrueGrid® [8].  The finite element discretization of

a solid iridium rod of arbitrary length, outer radius of 0.5cm, and “heated region” of

radius R/2 (0.25cm), is accomplished by recognizing that taking advantage of

symmetry conditions may reduce the computational model significantly.  The so-

called “heated region” is that volume of the cylinder that is intercepted by the

impinging proton beam.  A quarter symmetry model with the appropriate boundary

conditions and heated region is given in Figure 1 for visualization.

Prior to constructing the mesh we observe that the geometry, material properties and

loading of the cylindrical target are axisymmetric.  The symmetry allows us to

implement a 2-dimensional representation of the physically 3-dimensional object.

Except for the need to account for circumferential strain, εθ, axisymmetric elements

are very similar to plane elements. Though the element is geometrically two-

dimensional, the stress tensor is composed of the nonzero components

σ={σr,σθ,σz,τzr} where the global finite element Cartesian coordinate system is related

to the cylindrical system by (X,Y,Z)=(r,z,θ).  By virtue of the fact that 2D elements

require fewer computational resources per element than their 3D counterparts, many

more degrees-of-freedom may be modeled resulting in an increased accuracy of the

resulting stress tensor.  While this limit on computational resources may not be

relevant in the present study, subsequent modeling of the full composite target

assembly may require the addition of some or all of the following: non-axisymmetric

geometry/loading, material/geometric nonlinearities and contact conditions one or all
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of which may dictate that we extend our 2-dimensional approach to the full 3D space.

However, it is important to verify that a 2D axisymmetric approach gives valid results

since LS-DYNA® already has many of the previously mentioned nonlinear options

implemented as 2-dimensional features which may still allow the more complex

simulation to be run as an axisymmetric model.

A second resource-conserving observation is that the analytic expressions for the

stress components are one-dimensional, i.e., they have only a radial dependence; a

one-element thick “disk” (in the axial direction) can be constructed to represent the

target rather than meshing the full length of the target, see Figure 2.

Finally, by choosing this 2D representation, we are able to get a much more rapid turn

around time for the various parametric studies that we wish to undertake in our

benchmark study to gain insight into the physical behavior of a solid spallation target.

The cross section of the axisymmetric model was meshed with unit aspect ratio,

quadrilateral, 2D-axisymmetric, Petrov-Galerkin (area weighted), one-point

integration elements.  There are two displacement degrees-of-freedom, {u,v}, per

node.  It is worth stating that in this axisymmetric configuration the global Y-axis

must be the axis of symmetry and the X-axis therefore corresponds to the radial

direction.  The boundary conditions are satisfied by setting the radial displacement, u

(=dx), for all nodes at r=0 and r=R to zero and v (=dy)=0 for all nodes at either axial

boundary of the mesh.  Applying a zero initial velocity to all nodes satisfies the initial

condition.

Boundary conditions and material properties are specified through TrueGrid®

commands and written to the LS-DYNA® keyword format input deck.  LS-DYNA®

employs a comprehensive library of constitutive relations available for modeling

various types of material behavior such as plastics, metals composites, soils etc.  For

our simulation, the *MAT_ELASTIC_PLASTIC_THERMAL (Material Type 4)

model was chosen to model an isotropic, ideally elastic material.  This material model

allows for the defining of temperature dependent material coefficients in a thermo-

elastic-plastic material (see Table I for input values [9, 10]).  Although this

constitutive model is capable of simulating the effects of inelasticity, we are interested
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in modeling only the thermo-elastic behavior of the target to compare with the

analytic solution in [5].  To simulate this constitutive behavior, the yield stress is set

to a large number (on the order of the Elastic Modulus) to ensure that there is no

plastic flow, i.e. perfectly elastic material behavior.  Likewise the tangent modulus, Et,

was set to zero.

In the case of the instantaneously heated rod, a uniform thermal load of 890°C, which

is an equivalent energy of 30 kJ, is applied to all nodes of the elements comprising the

heated region (see the cross hatched region in Figures 1 and 2) through the

*LOAD_THERMAL_CONSTANT command for the entire length of the analysis.

For the finite length pulse calculations the LS-DYNA® keyword command

*LOAD_THERMAL_VARIABLE was used in conjunction with the

*DEFINE_CURVE command to ramp the thermal loading from zero to a constant

value over a period of 0.15 µs (the length of the proton pulse from the BNL AGS

storage ring) and then held constant for the remainder of the analysis. Use of the

*LOAD_THERMAL_OPTION family of commands ignore thermal conduction.

