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We present a scaling study of lattice QCD with O(a) improved Wilson fermions and a chirally twisted mass
term. In order to get precise results with a moderate computational effort, we have considered a system of physical
size of 0.753

× 1.5 fm4 with Schrödinger functional boundary conditions in the quenched approximation. Looking
at meson observables in the pseudoscalar and vector channels, we find that O(a) improvement is effective and
residual cutoff effects are fairly small.

1. Introduction

Twisted mass QCD (tmQCD) was introduced
in [ 1] to solve the problem of unphysical fermion
zero modes in lattice QCD with two degenerate
flavours of Wilson fermions. The fermion lattice
tmQCD action reads:

SF = a4
∑

x

ψ(x)
(
D +m0 + iµqγ5τ

3
)
ψ(x) , (1)

where D is the O(a) improved Wilson lattice reg-
ularization1 of D/ and m0 ≡ 1/2κ− 4 and µq are
two real quark mass parameters. The lattice sym-
metries and power counting determine the coun-
terterm structure for renormalization and O(a)
improvement of the infinite volume theory. The
physical equivalence of tmQCD to QCD in the
continuum limit has been argued in [ 1] and will
be further detailed in [ 3].

We study tmQCD in a four dimensional box
with Schrödinger functional (SF) boundary con-
ditions. We wish to check that after on-shell O(a)
improvement à la Symanzik [ 4] a few renormal-
ized quantities related to meson physics approach
the continuum limit with residual scaling viola-
tions that are small and compatible with being
O(a2). Following ref. [ 7], we keep the spatial size

∗Based on a poster by M. Della Morte presented at the
International Symposium on Lattice Field Theory, August
2000, Bangalore, India.
1See ref. [ 2] for notation and details.

of the box moderately small (L ≃ 0.75 fm) and
choose T = 2L.

The transfer matrix of lattice tmQCD with ac-
tion (1) and cSW = 0 can be constructed in close
analogy to ref. [ 10] and turns out to be self-
adjoint and strictly positive for |κ| < 1/6 [ 3].
Following refs. [ 8, 11], the Schrödinger functional
in tmQCD can be conveniently defined as the in-
tegral kernel of an integer power T/a of the trans-
fer matrix [ 3]. It has an Euclidean representation
given by

Z[ρ′, ρ′, C′; ρ, ρ, C] =

∫

fields

e−S[U,ψ,ψ̄] (2)

and can hence be considered as a functional of
the fields at the Euclidean times 0 and T . The
structure of the transfer matrix implies that the
boundary conditions for gauge and quark fields
are the same as in the standard framework (µq =
0). The action S[U, ψ̄, ψ] in eq. (2) is the sum
of the usual plaquette pure gauge action and the
quark action, which takes the same form as in
eq. (1), provided one adopts the notational con-
ventions of Subsect. 4.2 of [ 2].

The tmQCD Schrödinger functional is expected
to be finite after the standard couplings and
boundary renormalization [ 3]. At order a
new boundary counterterms proportional to aµq

arise [ 3]. Their effect beyond tree–level will be
neglected in this study.
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2. Correlation functions

In order to motivate our choice of observ-
ables, we recall some properties of renormalized
tmQCD. For simplicity, we first consider the the-
ory with boundary conditions that are periodic
in space and as specified in [ 10] in time direc-
tion. The renormalization scheme (R) of tmQCD
can be chosen [ 3] to be consistent with the Ward
identities of the flavour chiral symmetries:

∂µ(AR)aµ = 2mR(PR)a + δa3iµR(SR)0 (3)

∂µ(VR)aµ = −2µRε
ab3(PR)b (4)

where the above relations are to be understood
as operator insertions2 in the correlation func-
tions and ε is fully antisymmetric with ε123 = 1.
Note that our chirally twisted parameterization of
QCD involves two renormalized mass parameters,
mR and µR.

