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Abstract

This paper deals with the obstacle problem

minimize

Z



F (v) dx

subject to v � r in 
; v = g on @
;

where 
 � lRn, F is a suitable functional, and r and g are given functions. Some

su�cient criteria are stated for determining parts of the coincidence set C(u) =
fx 2 
 : u(x) = r(x)g and the noncoincidence set N (u) = fx 2 
 : u(x) > r(x)g
of the optimal solution u to the above obstacle problem.
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1. Introduction

Numerous mathematical and physical problems can be formulated as the min-

imum problem

minimize

Z



F (v) dx subject to v 2 K;

where 
 is a domain in lRn. For instance, the well known Dirichlet problem reads

as follows:

minimize

Z



jrvj2 dx subject to v = g on @
;

where j � j denotes the Euclidean norm. The corresponding Euler equation for its

optimal solution u is the boundary value problem

4u = 0 in 
; u = g on @
 (1:1)

(see e.g. [16]). If the state function v has to satisfy an additional restriction like

v � r, there arises a so-called obstacle problem

minimize

Z



jrvj2 dx

subject to v 2 K := fv 2 V : v � r in 
; v = g on @
g;
(1:2)

where V stands for some suitable vector space of functions. Because of the re-

striction v � r, the obstacle problem (1.2) does not lead to the boundary value

problem (1.1), but to the variational inequality

u 2 K :

Z



ru � r(v � u) dx � 0 for all v 2 K (1:3)

(see [15, p. 3]). Such a problem is more complicated than (1.1). In fact, the partial

di�erential equation 4u = 0 is still valid in the so-called noncoincidence set

N (u) := fx 2 
 : u(x) > r(x)g:

Since u is determined in the coincidence set

C(u) := fx 2 
 : u(x) = r(x)g = 
 n N (u);

under the continuity assumption of �rst derivatives, one still has to consider the

remaining problem

4u = 0 in N (u);

u = g on @
 \ @N (u);

u = r and
@u

@n
=

@r

@n
on 
 \ @N (u):

(1:4)
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Since 
\ @N (u) is not known a priori, it is called a free boundary (see [15, p. 5]).

This notation may cause misunderstanding for strangers. In concrete examples,

it is by nature not free at all, but already �xed by the given problem statement.

The only problem is that one does not know something about it a priori.

Here, \a priori" normally means \before solving (1.2) or (1.3) or (1.4)". But

in this paper we state some su�cient criteria for determining parts of coincidence

and noncoincidence sets C(u) and N (u), without solving the original obstacle prob-

lem (1.2), or the variational inequality (1.3), or its corresponding free boundary

problem (1.4).

The idea originated from the so-called Method of Orienting Curves which was

developed in [3], [4], [9], [12], and [14] for solving optimal control problems with

state constraints. Its application area consists of problems with ordinary di�er-

ential equations (i.e. with one independent variable) having one state function.

Although this area is rather narrow, we had successfully applied this method for

solving some relevant problems, such as constrained Zermelo's navigation problem

[10], Steiner's problem of �nding an inpolygon of some given convex polygon with

minimal circumference [11], inventory problem [12], optimal control of hydroelec-

tric power plants [5], and robot motion along a prescribed trajectory [13]. By this

method, following so-called orienting curves, optimal trajectories are constructed

part by part.

In this paper, we investigate problems with several independent variables.

Thus surfaces appear instead of curves. Therefore, the shortened name \Orienting

Method" is more appropriate. It is understandable if we cannot obtain such a

complete result as in case with one independent variable. But in a similar way,

barrier functions and bottle neck points can be used to locate some coincidence

and noncoincidence points of optimal solutions.

In Section 2, we state the concrete formulation and some examples of the

problem class considered. Section 3 contains su�cient criteria for coincidence and

noncoincidence points under a uniqueness assumption. Section 4 is devoted a

special case where some invariance assumption is made.

2. Problem Statement

Let us �rst introduce some notations. For 
 as some domain (i.e. a connected

open subset) in lRn, V(
) denotes some family of suitable vector spaces of real-

valued functions on 
 satisfying:

(V1) v 2 V(
) is continuous on 
;

(V2) If v 2 V(
) and 
0 � 
 then the restriction vj
0 of v on 
0 belongs

to V(
0);
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(V3) If v 2 V(
), v0 2 V(
0), 
0 � 
, and v = v0 on @
0 then ~v de�ned

by

~v(x) =

�
v0(x) if x 2 
0

v(x) if x 2 
 n 
0

belongs to V(
).
For instance, V(
) = C(
) ful�lls the above three conditions, but V(
) =

C1(
) violates (V3).
Let

F : V(
)! L1(
);

that means V(
) and F are chosen so that the integral
R


F (v) dx is �nitely de�ned.