This is rather fortuitous since this is exactly the behavior that we are trying to

simulate, i.e. the analysis period is of sufficiently short duration that heat transfer due

to conduction is negligible.  This family of commands provides for the load

application by allowing for a temperature state to be read in and held constant

throughout the analysis, thereby dynamically loading the structure.  This method of

loading the model assumes that thermal conduction is negligible throughout the

analysis period and is consistent with the assumption in [5].  One particularly

advantageous feature of this method of loading the structure is that a sequentially-

coupled or fully-coupled thermo-elastic analysis is bypassed, i.e. an independent

thermal analysis to calculate the loading to be applied for the transient dynamic

analysis prior to initiating the dynamic analysis is not required.

A time step scale factor (TSSFAC field on the *CONTROL_TIMESTEP card) was

set to 1.  Choosing this value ensures that the Courant time step is used in the transient

calculations, thereby helping to ensure that any numerical dispersion is minimized.

Various LS-DYNA® user options were adjusted to determine the optimum code

settings for obtaining a valid numerical solution for a particular class of problems

encountered in the design of neutron spallation facilities.  Foremost among those user
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options studied include: bulk viscosity coefficients

(*CONTROL_BULK_VISCOSITY) and hourglass coefficient

(*CONTROL_HOURGLASS) effects, time step scaling factor

(*CONTROL_TIMESTEP), number of element integration points

(*SECTION_SHELL, NIP field) and element formulation (*SECTION_SHELL,

ELFORM field).

RESULTS

A numerical comparison was made between LS-DYNA element types 14 (Petrov-

Galerkin area weighted) and 15 (Galerkin volume weighted) which produced

consistent results for this benchmark case.  These two element types are of such

different formulation so as to represent two independent solutions and their similar

results help to form a basis for our confidence in the computed results of the code.

The LS-DYNA® default values for bulk viscosity coefficients and viscosity

formulation were found to be satisfactory; an order of magnitude increase in the bulk

viscosity did not enhance the results noticeably. Default hourglass viscosity type and

coefficient were likewise found to be adequate with the default one-point integration

elements.  Performing an analysis with fully integrated elements (NIP=4) produced no

discernible differences in the finite element solution results; therefore one-point

integration elements will be defined in all LS-DYNA® keyword input decks in these

studies.  Should an unacceptable level of hourglass energy in the computational

results be observed, the analyst should consider using fully integrated elements rather

than the one-point integration elements, though this may dramatically increase the run

times of any analysis.  One-point integration elements should be used in simulating

any detailed target assembly since material nonlinearities and contact will be

included.  By using the default one-point integration element, the problem becomes

more tractable from a computational point of view.

Finite element solutions to the transient dynamic problem were calculated with

several mesh densities.  In particular, computational meshes with 100, 200, 500 and

1000 elements were generated.  In all cases the computational domains were
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constructed so as to be composed of elements which all have unit aspect ratio.  It was

determined, by comparing the stress components • x, • y and • z in successive

solutions, that a mesh with 500 elements in the radial direction gave results that did

not differ significantly from the result set obtained from a model with 1000 elements.

This 500-element model also had run times that were of manageable duration for the

numerous parametric studies undertaken here.  In all of the plots for • TOTAL, which

compare the analytic and computational radial component of total stress, the finite

element results were extracted at the centroid of the second element from the

centerline, at a radial location of 0.0015cm.

In the process of comparing the results obtained from the analytic and numerical

work, it was found that the approximation to the zeros of the first order Bessel

function (Eq. 6) is of limited validity for the solution of the analytic stress

components.  While Figure 3 shows that the greatest difference between the

approximate and exact zeros is on the order of 2.5% in the first root and decreasing

thereafter, this discrepancy propagates itself through the dynamic stress component,

resulting in erroneous results after the first few microseconds, or periods, of the result

for the total stress.  Using Eq. 6 as an approximation to the zeros, and combining the

radial quasi-static (Eq. 5) and dynamic components to compute the total radial stress,

yields the results given in Figure 4.  A more correct result is obtained for the dynamic

(and total) stress when the exact zeros are employed, as is seen in Figure 5.  Having

determined that Eq. 6 is not precise enough for our numerical work, all subsequent

evaluations of the dynamic stress components are calculated with the exact roots to

the first order Bessel function.