It can be shown [ 1, 3] that, within a certain
subset of the renormalization schemes that pre-
serve the above Ward identities, the on-shell cor-
relation functions of tmQCD can be mapped onto
the ones of standard QCD in a related renormal-
ization scheme. In the latter scheme the flavour
chiral Ward identities (at the operator level) read:

∂µ(AR)aµ = 2m′

R(PR)a , ∂µ(VR)aµ = 0 (5)

for a = 1, 2, 3 with the mass m′

R satisfying:

(m′

R)2 = m2
R + µ2

R , tan(α) = µR/mR . (6)

Here α is an unphysical angle which just specifies
the quark mass parameterization. An example of
this mapping is given by:

〈(AR)20(x)(PR)2(y)〉c{gR,m
′

R, 0} =

〈(A′

R)20(x)(P
′

R)2(y)〉c{gR,mR, µR} , (7)

where x 6= y and by definition:

(A′

R)aµ = cos(α)(AR)aµ + sin(α)εab3(VR)bµ ,

(P ′

R)a = (PR)a a = 1, 2 . (8)

It is understood that in eq. (7) the l.h.s.
must be evaluated at renormalized couplings

2The quark bilinears are defined in the standard way, with
flavour matrices τa/2 (for a = 1, 2, 3) or τ0 = 1.

{gR,m
′

R, 0} and the r.h.s at renormalized cou-
plings {gR,mR, µR}, with the quark mass cou-
plings related via eq. (6). Note that the above
mapping takes the same form as at the classical
level, where it is obtained via [ 1]

ψ′

cl = eiαγ5τ
3/2ψcl , ψ̄′

cl = ψ̄cle
iαγ5τ

3/2 .

In the following we will also need to consider,
again for a = 1, 2 only, the primed fields:

(V ′

R)aµ = cos(α)(VR)aµ + sin(α)εab3(AR)bµ ,

(T ′

R)aµν = (TR)aµν a = 1, 2 . (9)

Coming back to our scaling tests of tmQCD
with SF boundary conditions, we focus on a few
renormalized quantities that can be extracted
from the following correlators:

f22
R,A′(x0) = −〈(A′

R)20(x)O
2
5〉/

√
f22
1 ,

f22
R,P′(x0) = −〈(P ′

R)2(x)O2
5〉/

√
f22
1 (10)

and (with sum over k = 1, 2, 3 understood)

k22
R,V′(x0) = −

1

3
〈(V ′

R)2k(x)Q
2
k〉/

√
f22
1 ,

k22
R,T′(x0) = −

1

3
〈(T ′

R)2k0(x)Q
2
k〉/

√
f22
1 , (11)

where Oa
5 and Qa

k are the SF boundary fields de-
fined in ref. [ 7] at zero Euclidean time3. In the
above correlators the division by the square root
of the quantity

f22
1 = −

1

L6
〈O′2

5O
2
5〉 , (12)

takes care of the boundary field renormalization.
In the quantum mechanical representation of

the renormalized correlation functions that are
obtained from eq. (10) and eq. (11), the only
non–vanishing contributions (up to cutoff effects)
arise when inserting states with vacuum quantum
numbers at Euclidean times between x0 and T ,
and states with pion and ρ–meson quantum num-
bers, respectively, at Euclidean times between 0
and x0. Let us consider for instance the SF cor-
relator f22

R,A′ : the matrix elements between inter-
mediate states |k〉 and |n〉

〈k| cos(α)(AR)20 − sin(α)(VR)10|n〉 , (13)
3The analogous fields localized on the other SF time-
boundary are labelled with a prime.
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which enter its quantum mechanical representa-
tion, are independent of the SF boundary condi-
tions and also appear in the quantum mechanical
representation of the r.h.s. of eq. (7). The equal-
ity of the correlators in eq. (7) implies the equality
of their quantum mechanical representations for
arbitrary values of (x0 − y0). From this equality
it follows that in tmQCD the matrix elements of
the form (13) with the states |k〉 and |n〉 carry-
ing vacuum and pion quantum numbers, respec-
tively, are non-zero. Analogous arguments hold
for the remaining SF correlators in eqs. (10)–(11).
The fields Oa

5 and Qa
k are chosen so that the cor-

responding SF boundary states have a non–zero
overlap with the pion and the ρ–meson states.