For some suitable functions g and r, denote

K
;g
r := fv 2 V(
) : v � r in 
; v = g on @
g: (2:1)

Now, for �xed 
 � lRn, g and r, consider the following minimum problem

minimize F
(v) :=

Z



F (v) dx subject to v 2 K
;g
r : (P
;g

r )

Our goal is to determine some parts of the coincidence set

C(u
;gr ) = fx 2 
 : u
;gr (x) = r(x)g; (2:2)

and the noncoincidence set

N (u
;gr ) = fx 2 
 : u
;gr (x) > r(x)g (2:3)

of the optimal solution u
;gr to Problem (P
;g
r ) (whose elements are called coinci-

dence or noncoincidence points, respectively).

To avoid di�culties caused by the obstacle v � r we do not deal directly with

the obstacle problem (P
;g
r ), but investigate corresponding minimum problems

without obstacle

minimize F
0

(v) =

Z

0

F (v) dx subject to v 2 K
0;g0

; (P
0;g0

)

where 
0 is some subdomain of 
, g0 is some suitable function on @
0, and

K
0;g0

:= fv 2 V(
0) : v = g0 on @
0g: (2:4)

These problems are complicated enough, but they are easier than the original one.

The most essential assumption throughout this paper is concerned with the

uniqueness of optimal solutions to problems without obstacle, namely:
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(AU ) For all 
0 � 
 and g0 2 C(@
0), the corresponding problem (P
0;g0

)

admits at most one optimal solution. More precisely, if

u1; u2 2 K
0;g0

and F
0

(u1) = F
0

(u2) = inf
v2K
0;g0

F
0

(v)

then

u1 = u2 in 
0:

Numerous relevant obstacle problems belong to class (P
;g
r ) and ful�ll (AU )

as the following examples show.

Example 2.1. Consider the obstacle Dirichlet problem

minimize F

1 (v) :=

Z



jrvj2 dx

subject to v 2 K
;g
r = fv 2 V(
) : v � r in 
; v = g on @
g:

For

V(
) =W 1;2(
) \ C(
)
(V1){(V3) are ful�lled, and F


1 is well de�ned. Now we show that F
0

1 is strictly

convex on

K
0;g0

= fv 2 V(
0) : v = g0 on @
0g:
For 0 < � < 1, � = 1� �, and v; u 2 K
;g, it holds

�F
0

1 (u) + �F
0

1 (v)�F
0

1 (�u+ �v)

=

Z

0

�
�jruj2 + �jrvj2 � j�ru+ �rvj2� dx

=

Z

0

�
(�� �2)jruj2 + (�� �2)jrvj2 � 2��(rujrv)� dx

= ��

Z

0

jru�rvj2 dx

� 0:

Hence F
0

1 is convex. Moreover,

�F
0

1 (u) + �F
0

1 (v)�F
0

1 (�u+ �v) = 0

if and only if

kr(u� v)k2L2(
0) =

Z

0

jr(u� v)j2 dx = 0: (2:5)

Since u = v = g0 on @
0, Poincar�e inequality (see [2, p. 26]) implies

ku� vkL2(
0) � Kkr(u� v)kL2(
0)
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for some K > 0. Therefore, (2.5) implies ku� vkL2(
0) = 0 and

ku� vkW 1;2(
0) =
�
ku� vk2L2(
0) + kr(u� v)k2L2(
0)

�1=2
= 0:

This means that F
0

1 is strictly convex on K
0;g0

. Consequently, (P
0;g0

) admits

at most one optimal solution, i.e. (AU ) is satis�ed.

Example 2.2. Problems of minimal surfaces have been studied by many

mathematicians (see [1] and [8], for instance). Here we only investigate a special

case with an obstacle which can be stated in the form

minimize F

2 (v) :=

Z



p
1 + jrvj2 dx

subject to v 2 K
;g
r = fv 2 V(
) : v � r in 
; v = g on @
g

(see [15, p. 9]). Let us prove that F
0

2 is strictly convex on K
0;g0

which is de�ned

like in Example 2.1.

For 0 < � < 1, � = 1� �, v; u 2 K
;g, and

D :=
�
�
p
1 + jruj2 + �

p
1 + jrvj2

�2
�
�p

1 + j�ru+ �rvj2)
�2

;

it follows from Schwarz inequality ([16, p. 8]) that

D = 2��

 r�
1 + jruj2

��
1 + jrvj2

�
� (rujrv)� 1

!

= 2��

 r�
1 + jruj jrvj

�2
+
�
jruj � jrvj

�2
� (rujrv)� 1

!

