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Abstract

A theoretical analysis on the polarization e�ects of a light beam propagating in a birefrigent

single-mode �ber is presented. We derive a system of di�erential equations representing the

evolution of Stokes parameters and illustrate their application to polarization e�ects in a straight

birefringent single mode optical �ber. The solutions to the set of equations are obtained using

speci�cally the methods of the uni�ed formalism for polarization optics which adopt the use of

the Stokes-Mueller equation and the Lorentz group to model polarization phenomena in media

such as optical �bers. The analytical results presented using this approach are identical to

results obtained from other conventional methods. We observe the characteristic exponential

decrease in the total intensity of the input light due to atteuation by the �ber.
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1 INTRODUCTION

The evolution of the state of polarization of a light beam propagating along a birefringent

single mode optical �ber can be described using several analytical and graphical methods. One

approach involves using a straightforward method of calculating how the electric �eld varies

as the wave propagates along the �ber. In such an approach, an understanding of how the

polarization evolves as the beam propagates is not immediately obvious from the complex slowly

varying electric �eld amplitude [1]. The Jones matrix formalism is another approach that has

been used to study the rotational e�ects of polarization in optical �bers [2]. Svirko and Zheludev

[3] used tensor analysis to obtain expressions that describe the response of a birefringent �ber

to the propagating beam. Several other authors use an alternative method of the dynamical

equation for Stokes parameters to describe the polarization changes of a wave propagating in

an optical medium [4] and [5]. The use of Stokes parameters has an advantage of providing a

rather straightforward analytical de�nition of di�erent polarization states of light. Daino et al

[6] analysed the evolution of the state of polarization along a nonlinear single-mode birefringent

�ber using Stokes parameters and gave exact solutions illustrated by means of a Poincar�e sphere

representation.

In this work, the polarization state of a lightwave is expressed in terms of Stokes parameters.

Using the method of ordered exponential operator [7], a formal solution to the system of di�er-

ential equations is obtained in terms of the Stokes-Mueller equation which has a Mueller matrix

containing the information necessary to characterize the �ber so that its e�ect on the state of

polarization can be deduced and the Stokes parameters of the outgoing and incident light beams

become known. The elements of the Mueller matrix for di�erent sources of perturbations are

then obtained using the Lorentz group formalism.

2 THEORY

To analyze the polarization dynamics of a light beam propagating along a birefringent single

mode optical �ber, we begin by deriving a system of four coupled di�erential equations repre-

senting the evolution of polarization along the optical �ber. We use the methods of Svirko and

Zhedulev [3] to derive the system of coupled di�erential equations which represent the evolution

equations for Stokes parameters for the case in which both linear birefringence and dichroism

are present in the �ber and are parallel to one another in Stokes space
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Eq.(1) can be expressed in matrix form as
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� is the isotropic loss of the �ber, �
0

represents anisotropy in the �ber, and �
00

relates to its

diattenuation e�ects. fS0; S1; S2; S3; g are the Stokes parameters and z is an axis that coincides

with the axis of the �ber along which the �elds propagate. � is an angle between the laboratory

and natural coordinate frames of the �ber.

Solutions to the set of equations can be expressed compactly in terms of the Stokes-Mueller

matrix equation in the form

)

S= cM�
)

S (0) (3)

where cM is the Mueller matrix of the perturbed single mode �ber.
)

S and
)

S (0) represent the

Stokes 4-vector notation for the input and output Stokes parameters, respectively.

After expanding in terms of the ordered exponential operators [7], the 4� 4 Mueller matrixcM can be explicitly written for uniform birefringence and dichroism as [8]

cM (�;d;�; z) = exp (��z) exp

��
d�

^

D

�
z +

�
*

� �
^

B

�
z

�
(4)

where d = fd1;d2;d3g is the dichroism 3-vector related to the polarization dependent loss

e�ects of the �ber and
*

�=

�
*

�1;
*

�2;
*

�3

�
is the birefringence 3-vector related to the �ber

anisotropy. We note that d =
n
2�

00

cos 2�; 2�
00

sin 2�; 0
o

and
*

�=
n
2�

0

cos 2�; 2�
0

sin 2�; 0
o
.

