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Abstract

A simple expression for the voltage dependence of grain-boundary potential barrier heights

is proposed and the E�ective Medium Approximation is extended for calculating the I-V char-

acteristic in tenary mixtures of highly non-linear circuit elements. Numerical calculations are

performed for the case of polycrystalline semiconductors, such as ZnO-based varistors, where

the thermoionic emission is believed to be the dominant mechanism for the electric conduction

across double Schottky barriers at room temperature.
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1 Introduction

The transport properties in materials of the polycrystal-like grain boundary (GB) microstruc-

tures have attracted increasing interest in last decades due to their very speci�c electrical be-

haviours and their great technology applications (polycrystalline Si-devices, ZnO-varistors ...)

[1,2]. The double Schottky barrier formulated at the grain boundaries controls electric currents

and causes a high nonlinearity for the current-voltage characteristics (I-V characteristic)[3-13].

The parameter used to measure a nonlinearity is de�ned as the power � in the current-voltage

relation I / V �, i.e.

�(V ) = d(log I)=d(log V ): (1)

The typical �(V )-curve looks like a bell shape interpolating two linear regimes of � = 1. The

voltage V = VB relating to the bell top, where �(V ) reaches the maximum value, is often called

the breakdown voltage and could then be determined as the solution of the equation

(@�(V )=@V )jVB = 0: (2)

Correspondingly, the maximum value of the power � at breakdown, � � �(VB) = max[�(V )],

is in practice named the non-linear coe�cient. The breakdown voltage VB and the non-linear

coe�cient � are the main parameters, characterizing a nonlinearity in electric conduction of

materials. Note that the typically observed values of the coe�cient � for the varistors based

on zinc oxide ceramics (ZnO-varistors), for example, may be as large as 50 or more [3,4,12].

The polycrystal-like materials with such a high nonlinearity should be adopted as the original

interest of the present work.

Theoretically, the study of the I-V characteristic for GB materials should consist of two

steps: (i)- to calculate I-V characteristics of single GB barrier junctions, and, (ii)- using these

single junction I-V characteristics to calculate an overall I-V characteristic of the material.

The current transport across a single Schottky barrier was investigated in great detail in a

number of works [3-13] and the physics of the problem is now widely recognized. A very high

non-linear I-V characteristic is believed to be caused by the holes created in the forward barrier

at high voltages, which inject along the electric �eld into interface states and recombine the

electrons trapped there. Thus, the interface processes (hole-electron recombination, electron

capture and emission) should certainly be counted self-consistently in getting a single junction

I-V characteristic. Unfortunately, all attempts of including the interface processes unavoidably

lead to very complicated numerical calculations even for a single junction problem [4,13]. Hence,

they could not be realized in practical procedures of calculating the overall I-V characteristic of

systems, containing an enormous number of junctions with di�erent electrical behaviours.

The di�culty in calculating the overall I-V characteristic of polycrystalline semiconduc-

tors is mostly related to a randomly inhomogeneous nature of materials. In contrast to the

early Levinson-Philipp model of identical and regularly arranged GB junctions [5], the micro-
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photographies of varistor ceramics show not only a randomness in grain space positions, but also

a large variation in grain sizes [10,11]. Furthermore, the uctuation of junction barrier heights

and, correspondingly, of breakdown voltages, mentioned early, for example, by Einzinger [10],

has been systematically and convincingly investigated in di�erent materials [14-18] . >From

microelectrode measured data by Olsson and Dunlop [15] three most frequent types of junctions

between ZnO grains were distinguished. These types of junctions characterized by di�erent

intergrain structures reveal very di�erent Schottky barrier heights, and therefore, very di�erent

non-linear behaviours. Such a model of ZnO varistors with three kinds of grain boundaries:

(1)\good" junctions with a highly non-linear I-V characteristic; (2) \bad" junctions with a

low nonlinearity; and (3) low-resistivity ohmic GBs, was recently simulated by Bartkowiak et

al.(BMMALM) [18]. However, the Kirchho�'s equations simulations of ref.[18] are only limited

to two dimensional systems and to some exclusive parameter values, and, moreover, the expres-

sions for single junction I-V characteristics used in these simulations are very particular that

could not be seen as typical for polycrystal-like materials [19].