� 2��
��
1 + jruj jrvj�� (rujrv)� 1

�
� 0:

This is equivalent to

�
p
1 + jruj2 + �

p
1 + jrvj2 �

p
1 + j�ru+ �rvj2;

where the equality holds if and only if

jruj = jrvj and ru = �rv for some � � 0;

which yields obviously

ru = rv:
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Applying this result we have

�F
0

2 (u) + �F
0

2 (v)�F
0

2 (�u+ �v) =

Z

0

D(x) dx � 0;

where the equality holds only if

kr(u� v)k2L2(
0) =

Z

0

jr(u� v)j2 dx = 0:

This is just the same situation as in Example 2.1. Hence, F
0

2 is strictly convex

on K
0;g0

, and (AU ) is satis�ed.

Example 2.3. Consider now the deformation of a membrane constrained by

an obstacle. As in [15, pp. 1{2], the problem of �nding the equilibrium position of

such a membrane can be stated as follows:

minimize F

3 (v) := F


4 (v)�F

5 (v)

subject to v 2 K
;g
r = fv 2 V(
) : v � r in 
; v = g on @
g;

where F

4 (v) is the potential energy of the deformed membrane, which is assumed

to be proportional to the increase of membrane surface, i.e.

F

4 (v) = �

Z



p
1 + jrvj2 dx for some constant � > 0;

and

F

5 (v) =

Z



f v dx

describes the work done by a normal uniformly distributed external force given

by f . Since F

5 is linear, and F


4 (v) = �F

2 (v), it follows from Example 2.2 that

F
0

3 is strictly convex on K
0;g0

(for all suitable 
0 and g0), and all assumptions

(V1){(V3) and (AU ) are ful�lled by choosing V(
) =W 1;2(
) \ C(
).
Usually, F


4 (v) is approximated by F

1 (v), i.e.

F

4 (v) = �

Z



jrvj2 dx

(see [15, p. 2]). In this case, the desired conclusion can be deduced from the result

of Example 2.1.

Example 2.4. According to [15, p. 7], the total potential energy of a bending

plate can be written in the form

F

6 (v) :=

D

2h

Z



j4vj2 dx+ T

2

Z



jrvj2 dx�
Z



f v dx;
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where 
 � is a bounded domain in lR2, h > 0 is the thickness, D > 0 is the sti�ness

coe�cient of the plate, T > 0 denotes the constant absolute value of stress per

unit surface, and f = f(x) represents a density of external forces per unit surface

(compare [7, pp. 74{79]).

Let V(
) = W 2;2(
). Since the embedding W 2;2(
) � C(
) is compact, a

function v 2W 2;2(
) also belongs to C(
) provided we change u on a suitable set

of two-dimensional measure zero (see [16, p. 1027]). Hence (V1){(V3) are ful�lled.
Let us justify (AU ). The functional

F

7 (v) :=

Z



j4vj2 dx

is convex, because it holds for 0 < � < 1, � = 1� � and v; u 2 K
;g

�F

7 (v) + �F


7 (u)� F

7 (�v + �u) = ��

Z



j4v �4uj2 dx � 0:

By Example 2.1, the functional

F

1 (v) =

Z



jrvj2 dx

is strictly convex onW
1;2
0 (
). Since the embeddingW

2;2
0 (
) �W

1;2
0 (
) is compact

(see [16, p. 1027]), F

1 is also strictly convex on W

2;2
0 (
). Hence, the functional

F

6 (v) =

D

2h
F

7 (v) +

T

2
F

1 (v)�

Z



f v dx

is strictly convex on

K
;g = fv 2W 2;2(
) : v = g on @
g;

that means (AU ) is satis�ed.

We have seen that there are numerous relevant problems which ful�ll the

assumptions stated above.

3. Main Results

As �rst consequence of assumption (AU ), we have the following local optimal

property.
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Proposition 3.1. Let 
00 � 
0 � 
 and u

0;g0

be optimal to (P
0;g0

). Then

the restriction u

0;g0 j
00 of u


0;g0

on 
00 is the unique optimal solution to (P
00;g00

)

where g00 is the restriction u

0;g0 j@
00 of u


0;g0

on @
00.

Proof. By (V2), u
0;g0 j
00 2 V(
00), and therefore, by de�nition,

u

0;g0 j
00 2 K
00;g00

:

Assume the contrary that (P
00;g00

) has u 2 K
00;g00

as a better solution, i.e.