3. Definition of the observables

In this study we consider as observables some
ratios of the previously introduced SF finite vol-
ume correlators that are expected to approach a
well defined continuum limit4:

mPS =
∂̃0f

22
R,P′(x0)

f22
R,P′(x0)

, x0 = T/2 , (14)

m̃PS =
∂̃0f

22
R,A′(x0)

f22
R,A′(x0)

, x0 = T/2 , (15)

mV =
∂̃0k

22
R,V′(x0)

k22
R,V′(x0)

, x0 = T/2 , (16)

m̃V =
∂̃0k

22
R,T′(x0)

k22
R,T′(x0)

, x0 = T/2 , (17)

ηPS = CPSf
22
R,A′(x0) , x0 = T/2 , (18)

η̃PS = C̃PSf
22
R,A′(x0) , x0 = T/2 , (19)

ηV = CVk
22
R,V′(x0) , x0 = T/2 , (20)

η̃V = C̃Vk
22
R,V′(x0) , x0 = T/2 . (21)

As T = 2L → ∞, mPS and mV yield estima-
tors of the pion and ρ-meson mass, respectively.
The constants CPS and CV are defined as in [
7] in terms of mPS and mV. CPS is such that
ηPS → Fπ as T = 2L → ∞. The quantity ηV is
not related to the decay of the ρ–meson because of
its unphysical normalization. Analogous consid-

4 The symbol ∂̃µ denotes the symmetric lattice derivative.

erations hold for the alternative scaling quantities
labelled with a ”tilde”.

The fR- and kR correlators entering our observ-
ables are defined in eqs. (10)–(12) via eqs. (8)–(9)
and

(AR)aµ = ZA(1 + bAamq)(AI)
a
µ ,

(VR)aµ = ZV(1 + bVamq)(VI)
a
µ ,

(PR)a = ZP(1 + bPamq)(PI)
a ,

(TR)aµν = ZT(1 + bTamq)(TI)
a
µν , (22)

where (restricting attention to a = 1, 2)

(AI)
a
µ = Aaµ + cAa∂̃µP

a + aµqb̃Aε
ab3V bµ ,

(VI)
a
µ = V aµ + cVa∂̃νT

a
µν + aµqb̃Vε

ab3Abµ ,

(PI)
a = P a ,

(TI)
a
µν = T aµν + cTa(∂̃µV

a
ν − ∂̃νV

a
µ ) . (23)

For the definition of the bare lattice fields Aaµ,
P a, V aµ and T aµν we follow Sect. 2 of ref. [ 9].
The suffix I refers to the O(a) improvement of
these fields, which together with O(a) improve-
ment of the action, eq. (1), implies that -in the
limit T → ∞- the observables in eqs. (14)–(21)
deviate from their continuum limit by O(a2) cut-
off effects. The b̃ coefficients multiply countert-
erms that are needed to subtract (bulk) cutoff
effects of order aµq.

4. Results

We choose non–perturbative mass–independent

renormalization conditions for the couplings and
the observables of interest. As L/a is increased,
the relation between β = 6/g2

0 and a/r0 [ 12] is
employed in order to keep the physical size of the
box fixed at L = 1.49r0, with r0 being a hadron
scale of order 0.5 fm. The mass parameter κ is
tuned so to keep fixed the PCAC renormalized
mass in units of L:

LmR
def
=

L

a

{
ZA

ZP

∂̃0f
22
A

2f22
P

}
= 0.020 , (24)

where:

ZAf
22
A = −〈(AR)20(x)O

2
5〉 ,

ZPf
22
P = −〈(PR)2(x)O2

5〉 . (25)
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The mass parameter µq is chosen so to fulfill the
condition:

LµR
def
= Z−1

P Lµq = 0.153 . (26)

This choice is justified by the exact lattice Ward
identity ∂∗µṼ

2
µ = 2µqP

1, where Ṽ aµ is the one–
point split vector current that is conserved at
µq = 0 and ∂∗µ denotes the backward lattice
derivative. The angle α, given by tan(α) =
µR/mR, is close to π/2.