In the present work the E�ective Medium Approximation (EMA) is extended to calculate an

overall I-V characteristic of such a nonlinear tenary mixture as that of Olsson and Dunlop [15]

and of BMMALM [18]. Concerning the single junction problem, we propose a simple expression

for the voltage dependence of the potential barrier height, which, on one side, describes exper-

imental data, and which, on the other side, is suitable for further calculating bulk properties.

The work is then formulated in a closed form of self-consistent equations with a few parameters.

The numerical results for both two (2D) and three dimentional (3D) cases will be discussed in

detail.

2 Single Junctions

Depending on materials, on the temperature, and on applied voltages, the electric current trans-

port through a GB Schottky barrier may be formulated by di�erent conducting mechanisms,

such as tunnelling, �eld emission, space-charge limited current, or thermoionic emission [6-8].

For the materials with such a high nonlinearity as ZnO-varistors at room temperature, however,

the thermoionic emission (TIE) is widely believed to be dominant in the pre-breakdown region

V � VB [7,9,12,20].

Within the framework of TIE theory the current that is injected through a Schottky barrier

is [7-12]:

J(V ) = J0 exp (��(V )=kBT ) [1� exp(�eV=kBT )] ; (3)

where the voltage-independent current J0 = A� T 2 exp (�EF =kBT ), A
� is the Richardson's

constant, EF is the Fermi level in the grain bulk (counted from the bottom of the conducting

band), T is temperature, e is elementary charge, V is the voltage drop across the junction, and

� is the potential barrier height which depends on V .
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In the simplest double Schottky model, when the e�ects due to holes and interface processes

are neglected, the functional form of �(V ) could easily be found by solving the one-dimensional

Poisson equation d2�(x)=dx2 = �(x)=�, where �(x) is the charge density in the barrier region, �

is the grain dielectric constant. In the so called abrupt approximation for the charge density:

�(x) = eNDf�(x+ xl)� �(x� xr)g �QI�(x) ; (4)

with ND being the donor concentration in grains, �(x) and �(x) - the Heaviside step and the

Dirac �-function, respectively; xl (xr) - the length of the left (right) depletion region, QI - the

density of surface charges, one has got [10,12]:

�(V ) = �0 (1 � eV=4�0)
2
; eV � 4�0 : (5)

Here �0 � �(V = 0) = Q2
I=8e�ND is the barrier height at zero voltage.

The �(V )-expression of eq.(5) is very simple and easy to be used for the aim of calculating

the bulk I-V characteristics, and since there is no other analytical �(V )-expression available for

this aim, it was often addressed in literatures [1-12].

However, as can be seen in Fig.1, the �(V )-behaviour given by eq.(5) (dashed line) is very far

in describing experimental data for ZnO-varistors (solid circles), measured by Mahan et al.[4].

While the measured barrier height is almost unchanged in a large range of applied voltages until

eV=�0 � 3, the curve of eq.(5) immediately goes down with the slope of � �1=2 and shows a

barrier height � � �0=2 at the voltage as low as eV=�0 � 1. Such a discrepancy in the �(V )-

dependence should be manifested in the non-linear feature which is characterized by quantities

VB and �. Substituting eq.(3) with �(V ) of eq.(5) directly into eqs.(1), (2) one can, to the �rst

approximation, get [21]:

VB � 2�0=e; � � �0=2kBT: (6)

For the junction with typical barrier height of �0 = 0:4 eV at room temperature, this eq.(6) gives

a value of the breakdown voltage VB , which is in about 3 times less than the experimentally

observed value [1,4,12] and gives to the non-linear coe�cient a value as small as � � 8 (in

comparison with typical experimental values of � 50).

It is important to note that the �(V )-expression of eq.(5) is essentially related to the as-

sumption of neglecting the hole e�ects and the interface processes. A variety in the form of the

space distribution of donors as well as an inclusion of the conduction band electrons into the

charge density �(x) will lead to di�erent values of �0 only, while the functional form of �(V )

seems to be still the same as given in eq.(5) (see Appendix).

Recall that although it is perhaps possible to calculate self-consistently the �(V )-dependence

for an individual GB-junction by taking into account both the hole e�ects and the interface

processes as it was tried to do in Refs.[4,12,13], such complicated numerical calculations un-

fortunately could not be practically realized in calculating overall I-V characteristics. In this
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work, as an alternative way to avoid this unsolved di�culty, we speculatively suggest for �(V )

a simple expression as the following:

�(V ) = �0 tanh�1(�1) tanh[�1(1�
eV

�2�0
)] ; eV � �2�0; (7)

where �1 and �2 are adjusted parameters, which depend on materials. One can think about

this �(V )-expression of eq.(7) as a solution of some one-dimensional Ginzburg-Landau type

equation [22]. It should also be noted that the tanh-functions have often appeared in di�erent

approximate (empirical) expressions of the I-V characteristics for ZnO-varistors [4,7,23].