F
00

(u) < F
00

(u

0;g0 j
00):

Consider

~u(x) :=

�
u(x) if x 2 
00

u

0;g0

(x) if x 2 
0 n 
00.
By (V3), ~u 2 V(
0) and therefore ~u 2 K
0;g0

. Furthermore

0 > F
00

(u)� F
00

(u

0;g0 j
00)

= F
00

(~u) + F
0n
00

(~u)�F
0n
00

(u

0;g0

)� F
00

(u

0;g0 j
00)

= F
0

(~u)� F
0

(u

0;g0

);

which conicts with the optimality of u

0;g0

to (P

0;g0

). Therefore, u

0;g0 j
00 is the

unique optimal solution to (P
00;g00

).

The second consequence of the uniqueness assumption (AU ) is that the op-

timal solution u
;gr to the obstacle problem (P
;g
r ) equals the optimal solution

u

0;g0

to the problem without obstacle (P
0;g0

) in such subdomains where they are

coincided on the boundary and u

0;g0

does not violate the obstacle condition, as

the following says.

Proposition 3.2. Let u
;gr be optimal to (P
;g
r ), and u


0;g0

be optimal to

(P
0;g0

). Assume 
00 � 
0 � 
,

u
;gr = u

0;g0

on @
00 and u

0;g0 � r in 
00: (3:1)

Then

u
;gr = u

0;g0

in 
00: (3:2)

Proof. Assume the contrary that

u
;gr 6� u

0;g0

in 
00:

Then, by (V2){(V3), the function

u(x) :=

�
u
;gr (x) if x 2 
00

u

0;g0

(x) if x 2 
0 n 
00

9



belongs to V(
0) and ful�lls u = g0 on @
0, that means, by (2.4), u 2 K
0;g0

, but

it di�ers from u

0;g0

within 
0. Therefore, assumption (AU ) yields

0 < F
0

(u)�F
0

(u

0;g0

)

= F
00

(u)�F
00

(u

0;g0

) + F
0n
00

(u)� F
0n
00

(u

0;g0

)

= F
00

(u
;gr )� F
00

(u

0;g0

):

Consider

~u(x) :=

�
u


0;g0

(x) if x 2 
00

u
;gr (x) if x 2 
 n 
00.
By (V2){(V3), we have ~u 2 V(
). Furthermore, it follows from u
;gr 2 K
;g

r and

(3.1) that

~u � r in 
 and ~u = g on @
;

that means, by (2.1), ~u 2 K
;g
r . Continuing the previous calculation, we have now

0 < F
00

(u
;gr )� F
00

(u

0;g0

)

= F
00

(u
;gr )� F
00

(~u) + F
n
00

(u
;gr )� F
n
00

(~u)

= F
(u
;gr )� F
(~u):

That means ~u is admissible and better than u
;gr , a contradiction. Therefore, (3.2)

must be true.

The previous proposition is is a basic tool for determining coincidence and

noncoincidence sets of optimal solutions to obstacle problems.

De�nition 3.1. If u

0;g0 2 K
0;g0

is optimal to (P
0;g0

), where 
0 � 
 and

g0(x)

�� g(x) if x 2 @
0 \ @

= r(x) if x 2 @
0 \ 
,

(3:3)

then it is named a lower barrier.

The reason for calling such a function as a lower barrier is given in the fol-

lowing.

Proposition 3.3. Let u
;gr be optimal to (P
;g
r ), and u


0;g0

be a lower

barrier. Then

u
;gr � u

0;g0

in 
0: (3:4)

Proof. Assume the contrary that there exists some x 2 
0 such that

u
;gr (x) < u

0;g0

(x). Since

u
;gr = g on @
 and u
;gr � r in 
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and

u

0;g0

= g0 on @
0;

it follows from (3.3) and the continuity of u
;gr and u

0;g0

that there exists a

subdomain 
00 with

x 2 
00 � 
0

and

u
;gr = u

0;g0

on @
00 and r � u
;gr < u

0;g0

in 
00:

Therefore, Proposition 3.2 yields

u
;gr = u

0;g0

in 
00;

which conicts with x 2 
00 and u
;gr (x) < u

0;g0

(x). Hence, (3.4) must be

true.

The preceding result is useful for �nding subsets of noncoincidence points.

For instance, for an arbitrary subdomain 
0 � 
, just choose

g0 = r on @
0 (3:5)

and consider the optimal solution to (P
0;g0

). By denoting

L+(v) := fx 2 
 : v(x) > r(x)g (3:6)

we have

Corollary 3.4. Assume 
0 � 
 and (3.5). Let u
;gr be optimal to (P
;g
r )

and u

0;g0

be optimal to (P
0;g0

). Then it holds for the noncoincidence set

L+(u

0;g0

) � N (u
;gr ): (3:7)

Proof. Since g � r on @
, (3.3) follows from (3.5). Therefore, u

0;g0

is a

lower barrier, and by Proposition 3.3,

u
;gr (x) � u

0;g0

(x) > r(x) for x 2 L+(u

0;g0

);

that means (3.7) is ful�lled.