In calculating the analytic solution, it was found that retaining 500 terms of the

infinite series for the dynamic stress component was sufficient to accurately calculate

the response of each component of the stress tensor, i.e., radial, axial and tangential

(hoop).  Retaining fewer terms than this resulted in excessive numerical noise in the

time history plots, particularly in the case of the instantaneously applied thermal load.

For the solution to the case of a ramped load, fewer terms were required to obtain a

smoothly varying curve; however, to maintain consistency in the approach taken for

comparing solutions the same number of terms used in the solution of the dynamic

stress component was retained as in the case of an instantaneously loaded body.



11

The origin of the sharp spikes that are seen in the analytic result for instantaneous

loading but not in the numerical solution, Figures 6-8, was investigated.  A sensitivity

study of (1) the total number of terms retained in the solution of the dynamic

component of total stress and (2) the time step, were performed.  As seen in Figure 9,

with a constant time increment of 0.01, the sharp spikes in the solution for the total

stress are essentially unaffected by retaining an ever-greater number of terms for the

dynamic radial stress component of the total stress.  If we also plot the sensitivity of

the total radial stress to the time step, Figures 10 and 11, we find that the peaks grow

larger for smaller time steps as we would expect up to a limit.  This shows that the

analytic solution is rather robust in that the peaks do not continue to grow unbounded

for a corresponding decrease in the time step.  The most likely origin of these sharp

spikes is due to the sharp step in the temperature distribution described by Eq. 3.  For

the finite element solution, the numerical methods employed in the time integration

algorithm tend to “smear-out” the sharp spikes due to their finite time-step size.  It has

been shown in [6] that by employing a parabolic temperature profile rather than a

step-function distribution results in continuously smooth results for the solution to the

analytic equations.

 A more telling result in attempting to cross correlate the analytic and numerical

solutions is given by the results obtained for the more physically realistic case of a

ramped thermal loading.  For this load case, Figures 12-14 show that the correlation is

excellent.  For most of the analysis period of 50 • s, the results of the analytic and

computational are in outstanding agreement.  Only after many periods of the stress

wave do we notice even a minor disagreement.  Figure 13 indicates that there are

some larger radial stresses predicted by the analytic expression and Figure 14 shows a

slight phase difference of fractions of a microsecond.  These discrepancies may be

attributed to some slight numerical dissipation or may even be explained by a

difference in time step used in the two solutions.
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CONCLUSIONS

We have attempted in this paper to verify the applicability of and to provide a

framework for using a commercially available finite element code, namely LS-

DYNA®, to calculate the stress tensor, and by extension other quantities of

engineering importance such as the von Mises equivalent stress, in the evaluation of

baseline designs for high energy spallation targets.

It was determined through comparison of analytic and computational results that the

roots of the Bessel function J1, as given by Eq. 6, is a relatively poor approximation

for use with numerical evaluation of the dynamic component of total stress.  We have

found that it is critical to use the “exact” zeros found by a root-finding algorithm

when the analytic stress components are evaluated in order to obtain accurate

estimations for the stress components.

Using the exact zeros it was found that excellent correlation exists between numerical

and analytic solutions when calculating the stress tensor for the case of a ramped

thermal load on a cylindrical rod target.  It was also determined that good correlation

between result sets exist for the case of an instantaneously applied thermal load to the

rod target, although this type of analysis has its practical limitations due to the

nonphysical nature of a step function loading.

We believe that this study shows that the analytic solution can be used as an upper

bound for estimating transient loading in problems with similar boundary conditions

and may find usefulness as a guide to design choices prior to initiating detailed

numerical analysis.  Also, it has been determined that a numerical code such as LS-

DYNA® may confidently be used to calculate engineering quantities of interest for

numerical models containing simple material models and by extrapolation, complex

nonlinear phenomena such as contact and inelastic material models.
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FIGURE CAPTIONS

(1) Quarter symmetry model of the Thermo-Elastic rod model.  Shown also are

the axial and radial constraints and the heated region.

(2) Computational domain used for calculating the transient dynamic stress

distribution.  Cross-hatched area is the “heated region”.  Shown also are the

applied boundary conditions.

(3) Percent difference between the zeros of Bessel J1 as calculated by Eq. 6 and

the "exact" roots that are computed by Mathematica.