Using the �(V )-expression of eq.(7), from eqs.(1), (2) and (3) to the �rst approximation the

breakdown voltage could be estimated as

eVB � �2�0y (8)

and, correspondingly, the non-linear coe�cient as

� � y(�1= tanh �1)f1 � tanh2[�1(1� y)]g(�0=kBT ); (9)

with y being the positive solution of the equation

2�1y tanh[�1(1� y)] = �1: (10)

We would like to note that the temperature dependence of the non-linear coe�cient in the form

�(T ) / T�1 as is given in eq.(9) was experimentally observed in ZnO-varistors [1,23].

Fig.1 shows the best �t of the �(V )-expression of eq.(7) (solid line) to the experimental data

from ref.[4] (solid cirles) that gives �1 = 3:72 and �2 = 5:63. Using these values of �1 and �2,

from eqs.(8)-(10) we have

VB � 5:9 �0=e; � � 3:8 �0=kBT; (11)

which are in about 3 times (for VB) and 7 times (for �) larger than those of eq.(6), respectively.

On the other side, the data of ref.[15] support the idea that the (�=�0) versus (eV=�0) curves

should follow an universal behaviour, characterizing the material under study, regardless of

an individuality of junctions. In other words, the parameters �1, �2 could be assumed to

be material characters, independent of barrier heights �0. Here, it should also be mentioned

that, experimentally, there are di�erent suggestions on the behaviour of VB in dependence on

the barrier height. Analyzing a large number of GB junctions, Einzinger [10] recognized that

VB mainly changes between 2:5 and 4:5 V . Olsson and Dunlop [15], using microelectrode

measurements, observed a larger variety of VB , between 0:4 and 4 V , with two peaks at � 0:9 V

(bad) and � 3:3 V (good) for ZnO-varistor samples of 0:50�mol % Bi2O3. Greuter and Blatter

[13] suggested that the interface minority carriers generated by hot electrons at high �eld could

strongly a�ect the breakdown voltage VB. We assume that the present model of eq.(7) should

be applied for describing I-V characteristics of such materials as that investigated in ref.[15].
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Thus, although the �(V )-expression of eq.(7) is purely empirical, it nevertherless describes

the observed electric characterirtics for the double Schottky barriers of realistic ZnO-varistors.

And furthermore, since this �(V )-expression is very simple, it could easily be used as a basis

for calculating overall I-V characteristics of inhomogeneous barrier systems. In Fig.2, as an

example, the pre-breakdown TIE I-V characteristics of eq.(3) with the �(V ) of eq.(7) are plotted

(solid lines) for two junctions of �0 = 0:1 eV and 0:4 eV at T = 300 K. The corresponding

�(V )-relations de�ned in eq.(1) are also plotted there (dashed lines) that give to the non-linear

coe�cient the values of � 14 and 56 for the junctions of �0 = 0:1 eV and 0:4 eV , respectively.

3 E�ective Medium Approximation

The EMA is a self-consistent schema proposed as an approach to transport properties of in-

homogeneous materials, long ago [24]. However, this method only received great interest with

its successful applications to the percolation problems [25]. The EMA gives very accurate pre-

dictions for the percolation probabilities, for the conductivity and other electric characters of

binary mixtures [26,27].

Consider a random electrical network on a hypercubic lattice of dimensionality d > 1. The

bonds of the lattice are circuit elements with independently random conductivities. To calculate

the overall conductivity � of such inhomogeneous systems the basic idea of the EMA consists

in replacing the random resistance net by a homogeneous lattice, where all the lattice bonds

have the same conductance �. Choosing the lattice spacing to be unity, then � is also the

conductivity of the sample and it could be derived self-consistently as discussed by Kirkpatrick

[25].

