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We discuss the four-dimensional cosmological constant
problem in a five-dimensional setting. A scalar field cou-
pled to the SM forms dynamically a smooth brane with
four-dimensional Poincaré invariance, independently of SM
physics. In this respect, our solution may be regarded as a
self-tuning solution, free of any singularities and fine-tuning
problems.

Among the long-standing problems in physics, a cen-
tral one, from a theoretical point of view, is the lack of
any understanding of the smallness of the cosmological
constant1 . The cosmological constant predicted from a
field theory calculation of the vacuum energy for a cutoff
at the Planck mass MP , is of an enormous Λ ∼M2

P size,
more than 120 orders of magnitude from the observed
bounds2 . Supersymmetry does not provide a solution
to the problem, although it would predict a vanishing
cosmological constant in case it were an exact symmetry.
However, after supersymmetry breaking, a non-zero cos-
mological constant ∼ M4

SUSY /M
2
P has to arises, still far

beyond any realistic value.
Recently, new proposals of relaxing the cosmological

constant to zero or to a really small value have been
put forward within the brane framework. In the brane
set up our universe is modeled as a hypersurface embed-
ded in a higher dimensional continuum. The idea of a
“wall-world” is not new3, 4 and in modern language is re-
alized by D-branes. These arise in String Theory and are
extended stable objects on which open strings can end.
Standard Model physics is confined on the brane whereas
gravity propagates in the bulk. Nevertheless, bulk prop-
agation of gravity is in contradiction with the observed
fact of four-dimensional gravitation satisfying an inverse-
square Newton’s law. There have been a number of pro-
posals in trying to isolate a four-dimensional graviton.
After succeeding in localizing a massless graviton on the
brane,5 while massive modes introduce a small correc-
tion to Newton’s law, the idea of a brane-resolution of
the cosmological constant problem6−18 has been put for-
ward. One of the proposals is the self-tuning one, which
involves sets of background solutions with 4D Poincaré
invariance for arbitrary values of the tension of the Stan-
dard Model brane. However, these solutions, existing for
a restricted form of bulk interactions, are singular. The
existence of naked singularities and their connection to
fine-tuning makes the whole proposal questionable19–22 .
In fact, regarding the bulk scalar employed in the self-

tuning models as a KK scalar, the 5D solution can be
lifted23 to 6D. There, one observes that although the met-
ric is regular, there is a global conical singularity and its
resolution requires indeed fine-tuning.

The purpose of this work is to suggest a solution to the
cosmological constant problem in the spirit of self-tuning
proposal without however the drawbacks of singularities
and/or fine-tunings. This is achieved by the dynamical
formation of the 4D brane by a bulk five-dimensional
scalar. The fact that bulk scalar fields with non-trivial
potential can lead to smooth backgrounds with the de-
sired localization properties has been illustrated in ref-
erence 24. In the present article we argue that by in-
troducing the appropriate 5D coupling of the SM to the
brane-forming scalar, not only localization of the SM on
a brane is achieved, but in addition, any contribution to
the 4D cosmological constant related to the SM physics
can be neutralized leading to a 4D Poincaré invariant
background.

Let us now consider the five-dimensional action

S =
∫
d5x

√−G
(

2M3R− 1
2
(∂φ)2 − LmJ(φ)

)
, (1)

where Lm is the five-dimensional matter Lagrangian that
gives rise to the four-dimensional Standard Model Lagra-
gian after localization. It is in general a functional of
gauge, Higgs and fermion fields (collectively denoted by
χi) such that Lm = Lm(χi). The equations of motion
resulting from the action (1) are

RMN − 1
2
GMNR =

1
4M3

(
∂Mφ∂Nφ+

δLm

δGMN
J(φ)

−GMN

(1
2
(∂φ)2 + U(φ)

))
, (2)

1√−G∂M

{√−GGMN∂Nφ
}

=
∂U

∂φ
, (3)

δ

δχi

(√−GLmJ(φ)
)

= 0 , (4)

where

U(φ) = J(φ)Lm , (5)

is the potential for the scalar φ. In what follows a capital
index like M stands for 0, 1, 2, 3, 4 while µ = 0, 1, 2, 3.
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The ordinary four coordinates will be represented by xµ

while for the fifth coordinate we shall use the symbol y.
In looking for four-dimensional Poincaré invariant solu-
tions, the most general form of the metric respecting this
symmetry is

ds2 = e2A(y)
(−dt2 + dx2

1 + dx2
2 + dx2

3

)
+ dy2 , (6)

while we shall consider the scalar φ to be only y-
dependent. In addition, since we are looking for vacuum
solutions, we put all fields in Lm, as usual, to zero except
the Higgs scalars H . In this case, Lm = −Veff(H) and
eq.(4) is just the extremality condition ∂Veff/∂H = 0 of
Veff . We shall denote the value of Lm at the extremum
as V0. Then, the equations eqs.(2,3) become equivalent
to the pair

1
2
(φ′)2 − U0(φ) = 24M3(A′)2 , (7)