(4) An example of the solution of the radial component of the "total" stress using

Eq.6.  The loading is an instantaneously applied, uniform thermal load applied

to all nodes of the elements comprising the heated region.

(5) Solution of the radial component of "total" stress using the zeros computed

with Mathematica.  The loading is the same as that given in Figure 3.

(6) Comparison of analytic vs. computational results for the radial stress

component of a uniformly and instantaneously heated cylindrical rod of radius,

R, and heated region, R/2.  Five hundred terms of the infinite series for the

dynamic component of “total” stress were used in the computation.

(7) Comparison of the analytic vs. computational radial stress component during

the period 20-30 µs for the case of a uniformly and instantaneously heated

cylindrical rod.

(8) Comparison of the analytic vs. computational radial stress component during

the period 40-50 µs for the case of a uniformly and instantaneously heated

cylindrical rod.

(9) Parametric study of the number of terms used in the infinite series of the

dynamic stress component of the total stress for the analytic solution.

(10) Parametric study of the time increment, ∆t, used in calculating the radial

dynamic stress component of total stress for the analytic solution.



16

(11) Expanded view of Figure 13 for the time range 0.4-0.58 µs.

(12) Comparison of analytic vs. computational results for the radial stress

component of a uniform, ramped thermal loading on a cylindrical rod of

radius, R, and heated region, R/2.  Five hundred terms of the infinite series for

the dynamic component of “total” stress were used in the computation.

(13) Comparison of radial stress component for the case of a uniform, ramped

thermal loading over the period 20-30 µs on a cylindrical rod of radius R.

(14) Comparison of radial stress component for the case of a uniform, ramped

thermal loading over the period 40-50 µs on a cylindrical rod of radius R.
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TABLES AND FIGURES

Table I.  Iridium material property values used in analyses.

Material Property Value Units
Density, ρ 22.5 g/cm3

Poisson’s Ratio, ν 0.29
Thermal Expansion Coefficient,

α 6.8 10-6
cm/cm/°C

Yield Stress, σy 10.0 Mbar
Elastic Modulus, E 5.17 Mbar

Tangent Modulus, Et 0.0 Mbar
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FIGURE 1.  Quarter symmetry model of the Thermo-Elastic rod model.  Shown also are the
axial and radial constraints and the heated region.

FIGURE 2.  Computational domain used for calculating the transient dynamic stress
distribution.  Cross-hatched area is the “heated region”.  Shown also are the applied
boundary conditions.
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FIGURE 6. Comparison of analytic vs. computational results for the radial stress component
of a uniformly and instantaneously heated cylindrical rod of radius, R, and heated region,
R/2.  Five hundred terms of the infinite series for the dynamic component of “total” stress
were used in the computation.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

σ T
O

T
A

L
=
σ 0,

r(r
,t)

+
σ

r  
[M

ba
r]

Time  [µs]

Number of Terms=500
Heated Region=R/2

Results Computed at r=0.0015cm

Analytic Soln w/ Mathematica Roots
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Mathematica.  The loading is the same as that given in Figure 3.
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FIGURE 7.  Comparison of the analytic vs. computational radial stress component during the
period 20-30 µs for the case of a uniformly and instantaneously heated cylindrical rod.
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FIGURE 8.  Comparison of the analytic vs. computational radial stress component during the
period 40-50 µs for the case of a uniformly and instantaneously heated cylindrical rod.
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FIGURE 9.  Parametric study of the number of terms used in the infinite series of the
dynamic stress component of the total stress for the analytic solution.
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-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10

σ T
O

T
A

L
=
σ 0,

r(r
,t)

+
σ

r [
M

ba
r]

Time [µs]

Number of Terms=500
Heated Region=R/2

Results Computed at r=0.0015cm

Analytic Soln
LS-DYNA v950d Soln

FIGURE 12. Comparison of analytic vs. computational results for the radial stress
component of a uniform, ramped thermal loading on a cylindrical rod of radius, R, and
heated region, R/2.  Five hundred terms of the infinite series for the dynamic component of
“total” stress were used in the computation.
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FIGURE 13.  Comparison of radial stress component for the case of a uniform, ramped
thermal loading over the period 20-30 µs on a cylindrical rod of radius R.
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FIGURE 14. Comparison of radial stress component for the case of a uniform, ramped
thermal loading over the period 40-50 µs on a cylindrical rod of radius R.