Also,
^

D=

�
^

D1;
^

D2;
^

D3

�
and

^

B=

�
^

B1;
^

B2;
^

B3

�
are six matrices which form an appropriate set

of Lorentz generators for dichroism and birefringence, respectively.

The Mueller approach involves the Stokes parameters collectively behaving similar to a

Lorentz 4-vector. In this case, the Mueller matrices are essentially four-dimensional Lorentz
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transformations acting on the Stokes 4-vector [9]. A Lorentz transformation is any matrix that

can be expressed as [10]

L (v;u) = exp [(v �K) + (u � J)] (5)

where v is a real 3-vector (with cartesian components v1;v2;v3) and u is a real 3-vector (with

cartesian components u1;u2;u3). A transformation for which u = 0 is a rotation matrix and a

transformation for which v = 0 is a boost matrix. The notations K and J are each shorthand for

three matrices: fKm;Jm m = 1; 2; 3g. These matrices are called generators, and they satisfy

the following commutation relations

[Jl;Jm] = �

3X
n=1

"lmnJn

[Kl;Km] =

3X
n=1
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[Jl;Km] = �

3X
n=1
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where "lmn is component of the three-dimensional totally antisymmetric tensor with ("123 = +1).

We note that the matries
^
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^
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where the irrep
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is the vector representation of the Lorentz group. It is a four-dimensional

real representation with generators
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Thus the Mueller matrix of the perturbed single mode �ber is essentially a Lorentz vector

transformation. Then, the Mueller matrix for a purely birefringent single mode �ber is a rotation

matrix. That is,

cM�
0; 0;

*

� ; z

�
=

"
^

I +

�
e��

^

B

�2#
�

�
e��

^

B

�2
cos �z +

�
e��

^

B

�
sin�z (9)

where � = 2�
0

is the magnitude of
*

�, and

e� =

*

�

�
= �1e1 + �2e2 + �3e3 (10)

is a unit vector in the direction of the total birefringence.

We now write cM�
0; 0;

*

� ; z

�
more explicitly as

cM�
0; 0;

*

�; z

�
=

0
BB@
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0 sin2� sin�z � cos 2� sin�z cos �z

1
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(11)

Also, the Mueller matrix for a purely dichroic single mode �ber is the product of a scalar

exponential factor and a boost matrix. Thus,

cM (�;d; 0; z) = exp (��z)

"
^

I �

�
ed�

^

D

�2#
+

�
ed�

^

D

�2
cosh dz +

�
ed�

^

D

�
sinhdz (12)

where d = 2�
00

is the magnitude of d, and

ed =
d

d
= d1e1 + d2e2 + d3e3 (13)

is a unit vector in the direction of the total dichroism.
^

I is the 4� 4 identity matrix. Similarly,

Eq.(12) can be written more explicitly as

cM (�;d; 0; z) =

exp (��z)

0
BB@

Ch � cos 2� sinh dz � sin 2� sinhdz 0

� cos 2� sinhdz sin2 2�+ cos2 2� cosh dz sin 2� cos 2� (cosh dz � 1) 0

� sin 2� sinhdz sin 2� cos 2� (cosh dz � 1) cos2 2�+ sin2 2� cosh dz 0

0 0 0 1

1
CCA
(14)

The Mueller matrices for pure birefringence and dichroism are Lorentz transformations and

therefore have speci�c geometrical interpretations. In the next section, we discuss speci�c cases

of the Stokes-Mueller matrix equation for di�erent input polarization of the propagating light

beam.
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3 RESULTS

The Mueller matrix which characterizes the perturbations due to the presence of linear bire-

fringence and dichroism in the �ber can therefore be obtained and expressed as the composite

of the individual matrices due to only birfringence and only dichroism because the individual

Mueller matrices commute. In other words, the product of equations (11) and (14) yields the