β µq κ L/r0 LmR

6.0 0.01 0.134952 1.490(6) 0.0228(23)
6.14 0.00794 0.135614 1.486(7) 0.0203(30)
6.26 0.00659 0.135742 1.495(7) 0.0201(23)
6.47 0.00493 0.135611 1.488(7) 0.0180(24)

Table 1
The bare and renormalized parameters in our sim-

ulations. As for L/a and LµR see the text.

The renormalization factors ZA, ZV and ZP

were determined in [ 6] and [ 13], where ZP is
given as a function of β at the scale L0 = 1.436r0.
As for the improvement coefficients, we employ
non–perturbative estimates of cSW, cA [ 5] and
bV [ 9]. Moreover, we use 1–loop estimates of cV,
cT, bA, bP, bT [ 9] as well as of the SF-boundary
coefficients ct and c̃t [ 11]. The coefficients b̃A and
b̃V vanish at the tree level and are of order 10−2

at 1–loop level [ 3]. We have hence varied their
value in the analysis in the range −0.2 ÷ 0.2 for
b̃A and −0.1 ÷ 0.1 for b̃V, without observing any
statistically significant variation in our results.

Our simulation points are listed in table 1: the
four values of β correspond to L/a = 8, 10, 12, 16.
The quoted error on LmR is purely statistical,
due to the negligible uncertainty on ZA/ZP. As
ZP ≡ ZP(L0) is known with a relative uncer-
tainty of about 0.5%, the condition (26) is imple-
mented with this precision by adjusting µq. We
correct for small mismatches with the condition
eq. (24) using numerical estimates of the LmR–
dependence of our observables obtained via some
extra simulations at β = 6. We finally extrap-
olate our data to the continuum limit assuming
convergence with a rate ∝ a2. Our fits are shown
in figures 1- 4, where only statistical errors are

0.000 0.005 0.010 0.015 0.020
(a/L)

2

1.60

1.65

1.70

1.75

1.80
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m
P

SL
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~

Figure 1. Scaling of mPSL and m̃PSL.
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2
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mVL
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Figure 2. Scaling of mVL and m̃VL.

displayed. The results are compatible with O(a2)
deviations from the continuum limit.

Because of the finite value of T ≃ 1.5 fm,
the observables (14)–(21) still depend on the SF
boundary action and fields. This induces residual
O(a) effects due to the imperfect knowledge of ct
and c̃t and a further coefficient5 that is associated
with O(aµq) effects [ 3]. Following [ 7], we have
performed a few extra simulations at β = 6 and
β = 6.26 with values of ct − 1 and c̃t − 1 that are
about 2 and 10 times, respectively, larger than
the 1–loop values. The discrepancies with the
previous results are at most about two standard
deviations (at β = 6) and can be considered neg-

5Due to LµR = 0.153 ≪ 1, this coefficient was set to its
tree level value and never varied.
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ligible for the purposes of this study.
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Figure 3. Scaling of ηPSL and η̃PSL.
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Figure 4. Scaling of ηV and η̃V.

In table 2 we compare the estimated continuum
limit value of our observables with the value at
β = 6. The deviations from the continuum limit
appear to be fairly small and not larger than the
ones found in an analogous study at µq = 0 [ 7].

5. Conclusions

In the parameter region specified by β ≥ 6,
LµR = 0.153 ≫ LmR = 0.020 and T =
2L ≃ 1.5 fm the O(a) improvement programme of
tmQCD has been successfully implemented and

mPSL mVL ηPSL ηV

1.80(3) 2.62(4) 0.559(7)[1] 0.164(5)[1]
3.7% 2.8% 2.6% 4.8%

m̃PSL m̃VL η̃PSL η̃V

1.66(1) 2.29(3) 0.581(5)[1] 0.200(6)[1]
2.7% 4.4% 2.5% 7.7%

Table 2
Continuum limits and deviations from β = 6. Er-

rors due to ZX–uncertainties in square brackets.

tested for a few meson observables. The renor-
malization of the twisted mass parameter is easy
in practice, as it can be traced back to the renor-
malization of the non-singlet pseudoscalar density
in the massless theory.
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