It should be mentioned that the EMA had originally been proposed and is often applied to

linear systems with bond conductances independent of the applied voltage. An extension of the

EMA to systems of non-linear resistances was suggested in refs.[28,21], but the study [21] was

only limited to the binary mixtures. For the tenary mixtures of the BMMALM model [18], in

the same way as that in refs.[28,25,21] one can show that the self-consistent EMA equations for

the overall conductivity � as a function of the applied voltage V have the form

p0(�� �0)

�0 + (d� 1)�
+

pb(�� �b(V ))

�b(V
�

b ) + (d� 1)�
+

pg(�� �g(V ))

�g(V �

g ) + (d� 1)�
= 0 (12)

and

V
�

i =
d�+ �i(V

�

i )� �i(V )

(d� 1)� + �i(V �

i )
V ; i = b; g; (13)

where p0; pb and pg are the probabilities of having bonds with the ohmic �0, the \bad" �b, and

the \good" �g conductance, respectively: p0 + pb + pg = 1, d = 2, 3 is dimensionality. The

equation (13) is a consequence of a voltage dependence of the non-linear \bad" (i = b) and

\good" (i = g) conductances [28].
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The EMA equations (12),(13) are very general for tenary systems with any �0 and any

functional forms �b(V ) and �g(V ). To solve these equations it is convenient to write eq.(12) in

the form:

�3 + a1�
2 + a2�+ a3 = 0 ; (14)

where

a1 = fp0[�
�

b + �
�

g � (d� 1)�0] + pb[�
�

g + �0 � (d� 1)�b]

+ pg[�0 + �
�

b � (d� 1)�g]g(d� 1)�1
;

a2 = fp0[�
�

b�
�

g � (d� 1)�0(�
�

b + �
�

g)] + pb[�
�

g�0 � (d� 1)�b(�
�

g + �0)]

+ pg[�0�
�

b � (d� 1)�g(�0 + �
�

b )]g(d � 1)�2
;

a3 = �(p0�0�
�

b�
�

g + pb�0�b�
�

g + pg�0�
�

b�g)(d� 1)�2
: (15)

Here, �b � �b(V ); �g � �g(V ); �
�

b � �b(V
�

b ); and ��g � �g(V
�

g ) are introduced for short.

The equation (14) is a standard cubic equation in � with the solutions well-known as the

Cardan's formula [29], where the coe�cients a1; a2; a3 depend not only on p0; pb; pg, on

�0; �b; �g, but also on �
�

b ; �
�

g . The last quantities �
�

b and �
�

g should be determined from eq.(13).

Hence, for given values of probabilities p0, pb, pg, of the conductance �0, and given functional

forms of �b(V ) and �g(V ) the equations (14) and (13) could be solved self-consistently to get

the conductivity � for each value of V , i.e. to get an overall I-V characteristic of the system

under study.

4 Numerical Examples and Discussions

To solve EMA equations (14), (13) we need the functional forms of non-linear bond conductances

�b;g(V ). In the framework of the TIE-model of eq.(3), with �(V ) of eq.(7) the single junction

conductance normalized by the \grain conductance" of �0 � J0e=kBT has the form

�(v) = e
�'(v) [e�v +

�1

�2tanh �1
(1� e

�v) cosh�2
�1(1� v=�2'0)] ; (16)

where ' � �=kBT , v � eV=kBT , '0 = '(v = 0). This expression of single junction conductances

is valid at applied voltages of v � �2'0 (see eq.(7)). At higher voltages the resistance of (metal)

grains becomes dominant that makes the junction conductance saturated: �(v) = constant at

v � �2'0.

In the conductance expression of eq.(16) the zero-voltage dimensionless barrier height '0 is

only the parameter characterizing an individuality of junctions. Denoting '0 � '
(b)
0 = �

(b)
0 =kBT

for \bad" junctions, and '0 � '
(g)
0 = �

(g)
0 =kBT for \good" junctions, where �

(b)
0 and �

(g)
0 are

the corresponding zero-voltage barrier heights, the conductances �b and �g in eq.(15) could then

be formulated from eq.(16) as

�b(v) = �(v; '0 = '
(b)
0 ); v � �2'

(b)
0 ;
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�g(v) = �(v; '0 = '
(g)
0 ); v � �2'

(g)
0 :

At higher voltages (v � �2'
(b)
0 for \bad" or � �2'

(g)
0 for \good" junctions) the conductance is

independent of v.

Thus, in the present model of tenary mixtures the overall I-V characteristics at a given tem-

perature is entirely determined by 5 material parameters: two from the probabilities p0; pb; pg;

the ohmic conductance �0, and two zero-voltage barrier heights �
(b)
0 and �

(g)
0 . By changing one

of these parameters, while the others are �xed, the EMA equations (14), (13) may allow one to

investigate a large variety of electrical properties of polycrystal-like materials.