Mueller matrix for the �ber. Hence, the Stokes Mueller equation can be written as

0
BB@

S0
S1
S2
S3

1
CCA = e��z

0
BB@

Ch �C2�Sh �S2�Sh 0

�C2�Sh C2

2�Ch + S2
2�C� C2�S2� (Ch � C�) �S2�S�

�S2�Sh C2�S2� (Ch � C�) S2
2�Ch + C2

2�C� C2�S�

0 S2�S� �C2�S� C�

1
CCA
0
BB@

S00
S10
S20
S30

1
CCA
(15)

where Ch = cosh dz, Sh = sinhdz, S2� = sin2�, C2� = cos 2�, C� = cos�z and S� = sin�z.

The elements of the matrix in Eq.(15) can be expressed in functional forms to obtain the

output Stokes parameters for di�erent input polarization of a light beam propagating along

a birefringent single mode �ber. Using these functional forms, graphical results showing the

variation in the output Stokes parameters for di�erent input polarization of a beam which

propagates along a birefringent �ber having small losses can be obtained. Figure (1) shows

the change in output Stokes parameters for right circularly polarized input light as a function

of the �ber length for a speci�c case in which circular birefringence and dichroism are both

assumed absent in the �ber [11]. In this �gure, the total intensity of the input light is seen to

be dissipated by the �ber. This is due to attenuation by the �ber. Also, the output beam is

observed to emerge elliptically polarized.
We now discuss speci�c cases of the Stokes-Mueller relation Eq.(15) and analyze some of

the resulting polarization e�ects which emerge from di�erent input polarization states of light
propagating along a birefringent �ber. If the �ber is assumed to have negligible loss with small
anisotropy along its length, then there is no dichroism and the linear birefringence relates to the
anisotropy. In addition, we assume that there are external perturbations due to twists along the
length of the �ber so that circular birefringence is present. Again, the corresponding Mueller
matrix can be expanded in terms of the exponential of the birefringence vector and Lorentz
generators to yield the following Stokes-Mueller relation
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(16)

where C2� = cos 2�; C2� = cos 2�; S2� = sin 2�; S� = sin�z and C� = cos �z.

Using Eq.(16), numerical results for the output Stokes parameters for di�erent cases of input

light (initially linearly polarized light, linear +45� polarized light, right circularly polarized light

or elliptically polarized light) as a function of �ber length can be obtained. Figure (2) illustrates
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the variation in the output Stokes parameters as a function of �ber length for elliptically polarized

(45� azimuth and 22.5� ellipticity) input light [11]. It is observed that for this input polarization

and with circular birefringence present, the Stokes parameters vary sinusoidally with length.

However, it is further observed that when loss e�ects are neglected and circular birefringence is

assumed absent, the Stokes parameters remain constant for any input polarization. Thus, the

presence of circular birefringence induces a variation in the polarization state of the propagating

light in a lossless �ber. It is also observed that the beam emerging from the �ber has the same

form as the input polarization for all cases of input polarization regardless of the presence or

absence of circular birefringence. That is, for linearly horizontally polarized input light, the

output light is observed to be linearly polarized on-axis and similarly for o�-axis, circular and

elliptical input polarizations.

4 CONCLUSIONS

In this paper, we have used the Lorentz group formalism to obtain analytical solutions to the

evolution equations for the Stokes parameters. These solutions can be used to numerically obtain

the polarization dynamics of a light beam along a birefringent single mode optical �ber subjected

to a bend or twist. To test the validity of the solutions, we applied them to the test case of a

straight �ber. The basic polarization e�ects of linear and circular birefringence and dichroism

have been observed and presented. We have noted that when loss e�ects in a birefringent single

mode optical �ber are neglected and circular birefringence is further assumed absent, the Stokes

parameters remain constant for any input polarization. In addition, the presence of circular

birefringence induces a variation in the polarization state of the propagating light in a lossless

�ber. As expected, when losses are considered, the total intensity of the input light decays

exponentially. The total intensity is dissipated due to attenuation by the �ber.
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