An interesting special case is 
0 = 
 and g0 = g. By de�nition, u
;g is a lower

barrier. Hence (2.3), (3.4) and (3.6) yield immediately

Corollary 3.5. Let u
;gr be optimal to (P
;g
r ) and u
;g be optimal to (P
;g).

Then

u
;gr � u
;g in 
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and

L+(u
;g) � N (u
;gr ):

De�nition 3.2. The optimal solution u
;g
0

to (P
;g0

) is said to be an upper

barrier provided

g0(x) � g(x) on @
 (3:8)

and

u
;g
0 � r in 
: (3:9)

Proposition 3.6. Let u
;gr be optimal to (P
;g
r ), and u
;g

0

be an upper

barrier. Then

u
;gr � u
;g
0

in 
: (3:10)

Proof. Assume the contrary that there is an x 2 
 such that

u
;gr (x) > u
;g
0

(x): (3:11)

Since u
;gr = g and u
;g
0

= g0 on @
, it follows from (3.8) and the continuity of

u
;gr and u
;g
0

that there exists a subdomain 
0 � 
 such that

x 2 
0 and u
;gr = u
;g
0

on @
0:

Since u
;g
0 � r in 
0, Proposition 3.2 yields

u
;gr = u
;g
0

in 
0;

which conicts with x 2 
0 and (3.11). Therefore, (3.10) must be true.

De�nition 3.3. x� 2 
 is called a bottle-neck point provided there exists an

upper barrier u
;g
0

satisfying u
;g
0

(x�) = r(x�).

Proposition 3.7. Let u
;gr be optimal to (P
;g
r ), and x� be a bottle-neck

point. Then x� 2 C(u
;gr ), i.e.

u
;gr (x�) = r(x�):

Proof. By de�nition, there exists an upper barrier u
;g
0

satisfying

r(x�) = u
;g
0

(x�):

Proposition 3.6 implies

u
;g
0

(x�) � u
;gr (x�):

12



Since u
;gr (x�) � r(x�), it follows immediately u
;gr (x�) = r(x�).

Proposition 3.8. Let u
;gr be optimal to (P
;g
r ) and u
;g

0

be optimal to

(P
;g0

), where

g0 � g on @
 and u
;g
0 � r in 
: (3:12)

Assume that there is a subdomain 
00 � 
 such that

u
;g
0

=
n
g on @
00 \ @

r on @
00 \ 
.

(3:13)

Then

u
;gr = u
;g
0

in 
00: (3:14)

Proof. By de�nition and (3.12), u
;g
0

is an upper barrier. Thus Proposition

3.6 yields

u
;gr � u
;g
0

in 
: (3:15)

On the other hand, it follows from de�nition and (3.13) that the restriction of

u
;g
0

on 
00 is a lower barrier. Therefore, Proposition 3.3 implies

u
;gr � u
;g
0

in 
00:

Combining this with (3.15), we obtain (3.14) at once.

4. Examples of Use

Throughout this section we assume that r is continuous on 
.

To illustrate the applicability of the result of the previous section, we now

consider a special case, where the following invariance assumption is made:

(AI) It holds for every 
0 � 
 and m 2 lR

F

0

(v +m)� F

0

(v) = const =: c

0

(m) for all v 2 V(
0): (4:1)

Of course, this is a strong restriction. But numerous relevant problems satisfy

it. For instance, for the performance indexes in Examples 2.1{2.4 we have

F
0

1 (v +m)� F
0

1 (v) = F
0

2 (v +m)� F
0

2 (v) = 0

and

F
0

3 (v +m)� F
0

3 (v) = F
0

6 (v +m)� F
0

6 (v) = m

Z

0

f dx = const

13



for all v 2 V(
0).
In general, if F (v) contains only derivatives of v, such as rv and 4v, or v

appears explicitly only a�nely there, then (AI) is ful�lled.

Actually, (AI) belongs to such assumptions which ensure the continuous de-

pendence of the optimal solution u

0;g0

to Problem (P
0;g0

) on the parameter g0.

Moreover, it allows vertical movement without changing the optimal shape, as the

following says.

Proposition 4.1. Let u

0;g0

be optimal to (P

0;g0

). Then, for arbitrary

m 2 lR, u

0;g0

+m is optimal to (P
0;g0+m).

Proof. (4.1) implies

F
0

(u

0;g0

+m) = F
0

(u

0;g0

) + c

0

(m) � F
0

(v) + c

0

(m) = F
0

(v +m)

for all v 2 K
0;g0

. But by (2.4),

v 2 K
0;g0

i� v +m 2 K
0;g0+m:

Therefore, we have u

0;g0

+m 2 K
0;g0+m and

F
0

(u

0;g0

+m) � F
0

(w) for all w 2 K
0;g0+m;

that means u

0;g0

+m is optimal to (P
0;g0+m).