1
2
(φ′)2 + U0(φ) = −12M3A

′′ − 24M3(A′)2 , (8)

with

U0(φ) ≡ V0J(φ) . (9)

All Standard Model physics is contained in the parame-
ter V0. The system of equations (7,8) will, presumably,
produce as a solution the pair A, φ as functions of y.
Equivalently, we can consider the pair of pair A, φ′ as
functions of φ. Then, since A′ = φ′ ∂A

∂φ , we can always
write

A′ = −W (φ)
12M3

, (10)

where W (φ) is a function of φ defined by this equation
and called superpotential25 . Subtracting equations (7,8)
leads us to an expression of the potential in terms of the
superpotential

U0(φ) =
1
2

(
∂W

∂φ

)2

− W 2

6M3
, (11)

The sum of eqs.(7,8), gives us

φ′ =
∂W

∂φ
. (12)

Note that the above form of the potential is not an as-
sumption but rather a necessary condition for smooth so-
lutions to exist. This restriction ceases to hold for more
than one fields. Thus, in our case, finding an appropri-
ate solution is translated into choosing an appropriate
superpotential W . Taking the trial choice

W = γ sin(βφ) ,

we obtain the sine-Gordon form, also employed el-
swhere26, 27 of the potential1

U0 =
γ2β2

2
(
1− g2 sin2(βφ)

)
. (13)

We have introduced

g2 = 1 +
1

3M3β2
. (14)

It can easily be seen that the potential (13) is of the
form (9) with V0 = 1

2γ
2β2 and V0 > 0. We could

alternatively have started with a potential U0(φ) =
V0

(
1− g2 sin2(βφ)

)
. Then, we would have the super-

potential form (11) of the potential, and, therefore, a so-
lution, only when β and g2 would be restricted by (14).
It should be stressed however that eq.(14) is totally in-
dependent of the Standard Model Physics represented by
V0. It is not, therefore, a fine-tuning but a restriction in
a subspace of the bulk-parameter space of β, g2.

Choosing V0 and g2 as our parameters, we can proceed
to solve for φ(y) and A(y). The scalar field solution can
be obtained from eq.(12). It has the known kink-like form

φ =
2
β

arctan
(

tanh(ay/2)
)
, (15)

where a2 ≡ 2V0β
2 = 2V0

3M3(g2−1) . Note the restriction
g2 > 1. Similarly, we can solve for A(y) eq.(10) by using
(15) and we obtain the warp function

A(y) = − (g2 − 1)
8

ln cosh2(ay) . (16)

The background geometry is then described by the
metric2

ds2 = {cosh(ay)}(1−g2)/2
ηµνdx

µdxν + dy2 . (17)

The calculation of all curvature invariants like R and
RMNR

MN , demonstrates that the geometry is nowhere
singular for g2 > 1. For every pair of values V0, g

2 > 1
there exists a smooth geometry given by (16) and a
smooth bounce-like field configuration given by (15).
Quantum SM effects may change the value of V0 but there
will always be a solution corresponding to the modified
value without any effect on the bulk parameter g2.

1Note the symmetry of the potential φ → φ + 2πn/β for
integer n. A potential of this form is expected to arise in
theories of antisymmetric tensor fields.28
2The four-dimensional Planck mass has a finite value

M2
P = 4M3ξ−1√π

Γ
(
(g2 + 3)/4)

)
Γ ((g2 + 1)/4)
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We give below in fig.1 a graph of the solution for some
special values of the parameters.
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Fig. 1: The functions eA(y), φ(y) for V0 = 1 , β = 1.1 (solid

lines) and V = 0.25 , β = 1.4 (dashed lines).

There is a brane-limit to the smooth solution found
above defined as g2 → 1 , 2V0(g2 − 1)/3M3 ≡ ξ2 <∞.
In this limit the warp function takes the Randall Sun-
drum5 form A(y) → − ξ

4 |y|. If we substitute our solution
to the bulk matter action in this limit, we obtain

1
2
(φ′)2 + U0(φ) → −3

2
M3ξ2 + 12M3ξδ(y) .

ξ is by definition positive. Thus, in this limit the sine-
Gordon bounce behaves as a brane of tension 12M3ξ
placed at y = 0. It should be remarked that both the
bulk kinetic term (φ′)2/2 and the potential U0(φ) con-
tribute equally to the brane term. Localization of SM
fields will not be automatic. Massless scalars and chiral
fermions in the SM Lagrangian are going to be localized
by the e2A warp factor, while for gauge bosons a separate
localization mechanism will be required.24

The coupling function J(φ) employed above, changes
sign away from the brane at y = 0. Although this is not
something that one should necessarily worry about, since
SM fields will somehow get to be localized, it is important
to show that we can replace the coupling function with
one of constant sign. We can consider the superpotential

W =
β

4α2
(2αφ+ sin(2αφ)) , (18)

that leads to φ = 1
α arctan(βy) + 2πn/α, where n is an

arbitrary integer, and to the perfectly localizing warp
function

A(y) = −µy arctan(βy) , (19)

with µ = β/24M3α2. The potential U0(φ) resulting from
W (φ) is

β2

8α2

{
(1 + cos(2αφ))2 − 1

12M3α2
(2αφ+ sin(2αφ))2

}
.