In solving eq.(14), it should be noted that due to a nonlinearity of conductances the quantity

(�a21=3 + a2) could change its sign as the voltage v varies. Such a speci�city of the problem

must be adequately counted in using Cardan's solutions [29].

Experimentally [14-18], the microjunctions referred to as \good" have the non-linear coe�-

cient � � 30 that corresponds to �
(g)
0 � 0:25eV as resulted from eq.(11) at T = 300 K, while

the \bad" microjunctions have much lower nonlinearity, � � 10, or much lower barrier height,

�
(b)
0 � 0:1eV . To demonstrate some numerical solutions of EMA equations (13) and (14) with

the TIE �(v) of eq.(16) we will use here the set of parameter values: �
(b)
0 = 0:1 eV ; �

(g)
0 =

0:4 eV ; T = 300 K; �1 = 3:72, and �2 = 5:63 that results in the non-linear coe�cient �b � 14

and �g � 56, and in the breakdown voltage V
(b)
B � 0:6 V and V

(g)
B � 2:4 V for \bad" and \good"

junctions, respectively. These values are close to those used in ref.[18]. The conductance of the

ohmic bond is everywhere chosen to be equal to 0.3 (in units of �0). The overall conductivity �

will then be calculated for di�erent values of probabilities pb; pg, and p0 in the range of voltages

v � �2'
(g)
0 � 90.

Fig.3 shows the 3D �(v)-characteristics for di�erent values of pb and pg, while the probability

p0 is kept to be constant, p0 = 0:05 [18]. The typical feature of all curves is a step-like form

with two plateaux at weak voltages V � V
(b)
B and at V

(b)
B < V < V

(g)
B . The �rst plateau is

related to the fact that at V � V
(b)
B both �b(V ) and �g(V ) are really ohmic and very small.

For all the curves the value of � in this plateau is in the order of � 10�4. At the voltages

near to V
(b)
B the breakdown of the \bad" junctions creates an abrupt increase of �. At higher

voltages V > V
(b)
B , the conductance �b, reaching the saturated value of the grain conductance,

again becomes independent of applied voltage, while the conductance �g is still constant and

small. Thus, in the range of voltages V
(b)
B < V < V

(g)
B all three component conductances seem

once more to be ohmic that results in the second plateau in the �(v)-curves. The value of

� � �L in this plateau decreases with increasing pg (p0 is unchanged), it seems however to be

still considerably higher than �g (dashed line (g)) even when pg = 0:7 (curve 4).

A rapid rise of � at the voltages close to V
(g)
B is certainly associated with the breakdown of

\good" junctions. Relating the non-linear behaviour of materials to this breakdown, while the

general feature of � versus pg for a given value of p0 is similar to that shown in Fig.4 of ref.[18],

we would here emphasize on the role of the ohmic bonds in decreasing the non-linear coe�cient:
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the value of � � 40 for the sample of pg = 0:70 (greater than the 3D bond percolation threshold)

with such a small amount of ohmic bonds as p0 = 0:05 (the lowest solid line) is still considerably

smaller than that of � � 50 for the sample of the same pg, but with p0 = 0 (unshown curve,

very close to the lowest dashed line). These results, on the whole, unambiguously imply that the

electric conduction properties of considered non-linear tenary mixtures could not be explained

within the framework of any current percolation models [26,30].

In Fig.4, the solid lines are the �(v)-characteristics for the 2D case with the same portion

of ohmic bonds p0 = 0:05 as for the 3D curves in Fig.3, but with di�erent values of pg (the

values of pg in the study are chosen in relation to the percolation threshold of corresponding

bond problems, which for 2D case is 0.5). Since the feature of �(v)-curves for the 2D case is

very similar to that for the 3D case discussed above, Fig.4 is then mainly focused on showing

the e�ect of the third component of ohmic bonds �0.