The above property can be applied to determine some parts of noncoincidence

set.

Proposition 4.2. Assume u

0;g0

is optimal to (P
0;g0

), 
00 � 
0 is an open

subset, and

u

0;g0

(x)� r(x) > m = u

0;g0

(y)� r(y) for all x 2 
00; y 2 @
00:

Then 
00 is a subset of the noncoincidence set N (u
;gr ).

Proof. By Proposition 4.1, u

0;g0 �m is optimal to (P
0;g0�m). By assump-

tion, we have u

0;g0 �m = r on @
00. Therefore, the restriction of u


0;g0 �m on


00 is a lower barrier, and Corollary 3.4 yields


00 \ L+(u

0;g0 �m) � N (u
;gr ):

Since 
00 � L+(u

0;g0 �m), we have 
00 � N (u
;gr ).

Mention that 
00 given in Proposition 4.2 is an open subset. It is a bit more

di�cult to ensure a closed subset to be contained in the noncoincidence set. For

this purpose, we need the following notion.

14



De�nition 4.1. A closed subset A � 
 is said to be a locally strictly

maximal region of v provided there exists an open subset B � 
 which contains

A and satis�es

v(x) > v(y) for all x 2 A; y 2 B nA: (4:2)

It follows from (4.2)

inf
x2@A

v(x) � inf
x2A

v(x) � sup
x2BnA

v(x):

The continuity of v yields

sup
x2BnA

v(x) = sup
x2(BnA)[@A

v(x) � sup
x2@A

v(x):

Hence v = const on @A. Therefore, for continuous v, (4.2) is equivalent to

v � a on @A and v(x) � a > v(y) for all x 2 A; y 2 B nA (4:3)

(for some constant a).

Proposition 4.3. Let u

0;g0

be optimal to (P
0;g0

) for some bounded 
0 � 


and some continuous function g0 on @
0, and u
;gr be optimal to (P
;g
r ). Assume

A � 
0 is a locally strictly maximal region of u

0;g0 � r, then A is a subset of the

noncoincidence set N (u
;gr ).

Proof. By de�nition, there exists an open subset B satisfying A � B �

0 � 
 and (4.2). Take an arbitrary open subset B0 with

A � B0 � B0 � B: (4:4)

Since @B0 is compact and u

0;g0 � r is continuous on 
0, there exists x� 2 @B0

such that

u

0;g0

(x�)� r(x�) = m := max
x2@B0

�
u


0;g0

(x)� r(x)
�
:

Consider


00 := fx 2 B0 : u

0;g0

(x)� r(x) > mg:
(4.4) yields x� 2 @B0 � B nA. Therefore, (4.2) implies

u

0;g0

(x)� r(x) > u

0;g0

(x�)� r(x�) = m for all x 2 A; (4:5)

that means A � 
00. Moreover, since 
00 � B0 � B and u

0;g0 � r is continuous, it

follows that 
00 is open and

u

0;g0

(x)� r(x) = m on x 2 @
00: (4:6)

15



Assume now that 
00 is connected, i.e. it is a subdomain of 
. Proposition 3.1

implies that the restriction u

0;g0 j
00 is optimal to (P
00;g00

) with g00 = u

0;g0 j@
00 .

Hence, by Proposition 4.1, the restriction of u

0;g0 � m on 
00 is optimal to

(P
00;g00�m). By (4.6), we have u

0;g0 �m = r on @
00. Therefore, the restriction

of u

0;g0 �m on 
00 is a lower barrier, and Corollary 3.4 yields


00 \ L+(u

0;g0 �m) � N (u
;gr ):

Since A � 
00 \ L+(u

0;g0 �m) follows from (4.5), it holds

A � N (u
;gr ):

If 
00 is not connected, we only have to deal with each component of 
00

which contains some part of A in the same way as above to obtain the desired

conclusion.

In particular, if it holds for the optimal solution u

0;g0

to some (P
0;g0

)

u

0;g0

(x�)� r(x�) > u

0;g0

(x)� r(x) for x 2 B(x�; ") n fx�g � 
0

(for some " > 0), that means (4.2) is valid for A = fx�g, then Proposition 4.3

ensures x� 2 N (u
;gr ), that means u
;gr (x�) = r(x�).

By the propositions stated above we can locate the noncoincidence setN (u
;gr ).

This technique is an outer approach to the coincidence set C(u
;gr ). Let us state a

direct approach to the coincidence set now.