(20)

Note that this potential does not posses the symmetry
φ→ φ+nπ/α present in the previous example. Express-
ing U0 as a function of y shows that for a sufficiently
large value of n the potential will be always negative and
thus, the SM Lagrangian has the correct sign. A detailed
study of the model with the potential of eq.(20) will be
given elsewhere.29

Although we have constructed a flat solution with
four-dimensional Poincaré invariance, we have not fin-
ished yet. We have to make sure that a localized four-
dimensional massless graviton exists. After all, the cos-
mological constant is a problem as long as gravity is
present. For this, let us consider a perturbation around
the previously described solution of the form

δGMN = δµ
Mδν

Nhµν(x, y) , δφ = 0 . (21)

hµν represents the graviton in the axial gauge defined
by the constraint h5M = 0. We are interested on the
transverse modes and, therefore, we shall assume hµ

µ =
∂µh

µν = 0. The equations give, to first order in hµν ,
{
−1

2
∂2

∂y2
+

(
A

′′
+ 2(A′)2

)
− 1

2
e−2A(y)∂2

}
hµν(x, y) = 0 ,

where ∂2 ≡ ηµν∂µ∂ν . Introducing a trial solution in
the form of a product of an ordinary-space plane wave
times a bulk wave function hµν = eip·xψµν , we get the
Schröedinger-like equation

{
−1

2
d2

dy2
+

(
A

′′
+ 2(A′)2

)}
ψ(y) =

m2

2
e−2A(y)ψ(y) .

We have dropped the spacetime indices and introduced
the mass m2 = −p2. The existence of localized graviton
in ordinary space amounts to the existence of a normaliz-
able localized bound state of this equation at zero energy
m2 = 0 (zero-mode). It is not difficult to see that indeed
such a zero mode exists. It has the wave-function

ψ0(y) = e2A(y) =
{

cosh
(

ξy

g2 − 1

)}−(g2−1)/2

. (22)

In order to study the massive spectrum we must trans-
form the above equation into a conventional Schröedinger
equation. This can be done with the help of the trans-
formation y → z = f(y) , ψ(y) = Λψ. Demanding
the absence of first derivative terms and a standard con-
stant coefficient m2 in the right hand side, we arrive at
Λ = eA/2 , f ′ = e−A. The resulting Schröedinger equa-
tion is
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{
−1

2
d2

dz2
+ U(z)

}
ψ(z) = m2ψ(z) , (23)

while the potential U(z) is

U(z) =
3
8
e2A

(
2A

′′
+ 5(A′)2

)
=

3
4

(
Ä+

3
2
(Ȧ)2

)
, (24)

and the dots denote derivatives with respect to z. Note
that the Schröedinger equation has the form correspond-
ing to supersymmetric Quantum Mechanics

Q†Qψ =
{
− d

dz
− 3

2
Ȧ

}{
d

dz
− 3

2
Ȧ

}
ψ = 2m2ψ . (25)

This form clearly excludes the possibility of tachyonic
states. Nevertheless, in order to know whether there is
a gap in the continuum spectrum we need to know the
asymptotic behaviour of the potential. It is possible to
argue that since limy→∞{z} ∝ eξ|y|/4, limz→∞

{
U(z)

}
=

limy→∞
{
U(z(y))

} ∝ e2A → 0 and, as expected, there is
no gap and the continuous spectrum starts from zero en-
ergy. The situation is entirely analogous to the Randall-
Sundrum case and one could repeat the same arguments
with respect to massive graviton excitations. As a re-
sult the corrections to Newton’s law have the same, ade-
quately suppressed, form V (r) ∝ 1

r (1 +O(r−2)).
Summarising our results, we have considered a five-

dimensional theory of a scalar coupled to gravitation with
a restricted coupling to the Standard Model. We have
obtained classical Poincaré-invariant solutions describing
a localized smooth geometry which is everywhere finite.
There is a limit in which the warp function of the met-
ric tends to the Randall-Sundrum form and the scalar
field duplicates a brane of positive tension. The solu-
tions depend on two parameters, a dimensionless one g2

and the dimensionfull parameter V0 that is related to
Standard Model physics. For any quantum change in V0

(f.e. quantum vacuum energy corrections induced by a
symmetry-breaking phase transition) there is always a so-
lution corresponding to the new value of V0. Thus, there
is no fine-tuning involved in order to obtain a flat four-
dimensional solution. In that aspect, the solutions found
display self-tuning and resolve the four-dimensional cos-
mological constant problem. However, in contrast to the
recently proposed self-tuning solutions, they have no sin-
gularities. Nevertheless, they do involve restrictions on
the bulk interactions. These restrictions, however, are
totally independent of Standard Model physics. Another
crucial difference to the singular self-tuning solutions is
also the fact that the scalar field involved is not an extra
bulk scalar field but the field that forms the brane itself.
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