Comparing the pairs of curves (1 and 10, 2 and 20, 3 and 30, 4 and 40) with the same value of

pg (0:05; 0:25; 0:4; 0:55, respectively), but with di�erent values of p0 (0:05 for solid lines and

0:15 for dashed lines), in Fig.4, we see that for all cases under study a change of p0 strongly

a�ects the �(v)-behaviour and, in particular, the value � � �L of the conductivity in the

plateau V
(b)
B < V < V

(g)
B . The e�ects are moreover on di�erent sides, depending on the value of

pg: for small pg (curves 1 and 2) �L decreases, while for large pg (curves 3 and 4) it increases

as p0 increases. Such a picture certainly results from the fact that �L should approach the

ohmic conductance �0 = 0:3 when the probability p0 increases. For the case of pg = 0:55,

the conductivity �L increases approximately as (�0 � �L)=�0 / (1 � p0), and the non-linear

coe�cient decreases about in two times, when p0 changes from 0.05 to 0.15. Since �L could be

explained as a measure of the leaking current the present results thus show an important e�ect

of ohmic bonds on the breakdown quality of materials.

Finally, we would like to emphasize an interesting feature in the voltage-dependence of the

non-linear coe�cient. From Figs. 3, 4 it is already clear that for all the cases with �nite p0

(both 2D and 3D) in the �(V )-dependences they always have two peaks, located at V � V
(b)
B

and � V
(g)
B . The amplitude of these peaks are very sensitive to the change of the ohmic-

component portion p0. A similar double-peaked structure in �(V ) was also recognized in the

simulation data in ref.[31]. It is undoubtedly caused by randomly distributed GB junctions with

ohmic behaviour, and therefore, it is the characteristic feature of the investigated tenary mixture

model.

In conclusion, we proposed a simple argument for calculating the I-V characteristic of highly

non-linear tenary mixtures that includes (i) an empirical expression for the voltage dependence of

GB-potential barrier heights, and (ii) an extension of the EMA to apply to the tenary mixtures of

highly non-linear circuit elements. Numerical results performed for polycrystalline semiconduc-

tors at room temperature show a strong e�ect of the ohmic bonds on the breakdown behaviour

of materials. In particular, the ohmic bonds increase the leaking current and cause a double-
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peaked structure in voltage-dependence of the non-linear coe�cient. The model is assumed to

be applied for describing pre-breakdown electric properties of the materials as that measured

in ref.[15]. It is thus hoped that this work might provide some useful insight into experimental

investigations and stimulate further theoretical interest in the problem.

Acknowledgments. One of author (NVL) thanks very much Professor Yu Lu for encour-

agement and The Abdus Salam International Centre for Theoretical Physics (Trieste, Italy) for

kind hospitality.

Appendix

The charge densities of the form (linear)

�(x) = �QI�(x) +

(
eND(1 + x=xl); if �xl � x < 0
eND(1� x=xr); if 0 < x � xr

or of the form (parabolic)

�(x) = �QI�(x) +

(
eND(x+ xl)

2; if �xl � x < 0
eND(x� xr)

2; if 0 < x � xr

result in the same expression of eq.(5) for the �(V )-relation, but with di�erent values of zero-

voltage barrier height: instead of �0 for the abrupt model of eq.(4) it will be 4�0=3 and 3�0=2

for the linear and parabolic densities mentioned above, respectively.
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Figure Captions

� Fig. 1. The normalized barrier height �(V )=�0 as a function of the applied voltage

eV=�0: solid circles - experimental data [4]; dashed line - eq.(5); solid line - eq.(7) with

�1 = 3:72 and �2 = 5:63.

� Fig. 2. I-V characteristics of eqs.(3), (7) (solid lines, scale at the left) and corresponding

non-linear coe�cients �(V ) of eq.(1) (dashed lines, scale at the right) for single junctions

with : 1:� �0 = 0:1 eV ; 2:� �0 = 0:4 eV (T = 300K).

� Fig. 3. The normalized overall conductivities �=�0 are plotted as a function of the applied

voltage eV=kBT for 3D system (solid lines). The di�erent curves correspond to di�erent

values of pg: 1.- 0.25; 2.- 0.40; 3.- 0.55; 4.- 0.70 (p0 = 0.05; T = 300 K). Two limit cases

of pb = 1 and pg = 1 are also shown (dashed lines (b) and (g), respectively) for a comparison.

� Fig. 4. The same as in Fig.3, but for 2D system and with various values of pg: 1 and 1' -

0.05; 2 and 2' - 0.25; 3 and 3' - 0.4; 4 and 4' - 0.55. Solid lines: p0 = 0.05; Dashed lines:

p0 = 0.15. Two curves of the same pg should be in comparison.
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