Proposition 4.4. Let u
;g
0

be optimal to (P
;g0

) for some continuous func-

tion g0 on @
 satisfying g0 � g, and u
;gr be optimal to (P
;g
r ). Assume x� 2 


and

u
;g
0

(x�)� r(x�) = min
x2


�
u
;g

0

(x)� r(x)
�
� 0: (4:7)

Then x� 2 C(u
;gr ), that means u
;gr (x�) = r(x�).

Proof. Denote m = u
;g
0

(x�)� r(x�) � 0. By Proposition 4.1, u
;g
0 �m is

optimal to (P
;g0�m). (4.7) implies

g0 �m � g0 � g on @
 and u
;g
0

(x)�m � r(x) in 
;

that means u
;g
0 �m is an upper barrier. Since u
;g

0

(x�) � m = r(x�), x� is a

bottle-neck point. Therefore, Proposition 3.7 yields x� 2 C(u
;gr ).

To illustrate easily the conclusions of this paper, let us consider the following

simple problem.

Example 4.1.

minimize F (�2;3)
8 (v) :=

Z 3

�2

(2v + jv0j2) dx

subject to v 2W 1;2(�2; 3); v � r(x) = jxj in (�2; 3);
v(�2) = 4; v(3) = 5;

(4:8)
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For 
 � lR, the embedding W 1;2(
) � C(
) is compact (see [16, p. 1027]),

therefore (V1){(V3) are satis�ed for V(
) =W 1;2(
). Since (4.8) is only a special

case of the problem considered in Example 2.3 when F

4 (v) is approximated by

F

1 (v), (AU ) is ful�lled.

Consider the auxiliary problem

minimize F (ta;tb)
8 (v) =

Z tb

ta

(2v + jv0j2) dx

subject to v 2W 1;2(ta; tb); v(ta) = a; v(tb) = b;

(4:9)

where 
0 = (ta; tb) � (�2; 3) � lR. (AI) is satis�ed, because

F (ta;tb)
8 (v +m)� F (ta;tb)

8 (v) = 2m(tb � ta) = const for all v 2W 1;2(ta; tb):

The corresponding Euler equation

1� v00 = 0 (4:10)

yields

v(x) = x2 + cx+ d:

for some c; d 2 lR. Combining with the boundary condition

v = g0 on @
0; where g0(x) :=

�
a for x = ta
b for x = tb

(4:11)

we obtain

u

0;g0

(x) := x2 + cx+ d; where c =
b� a

tb � ta
� ta � tb; d =

atb � bta

tb � ta
+ tatb;

satisfying the Euler equation (4.10) and the boundary condition (4.11). Moreover,

0 is the Gateaux derivative of the convex functional F (ta;tb)
8 at u


0;g0

, therefore

0 2 @F (ta;tb)
8 (u


0;g0

)

(see [6, p. 22 and p. 46]), which is su�cient for u

0;g0

to be optimal to Problem

(P
0;g0

) given by (4.9) (see [6, p. 81]).

Let us now apply the conclusions stated above.

(a) Consider 
 = (�2; 3), g(�2) = 4 and g(3) = 5. Clearly,

u
;g = x2 � 0:8x� 1:6
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is optimal to (P
;g). By De�nition 3.1, u
;g is a lower barrier. Therefore, Propo-

sition 3.3 yields for the optimal solution u
;gr to Problem (P
;g
r ) given by (4.8)

that

u
;gr (x) � x2 � 0:8x� 1:6 :

Since
L+(u
;gr ) = fx 2 (�2; 3) : x2 � 0:8x� 1:6� jxj > 0g

=
�
�2;�0:1�

p
1:61

�
[
�
0:9 +

p
2:41; 3

�
;

Corollary 3.4 implies

�
�2;�0:1�

p
1:61

�
[
�
0:9 +

p
2:41; 3

�
� N (u
;gr ):

(b) For

z 2 [�2 +
p
2;�0:5]; g0(�2) = z2 + 4z + 6 and g0(3) = z2 � 6z + 6

we can show that

u
;g
0

(x) = x2 � (1 + 2z)x+ z2

is optimal to (P
;g0

) and satis�es (3.8){(3.9). Therefore, by De�nition 3.2, u
;g
0

is an upper barrier, that yields by Proposition 3.6

u
;gr (x) � x2 � (1 + 2z)x+ z2:

Moreover, since

u
;g(z) = �z = jzj = r(z);

according to De�nition 3.3, z is a bottle-neck point. Hence, Proposition 3.7 implies

u
;gr (z) = r(z) = �z for z 2 [�2 +
p
2;�0:5];

that means

[�2 +
p
2;�0:5] � C(u
;gr ):

(c) With 
 = (�2; 3), g0(�2) = 4:25 and g0(3) = 9:25, we have

u
;g
0

(x) = x2 + 0:25 � r(x) = jxj for � 2 � x � 3;

u
;g
0

(�0:5) = 0:5 = j � 0:5j = r(�0:5);

i.e., (3.12){(3.13) hold for 
00 = (�0:5; 0:5). Consequently, Proposition 3.8 implies

u
;gr (x) = x2 + 0:25 for jxj � 0:5:
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(d) Assume now 
0 = 
 = (�2; 3), g0(�2) = 4 and g0(3) = 9. Then

u

0;g0

(x) = x2

is optimal to (P
0;g0

). Since

d

dx

�
u


0;g0

(x)� r(x)
�
=

d

dx
(x2 � jxj)

n
> 0 if �0:5 < x < 0

< 0 if 0 < x < 0:5

the assumption of Proposition 4.3 is ful�lled for every closed interval [��; �] con-
tained in (�0:5; 0:5). Therefore, this proposition yields [��; �] � N (u
;gr ) for j�j <
0:5. Actually, the assumption of Proposition 4.2 is satis�ed for 
00 = (�0:5; 0:5).
Hence,

(�0:5; 0:5) � N (u
;gr )

follows directly from Proposition 4.2. Since u

0;g0 � r attains its global minimum

at x = �0:5 and

u

0;g0

(�0:5)� r(�0:5) = �0:25 < 0;

Proposition 4.4 shows that �0:5 2 C(u
;gr ). Obviously, this result is appropriate

to the one in (c).

(e) By choosing g0(3) = g(3) = 5 and varying

g0(�2) = 10z � 5 for z 2 [0:9; 3�
p
2];

we obtain

u
;g
0

(x) = x2 + (1� 2z)x+ 6z � 7

as optimal solution to (P
;g0

), which satis�es by z � 0:9

u
;g
0

(�2) = g0(�2) � 4 = g(�2):

Moreover, for z 2 [0:9; 3�
p
2], the function

u
;g
0

(x)� r(x) = x2 + (1� 2z)x+ 6z � 7� jxj; x 2 
 = (�2; 3);

attains its global minimum at x = z, and it holds by z � 3�
p
2

u
;g
0

(z)� r(z) = �(z � 3)2 + 2 � 0:

Consequently, Proposition 4.4 implies

u
;gr (z) = r(z) = z for z 2 [0:9; 3�
p
2];

that means

[0:9; 3�
p
2] � C(u
;gr ):
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(f) Similarly as in (e), by choosing g0(�2) = g(�2) = 4 and varying

g0(3) = 14� 10z for z 2 [0:5; 0:9];

we obtain

u
;g
0

(x) = x2 + (1� 2z)x+ 2(1� 2z)

as optimal solution to (P
;g0

), which satis�es

u
;g
0

(3) = g0(3) � 5 = g(3);

u
;g
0

(z)� r(z) = �z2 � 4z + 2 � 0:

Moreover, for z 2 [0:5; 0:9], the function

u
;g
0

(x)� r(x) = x2 + (1� 2z)x+ 2(1� 2z)� jxj; x 2 
 = (�2; 3);

attains its global minimum at x = z. Consequently, Proposition 4.4 implies

[0:5; 0:9] � C(u
;gr ):

We have seen how the conclusions of this paper can be applied to investigate

optimal solutions to obstacle problems. By choosing di�erent 
0 and g0, it is

possible to locate noncoincidence and coincidence points of the optimal solution

u
;gr to the obstacle problem (P
;g
r ). It was shown in such a way that

[�2 +
p
2;�0:5] [ [0:5; 3�

p
2] � C(u
;gr ):

Actually, these are already all coincidence points of the optimal solution u
;gr to

the obstacle problem (4.8), which can be shown to equal

u
;gr (x) =

8>><
>>:
x2 + (3� 2

p
2)x+ 6� 4

p
2 if x 2 [�2;�2 +

p
2]

x2 + 0:25 if jxj � 0:5

x2 � (5� 2
p
2)x+ 11� 6

p
2 if x 2 [3�

p
2; 3]

jxj if x 2 [�2+
p
2;�0:5] [ [0:5; 3�

p
2].

5. Concluding Remarks

Our above conclusions hold true for every optimal solution u
;gr to (P
;g
r ).

Properly, under some assumption, it can be shown that the optimal solution to

(P
;g
r ) is unique, but we do not intend to deal with this aspect here.

For 
 � lR, it is possible to develop a constructive method for solving obsta-

cle problems with higher-order derivatives, for which (AU ) is the main necessary

assumption. This is the subject of another paper.
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